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Foreword

Physics of Solids developed into an independent discipline at the end of the 30s of
last century with the formulation of the theory of electronic band structure.
Boundary condition for the validity of this theory is the assumption of an infinitely
extended crystal showing no defects, interfaces, or surfaces. Almost at the same
time, the quantum mechanical problem of a particle in a one-dimensional potential
well was solved for the first time.

Semiconductors were recognized as an important class of solids only a decade
later, although the first roots go back to the nineteenth century when Ferdinand
Braun, well known as the inventor of the cathode ray tube, wrote in 1874 his thesis
on “Current Conduction through Sulfur-Metals”. The subject of this thesis got
much later the name “Schottky Diode”. The development of the transistor by
William Shockley and his coworkers starting 1947 and of III–V compounds by
Heinrich Welker already in 1951 present landmarks decisive for the development of
modern multi-targeted technologies enabling today solar cells, microprocessors, or
semiconductor lasers, to mention a few device groups having diffused into our daily
life. Indeed, it is unthinkable to live without such devices enabling, in particular,
modern communication technologies.

Heterostructures, layered semiconductor/semiconductor or semiconductor/
insulator structures like Si/SiO2, were essential parts of devices like transistors
from the very beginning. With the advent of III–V-based heterostructures, pre-
senting the basis for light emitting, but also highly efficient light-harvesting devices,
the material basis for a wealth of devices and systems broadened enormously and
the scientific community embarked to explore “chemical engineering” in a very
systematic way. Twice Nobel prizes were awarded for the physics of Si- and III–
V-based heterostructures in 1985 and 2000. The limits of combining materials of
varying chemical composition on top of each other were discovered to be controlled
by the variation of lattice constants between different materials. If this difference is
too large, defects like dislocations develop and the device properties degrade. Thus,
the original enthusiasm on “chemical engineering” was fast decaying at the end
of the 80s of last century and almost entirely “lattice-matched heterostructures”
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were thought to be useful, restricting enormously the range of structures being
available for III–V-based applications or fundamental physics investigations.

At the end of the 60s the first nanostructures caught very rapidly increasing
interest of the community. Dingle and coauthors fabricated the first
“particle-in-a-box” structure, which is called today a “quantum well” or a
“two-dimensional structure”. The fundamental band gap of a thin layer of a
narrow-band-gap material, with a thickness below the de Broglie wavelength of a
charge carrier, inserted between two barriers of larger gap materials, was discovered
to be thickness dependent, thus confirming the theoretical prediction. The emission
wavelength of a laser based on quantum wells is consequently tunable via the
thickness of the active layer. This discovery marks the advent of modern nanos-
tructure physics. Soon later in the 70s and 80s, research moved to structures of still
lower dimensionality, like one-dimensional and zero-dimensional structures, quan-
tum wires, and quantum dots (QDs). Efficient technologies for easy fabrication of
defect-free nanostructures were missing, however, and the interest faded away until
the beginning of the 90s. Then, the Stranski–Krastanow mode of self-organized
growth of strained zero-dimensional nanostructures was discovered [1], theoretically
founded by modern theory of surface physics and demonstrated to present the basis
of active layers, e.g., lasers with lower threshold current density than ever thought of
[2]. Surprisingly, two paradigms of modern semiconductor physics had to be given
up at the same time by these discoveries: The “lattice match paradigm for
heterostructures“ and the “fabrication paradigm” that lithography-based method
must be employed to create quantum wires and QDs. A minimum amount of strain
induced by lattice mismatch of the heterostructures is the driving source for QD
formation. Zero-dimensional structures, from the point of view of their electronic
properties, do not resemble any more classical semiconductors with their continuous
dispersion of energy as a function of momentum. They behave like giant hydrogen
atoms in a dielectric cage and show a very simple twofold degenerate energy level
system [2], thus presenting a potential source of qubits and entangled photons.

In the twenty-first century, the hallmarks of modern solid-state physics, far
beyond just semiconductors, are design, fabrication, study, and applications of the
now existing great variety of nanostructures. Among them, quantum rings, which
are the subject of the present book, take an outstanding place, because they are not
simply zero-dimensional coherent clusters of atoms or molecules on a surface.
Quantum rings combine sizes at the nanoscale with a nontrivial topology: doubly
connectedness of a ring or even more complicated topological properties like
one-sidedness of a Möbius strip. This combination leads again to the occurrence of
unique physical properties, in particular, persistent currents. Quantum rings present
a unique playground for quantum mechanical paradigms. Their physical properties
are designed by controlling the geometry of a ring and the magnetic flux threading
it, as well as by creating assemblies of quantum rings.

The present book gives an exhaustive and clear overview of this vigorously
developing field, starting with a comprehensive pedagogical introduction of the
fundamentals, via a profound presentation of the key technologies for their fabri-
cation, characterization tools, discoveries, and findings, to a discussion of the most
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recent advancements and current research activities. The style of the book is highly
motivating for both experienced and young scientists: it finally leads a reader
straightforward toward still open problems in this fascinating field.

The book is written by a group of the world’s leading scientists of this field, who
have provided fundamental contributions to the fabrication, characterization, and
theoretical analysis of quantum rings. Hence, a reader receives a unique access to
their “scientific laboratory”, in particular, about state-of-the-art methods of growth
(MBE, droplet epitaxy, lithographic patterning, etc.), characterization (Scanning
probe imaging like STM, SEM, XSTM, etc.), and theoretical analysis of nano-
structures and metamaterials.

Based on their unprecedented tunability, quantum rings are highly prospective as
elemental base for various applications: photonic detectors and sources, including
single-photon emitters, nanoflash memories, qubits for spintronic quantum com-
puting, magnetic random access memory, recording medium, and other spintronic
devices. The book contains roadmaps for the implementation of quantum rings into
such real-world devices.

This book will be the required reading for all those who are active in
nanoscience, nanotechnology, and the applications of quantum rings.

Berlin, Germany Dieter Bimberg
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Preface

The first edition of this book for the first time in monographic literature provided a
broad panorama of the physics of quantum rings. The present second edition
comprises 10 new chapters and 8 extended chapters from the first edition, with
emphasis on modern advancements in theoretical and experimental investigations
of quantum rings.

It is written in a style which makes these issues accessible to theoretical
physicists, experimental researchers, and technologists with different levels of
experience: from graduate and Ph.D. students to experts. The book is also intended
to convey the fascination of quantum rings to specialists in other disciplines:
mathematics, chemistry, electronic and optical engineering, and information tech-
nologies. Our goal is that this book will succeed in invigorating research interests
toward the further development of fundamental insight in and applications of
quantum rings.

It starts with an introduction into the fundamental physics of quantum rings as a
heuristically unique playground for the quantum–mechanical paradigm and a
concise overview of the state-of-the-art in the field, with a particular emphasis on
the quantum interference phenomena like the Aharonov–Bohm effect in quantum
rings (Chap. 1). The book consists of four main parts, though the borders between
them are conventional: Part I. Topology-driven effects, Part II. Fabrication and
characterization, Part III. Optical Aharonov–Bohm effect, and Part IV. Theory.

The first part introduces quantum rings in a general context of topologically
nontrivial nanostructures. Chapter 2 by L. Ma, O.G. Schmidt, and me analyzes the
optical Berry phase in micro/nanoring resonators. In metallic/dielectric Möbius
rings, plasmon/photon modes with non-integer numbers of wavelengths along the
circumference are revealed, while in cone-shaped anisotropic microtube resonators,
the optical spin–orbit coupling is enabled for generation of the Berry phase acquired
in a non-cyclic and non-Abelian evolution. A tunable exciton topology—from
quantum dot to quantum ring—on type II InAs/GaAsSb quantum nanostructures is
represented by J.M. Llorens, V. Lopes-Oliveira, V. López-Richard, J.M. Ulloa, and
B. Alén in Chap. 3. Due to the large spin–orbit coupling of III-Sb nanostructures, the
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modulation of the orbital confinement geometry and topology allows control of the
spin dynamics by external voltages.

The second part represents advanced methods of fabrication of quantum rings:
self-organized growth, droplet epitaxy, and lithographic patterning, as well as their
characterization based on scanning probe microscopy. In Chap. 4 by V.N. Gladilin,
M. Flatté, J. van Bree, J.T. Devreese, P.M. Koenraad, and me, we discuss how the
modern characterization of self-assembled InGaAs/GaAs quantum rings using
XSTM has allowed for a development of an adequate model of their shape, which
quantitatively explains the Aharonov–Bohm effect observed in the magnetization.
Large magnetic moments of quantum rings are shown to originate from the presence
of spin-correlated orbital currents, induced by the spin–orbit interaction. Scanning
probe electronic imaging (scanning gate microscopy) of lithographically pat-
terned quantum rings, which is discussed in Chap. 5 by F.R. Martins, D. Cabosart,
H. Sellier, M.G. Pala, B. Hackens, V. Bayot, and S. Huant, can access the intimate
properties of buried electronic systems. This technique unravels a new counterintu-
itive behavior of branched-out rectangular quantum rings, which turns out to be a
mesoscopic analog of the Braess paradox, and allows detecting recurrence of the
radial pattern of scarred wave functions in graphene quantum rings. Another
promising technique of controllable self-assembled fabrication of quantum rings—
droplet epitaxy—is overviewed in Chap. 6 by C. Heyn, M. Zocher, and W. Hansen,
who represent the functionalization of droplet etching of quantum rings (through
GaAs recrystallization during the local droplet etching with Ga droplets on AlGaAs,
the wave-function tuning of V-shaped GaAs quantum dots by a gate voltage, and the
partial depletion of a near-surface GaAs quantum well due to tunneling), in Chap. 7
by J. Wu and Z.M. Wang with emphasis on vertically and laterally ordered arrays of
quantum rings, and in Chap. 8 by S. Sanguinetti, T. Mano, and T. Kuroda, where the
focus is on semiconductor quantum-ring complexes: multiple concentric quantum
rings and coupled ring–disk, dot–ring, and dot–disk structures.

The third part deals with the optical Aharonov–Bohm effect in quantum rings,
for excitons and plasmons. In Chap. 9, K. Kyhm, H.D. Kim, R. Okuyama, M. Eto,
K.C. Je, R.A. Taylor, G. Nogues, L.S. Dang, A.A.L. Nicholet, M. Potemski,
J.S. Kim, and J.D. Song review recent experimental and theoretical investigations
on optical Aharonov–Bohm oscillations of an exciton and a biexciton in a quantum
ring in the presence of structure anisotropy, localization, internal electric field, and
impurity scattering. Occurrence of a strongly correlated exciton pair in a quantum
ring is detected by new oscillations of photoluminescence at increased magnetic
fields. Theory meets experiment on the Aharonov–Bohm effect for neutral excitons
in quantum rings in Chap. 10 by M.D. Teodoro, V.L. Campo, Jr., V. López-Richard,
E. Marega, Jr., G.E. Marques, and G.J. Salamo. Magneto-photoluminescence spectra
reveal effects associated to built-in electric fields and to the temperature on the
Aharonov–Bohm oscillations in a topmaster single layer of InAs quantum rings
grown on a vertically stacked and laterally aligned InGaAs quantum dot superlattice.
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The fourth part represents advancements in theory of quantum rings. Electronic,
magnetic, and optical properties of a few electron quantum rings of novel materials are
overviewed in Chap. 11 by T. Chakraborty, A.Kh. Manaselyan, and M.G. Barseghyan.
In particular, a few electron ZnO quantum rings are shown to be appropriate for
locating the Majorana fermions. The effects of spin interference in Rashba quantum
rings are analyzed in Chap. 12 by C. Ortix, who shows the connection between the
conductance modulations and the geometric phase acquired by the spin during trans-
port. The basic approaches to theoretical modeling of electronic and optical properties
of semiconductor quantum rings and quantum-ring molecules in electromagnetic
fields are overviewed by A.M. Alexeev and M.E. Portnoi in Chap. 13 and by
H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan, and D. Laroze in Chap. 14
; both chapters can be also used as tutorials for students. A survey on the electron–
phonon interaction in topologically nontrivial nanostructures, in particular,
semiconductor core–shell nanowires, is provided in Chap. 15 by C. Trallero-Giner,
D.G. Santiago-Pérez, L. Chico, and R. Pérez-Álvarez.

In Chap. 16, B. Lassen, M. Willatzen, and J. Gravesen represent applications of
differential geometry methods to quantum rings and nanostructures with compli-
cated topology, like Möbius rings, in particular, for derivation of the elastic energy
for a thin shell. In Chap. 17, C. Segarra, J. Planelles, and J.I. Climente discuss
effects of hole mixing in semiconductor quantum rings and show that the strong
strain potential may compete against the band-offset potential in quantum rings.
Due to the coupling between conduction and valence bands, mid-gap topological
states occur, which localize near the dot edge and are analogous to those of
one-dimensional quantum rings. Quantum interference in circular n–p nanojunc-
tions in graphene nanoribbons is described in Chap. 18 A. Mreńca-Kolasińska and
B. Szafran. The Aharonov–Bohm oscillations in conductance occur provided that
the persistent currents localized at the junction currents are coupled to the quantum
Hall edge currents.

The main message of the present book is that the frontline methods of fabrication
and characterization of quantum rings together with the sophisticated cutting-edge
theoretical research have allowed for accumulation of a significant thesaurus of
fundamental information on their behavior. This highly diversified knowledge
underpins numerous suggestions for prospective applications of nanostructures with
nontrivial topology, like quantum rings, as a highly tunable elemental base for
future device design and optimization, in particular, in optoelectronics, spintronics,
information storage and processing, as magnetic memory elements as well as
photonic sources and detectors.

I am indebted to my teacher and friend Evghenii Petrovich Pokatilov of blessed
memory, who introduced me into the fascinating world of theoretical physics. My
special thanks are due to Lutz Wendler: we started together with the investigations
in the field of physics of quantum rings. This was made possible by awarding me a
Humboldt Fellowship, for which I am deeply grateful to the Alexander von
Humboldt Foundation.
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Chapter 1
Quantum Ring: A Unique Playground
for the Quantum-Mechanical Paradigm

Vladimir M. Fomin

a

b

Abstract Thephysics of quantum rings is reviewed frombasic concepts rooted in the
quantum-mechanical paradigm—via unprecedented challenges brilliantly overcome
by both theory and experiment—to promising application perspectives.

1.1 Prologue

Doubly-connected (ring-like) structures at the scale of nanometers (nanoscale) are
generally termed Quantum Rings (QRs). They exhibit a unique density of states for
charge carriers and quantum fields and hence a vast variety of physical properties,
which are cardinally different from those of singly-connected structures (like quan-
tum dots). Moreover, the topologically-determined properties have been revealed

aV.I. Dal�, Poslovicy russkogo naroda, Moskva, Hudo�estvenna� literatura
1989. “A ring has no end.” (Translation by V.M. F.)
bChristliche Betrachtungen Und Sitten-Lehren…, Wolffgang Wickhart, Prag, (1714), S. 172; the
original orthography is kept. “One can rightly compare a year/ With a round ring that has no
beginning/ And knows no end…” (Translation by V.M. F.)
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for various quantum fields in confined geometries, varying from excitons and elec-
trons in graphene to plasmons and electromagnetic waves in topologically nontrivial
structures.

Circular electric currents prophetically introduced by Ampère [1] to explain the
origin of magnetism: “…un aimant doit être considéré comme un assemblage de
courans électriques qui ont lieu dans des plans perpendiculaires à son axe…”1 were
an essential precursor of persistent currents in themodern physics ofQRs.Amagnetic
field was related to the currents circulating along concentric paths: “…à chacun des
pôles d’un aimant, les courants électriques dont il se compose sont dirigés suivant des
courbes fermées concentriques…”2 Quantum mechanics predicts that small enough
ring-like structures threaded by a magnetic flux, in the equilibrium state, carry per-
sistent (dissipationless) circulating electron currents that do not require an external
power source. A prerequisite is that the electron state keeps quantum coherence over
the whole doubly-connected system.

There have been a number of reviews representing various aspects of physics of
QRs, for example, effects of a finite width of the QRs [2], mesoscopic phenomena in
QRs with strongly coupled polarons [3], possible types of III-V semiconductor QRs
[4], equilibrium properties of mesoscopic metal rings [5], ring-like nanostructures
as a leitmotif in plasmonics and nanophotonics [6], theoretical modeling of the self-
organizedQRson thebasis of themodern characterizationof thosenanostructures [7],
theoretical analysis and experimental observations of persistent currents by virtue of
the magnetic flux quantization phenomenon [8], and advancements in experimental
and theoretical physics of QRs [9]. In the present Chapter, we discuss a number of
contributions to the physics of QRs, essential for the topics of the present book—(i)
fundamentals of physics of QRs and (ii) semiconductor QRs—without any claim for
an exhaustive presentation of the extensive literature in this vigorously developing
field.

1.2 At Dawn

The following studies, commenced already at the very early stage of the quantum
physics, unraveled the key properties of persistent currents in ring-like quantum
structures.

For calculating the magnetically induced current densities of aromatic hydrocar-
bon ring molecules, Pauling [10] advanced a hypothesis that the external electrons
in the benzene molecule can circulate freely and provide a very large contribution
to the diamagnetic susceptibility with the magnetic field normal to the plane of the
carbon hexagon: “We may well expect that in these regions the potential function

1“…a magnet should be considered as an assembly of electric currents that occur in planes perpen-
dicular to its axis…” (Translation by V.M. F.).
2“…at each of the poles of a magnet, the electrical currents, of which it consists, are directed along
concentric closed curves…” (Translation by V.M. F.).
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representing the interaction of an electron with the nuclei and other electrons in
the molecule would be approximately cylindrically symmetrical with respect to the
hexagonal axis of the molecule, the electron, some distance above or below the plane
of the nuclei, passing almost imperceptibly from the field of one carbon atom to that
of the next.”

Within the framework of a quantum-mechanical derivation, London [11] demon-
strated that the diamagnetic susceptibility of aromatic ring molecules was related to
a current circulating around the opening induced by the magnetic field: “La sus-
ceptibilité… correspond à des courants induits qui circulent d’un atome à l’autre
autour de la chaîne cyclique.”3 This current belonged to the ground state, in ana-
logue with superconducting currents: “Nous pouvons… disant que les combinaisons
aromatiques se comportent comme des supraconducteurs.”4

Calculating themagnetic response of ultrasmallmagnetic ring-shaped particles on
the basis of the Schrödinger equation, Hund [12] showed that both at zero tempera-
ture and in thermodynamic equilibrium at temperature T>0, there existed a total cur-
rent circulating around the annulus, which was dissipationless: “…ein wesentlicher
Teil des der diamagnetischen Magnetisierung entsprechenden Stromes um das Loch
herumfließt; dieser Strom hat keine JoulescheWarme, da die Besetzung der Zustande
dem Temperaturgleichgewicht entspricht.”5 Further, it was demonstrated that a set
of eigenstates found for an electron in a ring in a magnetic field B led to jumps in
the magnetization from negative (diamagnetic) to positive (paramagnetic) at certain
values of the applied magnetic field: “…es tritt zu der negativen (diamagnetischen)
Magnetisierung plötzlich eine konstante positive Magnetisierung hinzu, und dies
wiederholt sich nach einem gewissen Zuwachs von B.”6 As a result, the current cir-
culating around the opening of the ring acquires a zigzag form as a function of the
applied magnetic field (shown in Fig. 4 of [12]).

Systematically developing the earlier ideas, Dingle found [13] that the equilib-
rium properties calculated for small free-electron systems in a perfect ring and in a
perfect infinite cylinder were sensitive to the magnetic flux � threading the system,
the magnetic permittivity consisting of a steady part and periodic in the magnetic
flux terms. The fundamental dimensionless quantity, which determined the periodic
dependence, was (in the modern notation) the ratio �/�0, where the magnetic flux
quantum �0 �h/e was determined by universal constants: the Planck constant h
and the elementary charge e. Dingle already noticed the challenges in observing
those periodic terms: “…a single cylinder would possess only a very small mag-
netic moment, whilst it would be difficult to ensure a uniform radius for a bundle

3“The susceptibility… corresponds to the induced currents that flow from one atom to another
around the cyclic chain.” (Translation by V.M. F.)
4“We can… say that the aromatic combinations behave as superconductors.” (Translation by V.M.
F.)
5“…an essential part of the current corresponding to the diamagnetic magnetization flows around
the annulus; this current produces no Joule heat, as the population of states corresponds to the
thermal equilibrium.” (Translation by V.M. F.)
6“…a constant positive magnetization occurs to be suddenly added to the negative (diamagnetic)
magnetization, and this is repeated after a certain increase in B.” (Translation by V.M. F.)
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of cylinders”—a conclusion that has remained very urgent for experimentalists ever
since then. The key challenges in detecting persistent currents experimentally are
twofold: they produce exceptionally small signals and they are very sensitive to the
environment [14].

1.3 Fundamentals of Topological Effects

A fundamental role of the ring-topology for the quantum-mechanical paradigm was
unraveled within the theory of a geometric phase [15–18]. Berry [15] provided a
simple but intuitively appealing derivation of the geometric (Berry) phase, which
will be recalled below. A system is considered whose Hamiltonian H depends on a
set of varying parameters R≡R(t) forming a closed path C between the instant T=0
and the instant t=T such that R(0)=R(T ).

The evolution of the state of the system is governed by the Schrödinger equation:

i�
∣
∣ψ̇(t)

〉 � H (R(t))|ψ(t)〉. (1.1)

At any instant t, the eigenstates satisfy the stationary Schrödinger equation

H (R)|n(R)〉 � En(R)|n(R)〉, (1.2)

where |n(R)〉 is single-valued in the region that includes C. Within the adiabatic
approximation [19], the system prepared in one of these states |n(R(0))〉 will evolve
with the Hamiltonian H(R(t)) and be in the state |n(R(t))〉 at the instant t. A
gauge-invariant generalization to the phase-coherence phenomena in nonadiabat-
ically evolving quantum systems was proposed by Aharonov and Anandan [20]. The
solution to the Schrödinger equation (1.1) is sought in the form

|ψ(t)〉 � exp

⎡

⎣− i

�

t∫

0

dτ En(R(τ ))

⎤

⎦ exp
[

iγn(t)
] |n(R(t))〉. (1.3)

Substituting (1.3) into the Schrödinger equation (1.1) and taking into account (1.2),
we find the equation for the geometric phase γn(t) :

γ̇n(t) � i〈n(R(t)) | ∇Rn(R(t))〉 · Ṙ(t).

(A gauge can be chosen so that the Aharonov–Bohm phase is included in the dynam-
ical phase instead of the geometric phase, see, e.g., [21, 22].) The total phase change
of the state of (1.3) on the path C



1 Quantum Ring: A Unique Playground … 7

|ψ(T )〉 � exp

⎡

⎣− i

�

T∫

0

dτ En(R(τ ))

⎤

⎦ exp
[

iγn(C)
] |ψ(0)〉 (1.4)

is then determined by the geometric phase change

γn(C) � i
∮

C

〈n(R) | ∇Rn(R)〉 · dR. (1.5)

A generalization of the phase factor iγn(C) in (1.4) (which was initially derived for a
non-degenerate Hamiltonian) to the Hamiltonian with degenerate energy levels, was
provided in terms of the path-ordered integrals involving non-Abelian gauge fields
[23].

Magnetic field is an important tool revealing physical effects due to the doubly-
connected topology. Consider a magnetic flux line [24] (or tube) carrying a flux �.
For positions R outside of the flux line (tube), the magnetic field is zero, but there
exists a set of gauge-equivalent vector potentials A(R) such that for any closed path
C threaded by the magnetic flux line (tube)

∮

C

A(R) · dR � �.

Further, let a particle carrying a charge q be confined to a box at R, which is not
penetrated by the flux line (tube). Without a flux, the Hamiltonian of the particle
H(p, r–R) depends on the momentum p and the relative position r–R and possesses
the eigenfunctionsψn(r−R) that satisfy (1.2) with eigenenergies independent of R.
With non-zero flux, the states |n(R)〉 satisfy

H (p − qA(r), r − R)|n(R)〉 � En|n(R)〉 (1.6)

with the eigenenergies unaffected by the vector potential. Solutions of (1.6) are
obtained in terms of the Dirac phase factor [25]

〈r | n(R)〉 � exp

⎡

⎣i
q

�

r∫

R

dρ · A(ρ)
⎤

⎦ψn(r − R). (1.7)

Within a thought experiment, the box is transported round a closed doubly-connected
path C threaded by the flux line (tube). Any such path is topologically equivalent to
a ring. The integrand in the geometric phase change of (1.5) is then

〈n(R) | ∇Rn(R)〉 �
∫

d3rψ∗
n (r − R)

[

−i
q

�
A(R)ψ(r − R) + ∇Rψn(r − R)

]

� −i
q

�
A(R).
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The integral of the second term in the integrand vanishes because of thewave function
normalization. Consequently, the geometric phase change

γn(C) � q

�

∮

C

A(R) · dR �q�

�
(1.8)

is independent of n. With q=sign(q)e, q�

�
� sign(q) �

�0
. Thus, a charged particle

gains a phase as it moves over a closed path about the flux line (tube):

|ψ(�)〉 � exp

[

i
q�

�

]

|ψ(� � 0)〉 � exp

[

isign(q)
�

�0

]

|ψ(� � 0)〉. (1.9)

The geometric phase occurring in (1.9) leads to a quantum interference between the
states of the particles in the transported box and those in a box that was not moved
about the flux line (tube). There are numerous manifestations of this quantum inter-
ference, which is known as the Aharonov–Bohm effect [24, 26]. They are revealed
in the electronic spectra, magnetization, optical and transport properties of QRs and,
in particular, represented in the present book. Observation of the Aharonov–Bohm
effect was significantly facilitated by nano-scale fabrication and low-temperature
detection techniques, which minimize dephasing, as demonstrated in the beautiful
experiment on dephasing in electron interference by a ‘which-path’ detector [27].
The phase acquired by a particle with nonzero spin can also follow from spin-orbit-
coupling instead of a magnetic field (Aharonov–Casher effect) [28].

Oscillating persistent currents were extensively investigated in superconductor
QRs, which are beyond the scope of the present book; see [29–31] for references.

1.4 Renaissance

In their works dealing with the flux quantization in superconducting rings, Byers and
Yang [21] and Bloch [32] showed that “the magnetic flux through any surface whose
boundary loop lies entirely in superconductors is quantized in units” Φ

sup
0 =h/ (2e),

where 2e is the charge of a Cooper pair [21]. As a result, a general theorem follows:
all physical properties of a doubly-connected system are periodic in the magnetic
flux through the opening � with the period Φ

sup
0 . The experimental detection of the

periodicity of the magnetization as a function of magnetic flux (“magnetic flux quan-
tization”) in superconducting rings [33] and cylinders [34] was used to demonstrate
that charge in superconductors was carried in units of 2e [34].

Gunther and Imry [35] analyzed persistent currents in a hollow, cylindrically
shaped superconductor taking into account that the magnetic flux consists of two
parts: that due to the external magnetic field and that due to the current. The flux
quantization was shown to be exhibited when the cylinder was thick enough as
compared to the penetrationdepthof the superconductor and thin enoughas compared
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to the temperature-dependent coherence length as to exclude the off-diagonal long-
range order.

Kulik [36] discussed the persistent currents and the flux quantization in a hollow
thin-walled normal metallic cylinder and ring threaded by a tube of magnetic flux-
lines that were confined within an inner cylinder (a magnetic coil) with a radius
smaller than the radius of the outer cylinder, in which no electric or magnetic field
was present.

In cylindrical bismuth single-crystal whiskers 200–800 nm thick, oscillations in
the longitudinal magnetoresistance with the period �0/cosθ (θ was the angle of the
tilt of the magnetic field with respect to the cylinder axis) observed by Brandt et al.
[37, 38] were interpreted as a possible manifestation of the Aharonov–Bohm effect.

Büttiker et al. [39] were the first to consider persistent currents in a strictly one-
dimensional normal-metal ring with disorder. It was concluded that “Small and
strictly one-dimensional rings of normal metal, driven by an external magnetic flux,
act like superconducting ringswith a Josephson junction, except that 2e is replaced by
e.” These authors noticed a fundamental analogy between the energy spectrum of an
electron traversing the ring and that of an electron in a periodic potential: it consisted
of bands of width V with band gaps Δ. Such band states carried persistent currents.
The heuristic value of the possibility to conduct a persistent-current calculation using
thewidely developed solid-state band-structure theory could behardly overestimated.
It was pointed out, that the band energy in a ring oscillated periodically as a function
of the enclosed flux: En(�)�En(�+�0) and carried the (single-band) persistent
current In=−dEn(�)/d�. For a geometrically perfect ring, the persistent currents
carried by consecutive bands had opposite signs.

The key criteria for a possible observation of the persistent current are represented
in Chap. 4 of [40]. Firstly, the electron level width (determined as è/τφ through the
inelastic scattering time τφ) must be much smaller than the typical values of the band
gap Δ and the bandwidth V . The latter condition is equivalent to the requirement
that phase coherence be maintained along the whole ring, i.e., the phase-coherence
length l is larger than the mean circumference L of the ring (ballistic regime). With
increasing disorder, when the electron free path is smaller than the ring circumference
(diffusive regime), the period of the Aharonov–Bohm effect becomes �0/2 [41].
Secondly, the temperature must be low enough: kBT≤Δ. Otherwise, the sum of the
persistent currents (with alternating signs) carried by the occupied levels would lead
to a strong reduction of the overall persistent current.

The seminal work by Büttiker et al. [39] initiated a tremendous interest in the
persistent current problem, starting with the papers on the resistance of small one-
dimensional rings of normal metal driven by an external time-dependent magnetic
flux [42] and the persistent currents and the absorption of power in the ring that was
coupled via a single current lead to a dissipative electron reservoir [43].

The first evidence for persistent currents in mesoscopic rings was provided in
the following three pioneering experiments. The persistent current in the diffusive
regime, where the elastic (non-dephasing) mean free path l was much smaller than
the mean circumference L of the ring, was measured in an ensemble of l07 cop-
per rings [44] with a SQUID magnetometer and for a single (isolated) gold ring
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[45] using a highly sensitive thin-film miniature dc-SQUID magnetometer. At the
turn of 1980s and 1990s, first semiconductor quantum rings were fabricated with
decreasing average diameter: 2 μm [46], 1.7 μm [47], and 600–700 nm [48], which
manifested the Aharonov–Bohm effect. For a lithographically prepared single GaAs
ring of the average diameter 2.7 μm [49], in the ballistic regime (i.e., for L< l), the
Aharonov–Bohm effect in the magnetic response was first detected using a special
technique, where the sample and the SQUID were made on the same chip. Further
measurements of persistent currents were made on arrays of gold QRs [50, 51] and
an ensemble of 105 disconnected silver rings [52].

The problem of matching theoretical predictions with the emerging experimental
evidence stimulated the further intensive research aimed at a development of more
realistic models of QRs, taking into account effects due to the finite size, disorder of
different nature, and the electron-electron interaction.

For the metallic QRs (in the diffusive regime), the magnitudes of the persistent
currents occurred much larger (by two orders of magnitude) than those predicted
using the model of non-interacting electrons [53, 54], while for the semiconductor
QRs in the ballistic regime this simple theory seemed to agree with experiment.
This stimulated investigations (see [2, 40] for details) of the following issues: (i)
the role of the choice of the statistical ensemble (canonical versus grand canonical)
to calculate average values of persistent currents [55–57], (ii) the role of spin in
producing the fractionalAharonov–Bohmeffect [58–60], (iii) the role of the electron-
electron interaction [61–63], (iv) the role of correlations due to the electron-electron
interaction beyond the first-order perturbation approach [64–67].

Important conceptual ingredients to resolve the discrepancy between themeasured
and observed values of the magnitude of persistent currents in metallic QRs were (i)
the argument of local charge neutrality in volume elements larger than the screening
length [63, 68] and (ii) the fact that the effect of disorder may be strongly reduced by
the electron-electron interaction [69–71]. Another interesting way to get agreement
was based on the diamagnetic sign of the persistent currents observed in metal QRs,
e.g., by [44],which suggested that thematerialswereweak superconductors [66]with
a very low critical temperature [64]. The attractive electron-electron interaction may
enhance the magnetic response of a QR due to the contribution of high energy levels
[66]. Resolving the contradiction between experiment and theory in what concerns
the magnitude of persistent currents in metallic QRs was recognized as a major open
challenge in mesoscopic physics [50, 65, 67, 72].

A rigorous quantum-mechanical theory of persistent currents developed for QRs
in the ballistic regime revealed that the coupling between the different channels of
the electron motion caused the occurrence of higher harmonics of �0 in the persis-
tent current. Three fundamental findings were achieved in the middle of 90s. (i) The
halving of the fundamental period of the persistent current may occur in a single
finite-width [73] or finite-height [74] QR due to the coupling of the azimuthal or,
correspondingly, radial or paraxial electron motions by virtue of the impurity scatter-
ing. Later it was shown that for the magnetic field penetrating the conducting region
of the finite-width QR, the Aharonov–Bohm-type oscillations due to the magnetic
flux threading the opening coexisted with the diamagnetic shift of energy levels due
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to the magnetic field in the QR and were aperiodic [75, 76]. The density of states
in a finite-width QR was evaluated by measuring the temperature dependence of
the radiative recombination of excitons, where the photoluminescence decay time
as a function of temperature was calibrated through the low-temperature integrated
intensity and linewidth [77]. The quasi-continuous finely-spaced levels arising from
the rotation energy were shown to give rise to a quasi-one-dimensional density of
states, as long as the confined exciton was allowed to rotate around the opening of
the anisotropic QR structure possessing a finite rim width.

(i) The role of the electron-electron interaction in a finite-width QR for a suffi-
ciently low density, at which the correlation energy was much larger than the
Fermi energy, consisted in formation of an N-electron Wigner molecule with
relative angularmotions of the electrons in the formof harmonic oscillations and
radial motions depending on the shape of the confining potential [78], further
developed and specified in [73, 79, 80]. The results for highly correlated elec-
trons were, generally speaking, distinct from those for free electrons, except for
the case of low temperatures, when a high-symmetry equilibrium configuration
of electrons occurred by virtue of the strong repulsion between them.

(ii) AWigner molecule determined the ring-specific rich spectra of absorption, PL,
and Raman scattering [81], which were significantly distinct from those of free
electrons in a QR (see also [82]). A later study of electronic transitions in QRs
caused by a high-frequency inhomogeneous piezoelectric field accompanying
a surface acoustic wave (SAW) unveiled another possibility to distinguish the
Wigner-molecule-regime from that of the free electrons by virtue of a different
mechanism of the electronic absorption: for free electrons, the dipolematrix ele-
ment was other than zero, while in theWigner molecule the absorption occurred
due to quadruple and higher multipolar transitions [83].

Effect of the spin-orbit interaction was shown to dramatically change persistent
currents in QRs as a function of the magnetic flux as compared to the case without
the spin-orbit coupling; in particular, it may suppress the first Fourier harmonic in
the persistent current and thus simulate the �0/2-periodicity [84]. The presence of
magnetic impurities in a QR may induce bistability of the persistent current of two
interacting electrons and a hysteresis in its dependence on the magnetic flux [85].

Interesting effects were unveiled in systems, where quantum rings were coupled
to quantumdots. For amesoscopic ringwith a quantumdot inserted in one of its arms,
it was shown that the phase of the Aharonov–Bohm oscillations was not related to the
dot charge alone but instead to the total charge of the system [86]. In the presence of
the Aharonov–Bohm flux, a charge response of a mesoscopic ring coupled to a side-
branch quantumdot revealed a sequence of plateaus of diamagnetic and paramagnetic
states, while a mesoscopic ring containing an embedded quantum dot with leads
exhibited a number of sharp peaks in the persistent current depending on the parity
of the total number of electrons in the system [87].

Emergence of novel materials, e.g., carbon nanotubes, provided a new playground
for observation and investigation of the Aharonov–Bohm effect [88].
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1.5 Florescence

As the cornerstone of high-tech industry of the twenty-first century, nanostructures
[89] are known as the cradle of new fabrication technologies [90], new characteriza-
tion instruments [91, 92], and new theoretical insights [40].

A remarkable breakthrough in the physics of QRs was related to the discovery
of the self-organized formation of QRs of a few tens of nm in diameter in 1997 by
García, Medeiros-Ribeiro, Schmidt, Ngo, Feng, Lorke, Kotthaus and Petroff for the
InAs/GaAs system [93]. It opened unprecedented perspectives to fabricate, charac-
terize and investigate large arrays of semiconductor QRs as well as to control their
size and shape.

1.5.1 Self-assembly Through Partial Overgrowth

It was demonstrated that by using a partial capping process the shape and size
of InAs self-assembled quantum dots grown by Molecular Beam Epitaxy (MBE)
may be modified in a way that led to the fabrication of self-assembled QRs [93].
The fabrication process was monitored using the in situ Reflection High-Energy
Electron Diffraction (RHEED) technique [94], cross-section Transmission Electron
Microscopy (TEM) [93, 95] and Atomic Force Microscopy (AFM) [93, 96, 97]
measurements.

Two mechanisms were revealed, which mainly contributed to the self-assembled
formation of QRs via partial overgrowth technique. One of them was kinetic diffu-
sion: the In atoms, due to their higher diffusion mobility at the interface as compared
to the diffusion mobility of the Ga atoms, could diffuse out of the partially capped
quantum dots outwards onto the surface of the surrounding GaAs forming a ring-
shaped InGaAs island [98].Anothermechanismwasbasedon the thermodynamically
driven dewetting: the imbalance of surface and interface forces acting upon the par-
tially capped islands InAs/GaP [97]. Formation of liquid In droplets on the top of
the InAs quantum dots under partial capping due to the stress-induced melting effect
was established experimentally [94] and theoretically [99].

UnlikemesoscopicQRs defined lithographically, the self-assembledQRs, embed-
ded in aGaAsmatrix, could function in the quantum limit, free of decoherence, owing
to scattering processes [100, 101]. The energy spectra of self-assembled QRs were
thoroughly studied through their peculiar optical properties using photoluminescence
(PL) [96, 102], Time-Resolved PL and PLExcitation [103], as well as Photoemission
Microscopy [104] both in single QRs and QR-arrays.

Being embedded in a heterostructure, the QRs could be electrically tuned by an
electric field, and carriers could be injected with single-electron/single-hole preci-
sion. The detailed energy structure of electrons (holes) in QRs was obtained using
the following three spectroscopic techniques. The PL (optical emission) of a sin-
gle QR changed as electrons were added one-by-one. The emission energy changed
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abruptly whenever an electron was added, the sizes of the jumps revealing a shell
structure [101]. Capacitance-voltage measurements allowed for probing the single-
particle and many-particle ground states as a function of the applied electric field.
Far-infrared absorption spectra demonstrated the effect of flux quantization on the
intraband transitions.

1.5.2 Characterization

Cross-Sectional Scanning Tunneling Microscopy (X-STM), Atom Probe Tomogra-
phy and Scanning-Gate Microscopy (SGM) belong to the advanced characterization
methods that can access the intimate behavior of buried electronic systems and have
been successfully exploited to get insight into the geometric structure of QRs.

X-STM of self-assembled InGaAs/GaAs QRs revealed the remaining quantum
dot material, whereas the AFM represented the erupted QD material [105]. Based
on this structural information from the X-STM measurements, a model of a self-
assembled QR as a singly-connected “quantum volcano” (with a strong dip rather
than opening in the center) was substantiated [105–107]. The electron magnetization
was calculated as a function of the appliedmagnetic field for single-electron [75, 106]
and two-electron [108] QRs. Quite surprizingly, even though those nanostructures
were singly-connected and anisotropic, they exhibited the Aharonov–Bohm behav-
ior, which was generally considered to be restricted to doubly-connected topologies.
This was due to the fact that the electron wave functions in a “quantum volcano”
were decaying towards the center so rapidly (exponentially) that they were topolog-
ically identical to the electron wave functions in doubly-connected QRs. The theory
allowed for a quantitative explanation of the Aharonov–Bohm oscillations in the
magnetization observed using the torsionmagnetometry on those ring-like structures
[109]. For measurements of the persistent currents in metal QRs, a micromechani-
cal detector based on cantilever torsion magnetometry was proved to provide orders
of magnitude greater sensitivity than SQUID-based detectors [14]. X-STM in com-
bination with powerful Atom Probe Tomography [110] revealed how GaSb/GaAs
quantum dots disintegrate into ring-like clusters of islands upon capping, ensuring a
3D structural and compositional characterization of semiconductorQRs at the atomic
scale.

The Aharonov–Bohm oscillations of conductance in a mesoscopic ring defined
by dry etching in a two-dimensional electron gas below the surface of an
AlxGa1−xAs/GaAs heterostructure and interrupted by two tunnel barriers were mod-
ified by a perpendicular magnetic field and a bias voltage [111]. As a result, the
nonequilibrium electron dephasing time was found to be significantly shortened at
high voltages and magnetic fields.

Studies of the lithographically patterned InGaAs-basedQRsbymeans ofScanning
GateMicroscopy (SGM) provided unique imaging ofAharonov–Bohm interferences
in real space and the electronic local density-of-states at low magnetic fields [112]
and Coulomb islands in the quantum Hall regime at high magnetic fields and very
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low temperatures [113]. This allowed for unveiling the spatial structure of transport
inside a quantum Hall interferometer and, subsequently, for deciphering the high-
magnetic field magnetoresistance oscillations. Scanning-probe technique unraveled,
also, a counter-intuitive behavior of a two-path network patterned from a GaInAs
heterojunction in the form of a rectangular QR-structure connected to a source and a
drain via two openings [114]. The antidot in the initial rectangularQR-structure could
then be bypassed by a third path for the electrons. Partially blocking the electron
transport through this additional branch by using SGM resulted in an increased
current through the whole device. This counterintuitive effect was interpreted as a
mesoscopic analog of the Braess paradox known for classical networks.

A theoretical justification was proposed for an Aharonov–Bohm interferometer
at the n-p junction in graphene nanoribbons induced by the potential of the AFM
tip, as in SGM [115, 116]. The conductance of the system was shown to exhibit
Aharonov–Bohmoscillations in case if the persistent currents localized at the junction
were coupled to the quantum Hall edge currents, the coupling being controlled by
the Fermi energy and the tip potential.

1.5.3 Various Materials Systems

The self-assembly was proved to be an efficient method of QR formation also in
diverse materials systems, for instance, InAs/InP [117], Ge/Si [118] and GaSb/GaAs
[119]. Capping the InAs or InGaAs quantum dots by a GaAs/AlAs layer before
annealing allowed for impeding the inward diffusion of the Ga and Al atoms and
resulted in nicely shaped self-assembled QR-structures [120].

In contrast to the InGaAs/GaAs materials system, where capping of quantum dots
followed by a growth interruption was necessary to initiate the quantum-dot to QR
transformation, GaSb QRs occurred just after the deposition of GaSb on GaAs(001).
Ring-shaped GaSb/GaAs quantum dots, grown by MBE, were characterized using
X-STM [121]. These QRs, as distinct from the self-assembled InGaAs/GaAs QRs,
possessed a clear central opening extending over about 40% of the outer base length
and were therefore truly doubly-connected objects.

A distinct series of quantized modes in the vortex state observed in the spin
excitations of ferromagnetic rings at the micrometer scale, fabricated using electron
beam lithography, was attributed to spin waves that circulated around the ring and
interfered constructively [122]. This is a representative example of the vigorously
developing spin-wave physics in devices with topologically nontrivial magnetization
profile.
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1.5.4 Droplet Epitaxy and Lithography

Besides the above-described partial overgrowth technique within the Stran-
ski–Krastanov growth mode, another technique of the QRs fabrication was devel-
oped, which allowed for preparation of strain free GaAs/AlGaAs QRs and QR-
complexes—droplet epitaxy [123–125]. This method started with formation of
group-III liquid-metal droplets within a Volmer–Weber growth mode on the sub-
strate surface. The nanostructures were subsequently formed by being exposed to
a group-V element (As, Sb, P). The temporal evolution of these nanometer-scale
objects was tracked in situ during the growth process using the RHEED technique
[126]. It was found that nanodroplets tended to nucleate at the location of exist-
ing nanocrystals formed by droplet epitaxy [127, 128]. Hence, the already existing
nanostructures served as nucleation sites for both homo- and heteroepitaxy. In thus
way, vertically aligned quantum rings could be produced by sequential deposition
using droplet epitaxy [128].

Local droplet etching (LDE) allowed for the self-assembled drilling of nanoholes
into semiconductor surfaceswhere the openingswere surrounded by amostly circular
wall of recrystallized material [129, 130]. Two different approaches were developed
for QR fabrication by LDE. (i) QRs inside the GaAs walls which were recrystallized
during LDE with Ga droplets [131]. GaAs recrystallization was assumed to take
place also inside the nanoholes and to contribute to the QR confinement. (ii) LDE
with Al droplets formed AlAs walls that were optically inactive. The nanoholes
were filled with GaAs to form V-shaped GaAs QDs. By applying a vertical electric
field, the wave functions of electron and holes were spatially separated. For one
type of charge carriers, the wave functions in V-shaped QDs were tuned to form
QRs, thereby implementing an effective transformation of singly connected QDs
to doubly connected QRs by a gate voltage [132]. As distinct from QRs out of the
recrystallized GaAs, which were formed without an electric field, a V-shaped QD
required a vertical electric field for switching into a QR. For both types (i) and (ii),
the charge carriers were localized by the confinement potential due to embedding of
GaAs into the barrier material AlGaAs.

Droplet epitaxy demonstrated a unique ability to assemble QR nanostructures of
complex morphologies ranging from single QRs [133], concentric double QRs [125,
134] and double-QR complexes [135] to concentric higher-order multiple QRs [136]
and coupled QR/disks [137]. In GaAs double QRs formed by the droplet epitaxy,
the size and height of the QRs were shown to depend on the supplied As flux. At a
low As flux, larger and flatter rings were obtained. The formation of outer and inner
rings was attributed to crystallization of out-diffused Ga and nanodrilling of Ga on
the GaAs surface, correspondingly [125].

In semiconductor nanostructures, the use of twisted light/matter allowed one to
populate precisely one desired electronic level using an appropriate combination of
the light-beam parameters. For instance, the coupled QD-QR systems fabricated by
the droplet epitaxy [138], provided a prototypical example of the class of nanos-
tructures, where the use of twisted light/matter displayed a wealth of opportunities
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for the optical control of electronic states by tuning the position, waist and orbital
angular momentum of the light beam.

Optical properties of GaAs/AlxGa1−xAs QRs grown on GaAs (100) by droplet
epitaxy were explored as a function of the Al-content in the barrier. A transition from
type-I (at x ≤ 0.45) to type-II (at x ≥ 0.60) band alignment was detected for the QRs
via photoluminescence and time-resolved photoluminescence measurements [139].
Owing to the height fluctuation of QR structures grown by droplet epitaxy, the long
lifetime became the key feature to identify the type-II band alignment, rather than the
large blue shift of emission energy. At x ≥ 0.60, both the measured carrier relaxation
time~200 ps and the carrier recombination time~6 ns for the type-II GaAs/AlGaAs
QRs were much longer than their counterparts for the type-I GaAs/AlGaAs QRs.

There has been a continuing insightful analysis of lithographically determined
QRs. Magnetotransport experiments in the Coulomb blockade regime [140] and
magnetoresistance measurements [141] on closed rings, fabricated with AFM oxi-
dation lithography, confirmed that a microscopic understanding of energy levels of
band charge carriers in QRs with the SO-interaction could be extended to a many-
electron system.

1.5.5 Novel Manifestations of the Aharonov–Bohm Effect

New conditions for manifestation of the Aharonov–Bohm effect through neutral
composite entities consisting of charged particles in QRs were actively sought for
starting with the seminal paper [84]. For an exciton in a one-dimensional QR placed
in a perpendicular magnetic field, a �0-periodic dependence of the exciton binding
energy on the magnetic flux was found. In [142] the same result for the exciton
ground-state energy was obtained within another analytical approach.

Extending the Berry’s analysis of the phase evolution for a charge carrier, given
in (1.9), consider the case when a particle (exciton) composed of an electron (q=−
e) and a hole (q=e) is confined to a box that is transported around an opening of a
doubly-connected system threaded by a magnetic flux line (tube). The wave function
of the exciton

|�(�h,�e)〉 � exp

[

i
(�h − �e)

�0

]

|�(�h � 0,�e � 0)〉 (1.10)

gains a phase, which is determined by a difference between the magnetic fluxes
through the paths Ch and Ce encircled by the hole and the electron, respectively:

�h �
∮

Ch

A(R) · dR,�e �
∮

Ce

A(R) · dR. (1.11)
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If the exciton is polarized, the paths Ch and Ce are different from each other (cp.
[143]), the quantum interference, according to (1.10), is caused by the magnetic
flux (�h − �e) through the area between the two paths. Being manifested mainly
through optical response of QRs, it is called excitonic (or optical) Aharonov–Bohm
effect [143–146].

An example of the occurrence of the excitonicAharonov–Bohm effect in transport
phenomena was provided by the following feature of the vertical transport through
a QR, which was immersed in a dielectric matrix: the tunnel current, as a function
of magnetic flux for a given voltage across the structure, had the form of modulated
oscillationswith a characteristic period�0 [147]. The opticalAharonov–Bohmeffect
became more prominent if the dc electric field was applied in the plane containing a
QR [148] or in the vertical direction [149], because of the enhanced polarization of
the exciton. Control over the Aharonov–Bohm oscillations in the energy spectrum
of a QR could be realized also using low-frequency electromagnetic radiation [150].

The first experimental verification of the excitonic Aharonov–Bohm effect in
self-assembled QRs was obtained by tracing patterns of the PL intensity under
increasing magnetic field at different temperatures [151]. The role of the built-in
piezoelectric fields in strained QR-systems consisted in changing the sequence of
maxima and minima of the Aharonov–Bohm oscillations. For those observations,
a correlation between the electron and hole due to the Coulomb interaction was
shown to be a necessary condition. The integrated σ−-polarized intensities of lat-
erally ordered InGaAs/GaAs QD and InAs/GaAs QR stacks demonstrated different
behavior below and above 6 T [152]. The QR σ−intensity was almost constant below
6 T and decreased gradually with increasing field, while the σ− intensity for QD
superlattice increased quadratically below 6T and slightly oscillated around a con-
stant value above 6T. The change in the magneto-photoluminescence (MPL) spec-
trum detected at about 6 T was attributed to the type-I to type-II transition in the
valence band [152].

The existence of the optical Aharonov–Bohm effect was first demonstrated
through PL for type-II InP/GaAs quantum dots [153] and Zn(SeTe) quantum dots in
ZnTe/ZnSe superlattice [154]. Large and persistent oscillations in both the energy
and the intensity of the PL unveiled the presence of coherently rotating exciton states.
These remarkably robust Aharonov–Bohm oscillations were shown to persist until
180 K. The magnitude of the observed effects was attributed to the geometry of the
columnar type-II structures investigated, which created a ring-like topology of the
electron state. The advantage of this geometry to favor the optical Aharonov–Bohm
effect was demonstrated in magnetic (ZnMn)Te quantum dot structures, where the
strength of the Aharonov–Bohm interference effect could be controlled by the spin
disorder in the system [155].

The first MPL study of single neutral excitons was performed in single self-
assembled InGaAs/GaAsQRs,whichwere fabricated byMBE combinedwithAsBr3
in situ etching [149]. Oscillations in the neutral exciton radiative recombination
energy and in the emission intensity were detected as a function of the applied
magnetic field. Effective control over the period of the oscillations was achieved
through a gate potential that modified the exciton confinement [149, 156]. Strain
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was shown to play a crucial role to govern the localization of electrons and holes in
type-I semiconductor QRs, eventually leading to spatially separated charge carriers
[157].

Singly charged excitons (trions) andmultiply charged excitons inQRswere exten-
sively studied, both theoretically and experimentally. The period of oscillations of
the binding energy of charged complexes in a magnetic flux was shown to differ
from �0, being determined by the number of electrons and the ratio of effective
masses of the electron and the hole [158]. The diamagnetic shift of the exciton PL
line was found to be positive for a neutral exciton and negative for a trion and other
negatively charged complexes [159]. Circularly polarized MPL spectra of a single
QR, fabricated with the modulated-barrier approach, were dominated by two fea-
tures: a high-energy line due to neutral exciton recombination and a low-energy line
owing to emission from charged excitons [160]. The photon energy from charged
exciton recombination measured as a function of the magnetic field clearly revealed
the oscillatory behavior, which was in antiphase with the calculated electron’s energy
[161].

The excitonic Aharonov–Bohm effect, originally considered for a one-
dimensional model, was shown to remain essentially unchanged in QRs of finite
width [162]. Though the Aharonov–Bohm oscillations of the oscillator strength as
a function of the magnetic flux for the ground state of the exciton decreased with
increasing the QR width, their amplitude remained finite down to radius-to-width
ratios less than unity due to the non-simple-connectedness of the confinement poten-
tial. That implied that the key condition needed for the observation of the excitonic
Aharonov–Bohm effect was the avoidance of the QR center.

The exciton energy spectra and optical transitions spectra calculated for exci-
tons with the realistic confinement potential of self-assembled QRs [105] taking into
account the strain revealed a very high sensitivity to the size, anisotropic shape, and
composition of a QR [163]. Photoluminescence spectroscopy of a large ensemble
of InAs/GaAs QRs in magnetic fields up to 30 T for different excitation densities
unveiled that the confinement of an electron and a hole along with the Coulomb
interaction suppressed the excitonic Aharonov–Bohm effect in these QRs [102,
164]. This suppression was confirmed also byMPL studies of type-II self-assembled
GaSb/GaAs QRs [165].

Optical Aharonov–Bohm oscillations of an exciton and a biexciton in a QR in
the presence of structure anisotropy, localization, internal electric field, and impurity
scattering revealed modulations. Occurrence of a strongly correlated exciton pair
(excitonicWignermolecule) in aQRwas experimentally detected by newoscillations
in MPL at increased magnetic fields [166]. The biexciton emission energy changed
abruptly at transition magnetic fields with a fractional oscillation period compared
to that of the exciton, resulting in fractional optical Aharonov–Bohm oscillations.

Another manifestation of the Aharonov–Bohm effect in neutral formations was
related to magnetoplasmon oscillations in QRs [167]. The plasmon frequency in a
finite-width QR constituted of a monotonous part superposed with Aharonov–Bohm
oscillations. Their period and amplitude were found to vary with the magnetic field.
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Polaron shift in QRs revealed the non-monochromaticity of the Aharonov–Bohm
oscillations, which was attributed to the difference in the magnetic fluxes that were
encircled by different electron trajectories [168]. When an exciton was generated,
the contributions of the electron and the hole to the polarization of the medium had
opposite signs, and it was therefore important to take the finiteness of the ring into
account when calculating the net effect determined by the wave functions of the
particles.

1.5.6 Advancements of Theory

Embedding QRs in various multilayer structures is an important tool to control their
physical properties. The non-trivial role of strain in QRmultilayer systems was theo-
retically revealed in [169]. In GaAs-capped InAs/In0.53Ga0.47As QRs, there occurred
an anomalous strain relaxation: GaAs embedded in the In0.53Ga0.47As matrix con-
siderably weakened each strain component and biaxial strain by providing enough
room for the atomic relaxation of InAs. GaAs embedded in In0.53Ga0.47As acted as a
potential barrier for both electrons and heavy holes and as a potential well for light
holes. The weak positive biaxial strain of InAs along with the strong negative biaxial
strain of GaAs in a QR led to an enhancement of the light-hole character of the states
in the valence band of a QR as compared to those in a quantum dot.

Calculating the strain profile aswell as the charge carriers energy and other proper-
ties (shell filling, spin polarization, exciton fine structure, magnetization…) in QRs
requires the extensive use of a great variety of the advanced tools of the modern
theoretical physics, of which we name below only a few.

Exact diagonalization method revealed the fractional Aharonov–Bohm effect of a
few-electron system in a one-dimensional QR taking into account spin, disorder and
the Coulomb interaction [170]. A great challenge for the theory—to find analytical
solutions for quantum states in QRs—was addressed for two electrons on a one-
dimensional QR for particular values of the radius [171]. Many-electron QRs were
studied using a number of versions of the Density Functional Theory [172, 173].

After calculating the strain with the atomistic Valence Force Field method, the
electronic properties were derived in the framework of the Empirical Pseudopo-
tential method [174] or the Empirical Tight-Binding method [84, 175, 176, 177].
A continuum description of the QR system was assumed within the single-band
Effective-Mass approximation [178, 179] and its diversified generalizations onto
multiband k·p approaches [180]. Of importance for modeling the self-assembled
QRs was the finding [181], that the 14-band k·p model can accommodate for the cor-
rect symmetry of the underlying GaAs zincblende lattice, which was not reflected in
the standard 8-band model. The ground-state energy of the few-particle systems in
QRs was calculated within the Configuration Interaction method [149, 174].

Transfer-Matrix method was employed to account for the mutual influence of the
radial and azimuthal motions in the presence of impurities in the finite-width QR
[182]. The Landauer–Büttiker formalism was used to analyze transport properties of
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QRs [183, 184].Using theKeldyshGreen’s function formalismenabledunveiling two
contributions, thermodynamic and kinetic, to the disorder-averaged magnetization
of QRs [185].

Path-Integral Quantum-Monte-Carlo method was applied for investigation of the
energy spectra of few-electron systems in QRs as a function of their geometry [58].
The interplay between the confinement geometry and the Coulomb interaction was
pronouncedly manifested through the electronic properties of a QR. The ground
state of a perfect QR containing a small number of interacting electrons was ana-
lyzed as a function of its geometric parameters: ring radius, radial confinement,
and eccentricity. A Path-Integral Quantum-Monte-Carlo calculation demonstrated a
strong dependence of the total spin of the ground state on the structure geometry. For
instance, for a three-electron QR, changing the radius produced a spin polarization
of the ground state, while an elliptical deformation resulted in a spin-depolarized
ground state [186].

A finite mixing of the heavy-hole subband with the light-hole subband in self-
assembled QRs affected hole spin properties. The large light-hole component in QRs
underpinned their perspectives for applications requiring enhanced tunneling rates
[187] and spin-orbit mediated control [188].

The Hamiltonian of the electron-phonon interaction, which was systemati-
cally derived within the continuum approach for semiconductor core-shell Si/Ge
nanowires and using the symmetry analysis due to Bir and Pikus [189], provided a
basis for treatment of acoustical and optical phonons aswell as other vibrational exci-
tations in topologically nontrivial nanostructures. A 3D continuum phonon model
for group-IV 2D materials [190] was applied to compute phonon dispersion for
2D single-layer graphene and reveal significant differences between the planar and
cylinder-shaped graphene layers [191].

Research on control of the quantum-interference effects in semiconductor quan-
tum rings via the external applied fields attracted significand interest. THz transitions
in infinitesimally thin quantum rings in an external electric field were shown to pro-
duce magneto-oscillations of the electric dipole moment of a ring accompanied by
periodic changes of the selection rules for inter-level optical transitions. Electromag-
netic radiation associated with these transitions in quantum rings with the radial size
of 10–20 nm occurred at THz frequencies [192]. For QRs pierced by a magnetic
flux and subjected to a lateral electric field in high-Q single-mode microcavities,
the magnetic and electric fields were shown to be efficient means to tune the QR-
microcavity coupling strength, and hence, to control the emission spectrum of the
system [193], what suggested quantum rings to be promising candidates for pho-
tonic devices operating at THz spectral range. An additional control parameter was
shown to be the angle between the lateral electric field and the polarization plane
of the optical pumping field. Influence of the intense THz laser radiation and the
applied electric field on electronic states and the related intraband optical properties
of laterally coupled GaAs/GaAlAs quantum rings (“QR molecules”) [194] implied
novel potentialities of QRs for optoelectronic applications.
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1.6 Multi-faceted Horizons

In view of the emerging high-tech realizations, finding and exploiting novel phe-
nomena in QR-structures will be the key issues for the future development in the
theoretical and experimental physics of QRs. At the time of writing this Chapter, the
perspective research directions in the field range from non-trivial topologies, new
materials, alignment and assembly of QRs arrays—through engineering topology-
and geometry-driven QR-based metamaterials—to device design, validation, manu-
facturing, and application.

1.6.1 Novel Topology-Driven Properties of Quantum-Ring
Structures

Nanostructure fabrication techniques have allowed for generating topologically non-
trivial manifolds at the micro- and nanoscale with manmade space metrics, which
determine the energy spectrum and other physical properties of electrons confined
in such objects. For instance, when spooling a single crystalline NbSe3 ribbon on a
selenium droplet, surface tension produced a twist in the ribbon, leading to the for-
mation of a one-sided Möbius ring [195]. Analytical and computational differential
geometry methods have been developed to examine particle quantum eigenstates and
eigenenergies in curved and strained nanostructures [196, 197]. Significant changes
in eigenstate symmetry and eigenenergy were revealed due to the interplay between
curvature and strain effects for bending radii of a few nanometers. Curvature effects
became negligible at bending radii above~50 nm. The elastic energy for a thin shell
was obtained using a differential-geometric formulation [191].

Symbiosis of the geometric potential and an inhomogeneous twist renders an
observation of the topology effect on the electron ground-state energy in microscale
Möbius rings into the realm of experimental verification. A “delocalization-to-
localization” transition for the electron ground state was unveiled in inhomogeneous
Möbius rings. This transition could be quantified through the Aharonov–Bohm effect
on the ground-state persistent current as a function of the magnetic flux threading the
Möbius ring [198]. The theoretical analysis of such topologically nontrivial mani-
folds at the nanoscale will have practical relevance, as any pertinent fabrication
techniques are likely to generate geometric and structural inhomogeneities.

Theory of the energy spectra of the few-electron ZnO QRs revealed the
Aharonov–Bohm oscillations to be strongly dependent on the electron number in
the ring, and therefore highly sensitive to changes in the confinement potential, sizes
of the QR and the magnetic field [199]. In particular, unlike in conventional QRs
topology, the Aharonov–Bohm effect in ZnO QRs could be efficiently controlled
by varying the electron number: for two interacting electrons in a ZnO QR, the
Aharonov–Bohm oscillations became aperiodic, while for three interacting electrons
the Aharonov–Bohm oscillations disappeared.
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InAs QRs with a strong Spin-Orbit Interaction (SOI), proximity-coupled to an
s-wave superconductor, were shown to reveal both the topological superconducting
phase and confined Majorana fermions [200]. Spin-induced modulations of unpo-
larized currents were revealed in quantum rings subject to the Rashba SOI [201].
The conductance modulations due to the Aharonov–Anandan geometric phase [20]
acquired by the spin during transport around a ringmade quantum rings a perspective
spintronic element to control spins at the mesoscopic scale.

In a spin interferometer with an external planar magnetic field assuming rings
tangentially coupled to leads, the dynamical Zeeman phases could provide both con-
structive and destructive interference, and consequently, the conductance was mod-
ulated by both the magnetic-field dependent dynamical phase and the magnetic-field
dependent geometric phase [202]. Distinct phase dislocations surprisingly occurred
along the critical line, on which the effective magnetic field textures changed topol-
ogy.

Edge states occurring in the gap of finite MoS2 systems [203] were revealed
as mid-gap topological states, which localized near the edge of monolayer MoS2
quantum dots subject to a magnetic field in analogy to those of 1D quantum rings.
When anticrossing with delocalized states of the quantum dots, they were shown to
give rise to Aharonov–Bohm-like oscillations of the low-lying states in conduction
and valence bands [204]. External potentials, modifying energy of the edge states,
could be used to tune the range of magnetic fields, where these quantum-ring like
features emerged.

1.6.2 Graphene QRs

Electronic quantum interference in QR-structures based on graphene was investi-
gated with a focus on the interplay between the Aharonov–Bohm effect and the
peculiar electronic and transport properties of this material [184]. The first exper-
imental realization of a graphene ring structure was provided [205]. In this work,
the authors investigated the Aharonov–Bohm oscillations in diffusive single-layer
graphene as a function of the magnetic field which was applied perpendicularly to
the graphene plane in a two-terminal setup. The clear magnetoconductance oscil-
lations were found with the expected period of �0 on the top of a low-frequency
background signal due to universal conductance fluctuations. A significant increase
in the oscillation amplitude at strongmagnetic fields close to the onset of the quantum
Hall regime was strong enough to make the second harmonic (oscillations of period
�0/2) visible in the frequency spectrum. Such a behavior, observed in smaller rings
using a two-terminal as well as four-terminal geometry was attributed to scattering
on magnetic impurities [206].

The interplay between the valley polarization and the Coulomb interaction in
graphene QRs was addressed in [207]. The change of the interacting ground state
between singlet, triplet and degenerate singlet-triplet ones resulted in the fractional
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Aharonov–Bohm oscillations in the persistent current, and in the steps and intensity
changes in the absorption spectrum as a function of the magnetic flux.

Additional tunability was introduced into the graphene ring device by applying
a side gate potential to one of the ring arms. Investigation of the influence of such
side gates on a four-terminal geometry in the diffusive regime revealed phase shifts
of the Aharonov–Bohm oscillations as a function of the gate voltage as well as
phase jumps of π at zero magnetic field—direct consequences of the electrostatic
Aharonov–Bohm effect as well as the generalized Onsager relations [208]. The elec-
trostatic Aharonov–Bohm effect appeared to be more feasible in graphene QRs than
in metal QRs due to the low screening of this material [209, 210]. Voltage-driven
charge-carrier states ranging frommetallic to semiconductor ones were theoretically
revealed for QRs determined by a set of concentric circular gates over a graphene
sheet placed on a substrate [211].

The inner radial fringes observed in the arms of QRs [212, 213] were interpreted
as semiclassical privileged paths, along which the electron/hole wave functions were
concentrated (“scarred wave functions”). Scar patterns (associated with semiclassi-
cal periodic orbits) were predicted to reappear periodically with the Fermi energy
EF in systems with the Dirac dispersion law, in contraposition to the square root
of EF dependence in conventional semiconductor systems [214]. This prediction
was confirmed through SGM-experiments realized on graphene QRs. In QRs with
modest low-temperature charge carrier mobility (~1000 cm2/Vs), at low charge car-
rier densities in the vicinity of the Dirac point, SGM revealed Coulomb blockade
oscillations due to the disorder-induced localized states similar to those in isolated
QDs, tunnel-coupled with the transmitting channels, and in constrictions [215–217].
At higher charge carrier densities, as long as disorder was screened, SGM imaging
on the graphene QR revealed scars similar to those known in heterostructure-based
QRs [218]. The recurrence of the radial pattern of scars with energy was detected
using SGM in graphene QRs with higher charge carrier mobility (~10,000 cm2/Vs),
deposited on top of a hexagonal boron nitride flake [219]. The energy difference
between the successive maxima in the radial pattern allowed for an association of
the sequence of maxima in SGM image correlation parameters with radial scars
[219].

1.6.3 Ordering of QRs. Metamaterials

Great efforts have been devoted to achieve vertical and lateral alignment of QRs.
Stacking of three InGaAs/GaAs QRs is demonstrated to provide a broad-area laser
[220]. In QR complexes and stacks, novel correlations show up, which allow for
control over their electronic and magnetic properties.

One-dimensional ordered QR-chains have been fabricated on a quantum-dot
superlattice template by MBE. The quantum-dot superlattice template is prepared
by stacking multiple quantum-dot layers. The lateral ordering is introduced by engi-
neering the strain field of a multi-layer InGaAs quantum-dot superlattice. QR chains
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are then formed by partially capping InAs quantum dots with a thin layer of GaAs
which introduces a morphological change from quantum dots to QRs [221]. It is
shown that two-dimensional periodically aligned QR-arrays can be fabricated on
GaAs high-index [(311)B and (511)B] surfaces [222].

An alternative approach to self-assembly of aligned QRs is to create an artificially
ordered template by pre-patterning. Nanosphere lithography is used to create ordered
GeSi quantum dots, and ordered GeSi QRs are subsequently formed by capping the
quantum dots with a thin Si capping layer [223]. When the Si capping layer is more
than 3 nm thick, most quantum dots are converted into QRs. Additional fabrication
techniques, such as Ar+ sputter redeposition using porous alumina templates [224]
and laser-interference lithography in conjunction with electrochemical deposition
[225] are promising, low-cost, and scalable tools for producing ordered QR-arrays.

QRs are a very promising building block for metamaterials. High-density assem-
blies of QRs may contain clusters of close or even partially overlapping QRs [120].
A moderate coupling between adjacent QRs in a cluster is shown to significantly
influence the energy spectrum: while its lowest part may preserve the single-QR
behavior, the high-energy part is strongly modified [226]. Metamaterials consisting
of split nanosize gold QRs are found to possess unusual electromagnetic response
properties like a negative index of refraction for wavelengths in the micrometer
region [227, 228], where the resonance wavelength scales linearly with the size of
the circuit. A possible control over the electromagnetic response in QR composite
metamaterials made from metals and semiconductors is an attractive goal for further
investigations.

1.6.4 Photonic Sources, Detectors and Waveguides

UsingQRs as photon sources and detectors is based on their unique optical properties
associated with the excitonic Aharonov–Bohm effect [229]. Using QRs, a technique
is theoretically devised to completely freeze and release individual photons at will
by tuning magnetic and electric fields that enable QRs to trap and store light [229].
Application of these QRs as light capacitors or buffers is expected in the fields
of photonic computing and communications technologies [229, 230]. The shallow
bound-state energy levels of the InGaAs QRs are shown to be feasible for detecting
photons in the THz regime [231].

Single InAs/GaAsQRs embedded in a photonic crystal lattice are demonstrated to
allow for single-photon emission and photon antibunching between the exciton and
biexciton emissions [232]. This extends the realm of the QRs investigations towards
quantum electrodynamics. The antibunching of photons observed in a double QR
[233] is a clear signature of a single photon emitter.

Advancements in fabrication of geometrically and topologically nontrivial cavi-
ties at micro- and nanoscale have provided novel instruments to control properties of
optical waveguides. When optical electric field is forced to be twisted around when
propagating in Möbius-band-like microring and cone-shaped anisotropic microtube
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cavities, there occurs twist-determined geometric phase in Abelian and non-Abelian
evolutions of light, correspondingly. In dielectric Möbius-band-like microring cavi-
ties, optical modes with non-integer number of wavelengths along the circumference
are manifested due to the occurrence of the twist-determined geometric phase, which
goes beyond the paradigm for untwisted topologies [234]. Geometric phase acquired
in non-cyclic non-Abelian evolution is found experimentally and interpreted the-
oretically in cone-shaped anisotropic microtube cavities by enabling optical spin-
orbit coupling [235]. In metallic Möbius-band-like nanorings, higher-order plasmon
modes are shown to possess a net dipolemoment due to symmetry breaking and hence
to be bright, as distinct from dark plasmon modes in conventional metallic nanor-
ings [236]. Topology-induced phenomena in photonic/plasmonic Möbius band-like
microstructures will pave the way for on-chip integration of topological photonic
devices.

1.6.5 Spintronics. Magnetic Memory

An effective confinement-governed wave function engineering is explored theoreti-
cally in systems with QRs: two-dimensional complex nanostructures in the form of
double concentric QRs and dot-QR nanostructures that consist of a QR with a quan-
tum dot inside. The higher spin stability in a QR than in a quantum dot makes QRs
attractive for the realization of spin qubits, because the relaxation and decoherence
processes take place at the time scale that is sufficiently long for spin manipulations
and readout [237]. The dot-QR nanostructure allows, by changing the potential bar-
rier separating the dot from the QR and the potential well offset between the dot and
the QR, for a significant alteration of coherent, optical and transport properties of the
structure. In particular, the spin relaxation time of dot-QR nanostructures, used as
spin qubits or spin memory devices, can be modified by orders of magnitude [238].
A crossover from the ballistic to the resonant tunneling transport, unveiled for an
ideal one-dimensional QR with spin-orbit interaction, underpins the suggestion to
use QRs for fabricating one-qubit spintronic quantum gate and thus, for quantum
information processing [183]. An Aharonov-Bohm interferometer consisting of a
QR with two quantum dots embedded in its arms reveals sensitive spin-polarized
electron transmission that might be useful for spintronics applications [239]. QR
arrays offer superior prospects in high density magnetic memory applications as
magnetic random access memory, recording medium, and other spintronic devices
[240].

A deep understanding of the gyromagnetic (g) tensor is a pre-requisite for spin-
based technologies. The g-tensor is shown to be strongly affected by the presence of
spin-correlated orbital currents, driven by the topological nature of the wave func-
tions, and thus directly related to the shape of the nanostructure [241, 242]. Large
magnetic moments of QRs originate from spin-correlated circulating currents in
the ground state of an electron or hole in a QR [243]. The largest g-factor and
spin-orbit coupling constants of all semiconductors are known in III-Sb compounds.
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They reveal topological properties, which can be controlled by electric and mag-
netic fields. For instance, topology of the valence band ground-state wave function
changes from single- to double-connectedness by applying an electric field to a type
II InAs/GaAsSb QD (a QD to QR transition) [244]. Owing to the large spin-orbit
coupling of III-Sb compounds, a change of this kind in the hole orbital confinement
opens an efficient way for the control of the hole g-factor, as demonstrated by ensem-
ble MPL experiments at 4.2 K [245]. This is an example of novel, topology-driven
resources for functionalization in quantum electronics.

In conclusion, a great variety of semiconductor QR-systems, in particular, single
and multiple QRs, ordered arrays of QRs, complexes of QRs in combination with
other nanostructures, andMöbiusQRs, have been fabricatedwith advanced high-tech
methods, characterizedwith cutting-edge technologies, and analyzedwith innovative
theoretical tools. Their unique doubly-connected topology and the ring-like density of
states for charge carriers, spins, plasmon and photon fields provide a veritable cornu-
copia of fascinating properties and possibilities to boost development of the strategic
domains of technology: quantum computing based on photon and spin manipula-
tions, photonic sources and detectors, magnetic memory, and functionalization of
nanostructured metamaterials.
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Chapter 2
Optical Berry Phase in Micro/Nano-rings

Libo Ma, Vladimir M. Fomin and Oliver G. Schmidt

Abstract Theoretical and experimental results are presented, which introduce
topology into the field of optical and plasmonic resonances in ring resonators. Due
to occurrence of the Berry phase in non-trivial evolution, plasmon/photon modes
with non-integer numbers of wavelengths along the circumference are revealed in
metallic/dielectric Möbius rings, which do not exist in conventional ring resonators.
In cone-shaped anisotropic microtube resonators, the optical spin-orbit coupling is
enabled for generation of the Berry phase acquired in a non-cyclic and non-Abelian
evolution. These topology-induced effects imply promising applications related to
manipulating photons in on-chip integrable quantum devices.

2.1 Introduction

The phase factor is a common quantity for all physical wave systems ranging from
classical to quantum case. The conventionally known phase factor is dependent on the
system energy and evolves over time. This kind of phase factor is called dynamical
phase. Next to it, in topologically non-trivial systems another phase factor—Berry
phase (also called geometrical phase) was discovered, which plays an important role
in a startling variety of physical contexts such as in condensedmatter, photonics, high-
energy and space physics [1, 2]. The dynamical phase reflects the system’s evolution
in time and is universal, while the Berry phase keeps the “memory” of its evolution
path in a parameter space and only occurs in non-trivial topological evolution. Berry
phase was first discussed for cyclic evolution within adiabatic approximation and
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later was generalized to the notion of non-cyclic and non-Abelian evolution [3–9].
For the adiabatic transport of light in a cyclic evolution, the optical Berry phase can
be quantified by the corresponding solid angle in the parameter space determined
by either the wave vector on a momentum sphere, or the wave polarization state
vector on a Poincaré sphere [4]. The acquired Berry phase is equal to the solid angle
subtended by the trace of the wave vector at the origin of the momentum space, or a
half of the solid angle subtended by the loop of the polarization vector at the origin
of a Poincaré sphere.

The first experiment to verify the existence of the Berry phase was carried out
by propagating light along a helically wound fiber and later on by the interferences
in a nonplanar Mach-Zehnder interferometer [10–12]. A photon, as a typical boson,
is a spinning particle with a polarization state comprised of right and left circular
polarization states. These two circular basis components can acquire a Berry phase
with opposite signs when the light undergoes a spin-orbit coupling. In the helical
system, optical spin-orbit coupling was realized by a non-trivial evolution of the
wave vector k occurring in an adiabatic process. The acquired Berry phase for each
circular basis (right and left circular polarization components) of resonant light is
directly related to the solid angle� subtended to a loop traced out by the wave vector
k on a sphere in momentum space. As a result, the Berry phase of light depends only
on topology of the evolution of a physical system in the parameter space, and thus
it is independent of the device material and photon energy. While Berry phase of
light has been revealed in open light paths, a closed planar light path, such as in
whispering-gallery mode (WGM) cavities [13], is supposed to preclude the Berry
phase because of the topologically trivial evolution of wave vector (see Fig. 2.1)
[14]. In this context, the polarization state vector has to experience a topologically
non-trivial evolution in order to enable the occurrence of the optical Berry phase
in WGM micro-ring cavities. To address this issue, Möbius strip and cone-shaped
microtube cavities are used to discuss the generation of Berry phase [14–16]. As
shown in Fig. 2.1, unlike a conventional ring cavity, optical electric field gets twisted
around when propagating in the Möbius strip and cone-shaped microtube cavities,
which lead to the occurrence of the optical Berry phase. In this chapter, we show
the occurrence of the Berry phase in both metallic Möbius nanorings and dielectric
Möbius microrings. In metallic Möbius nanoring, the higher order plasmon modes
possess a net dipole moment due to symmetry breaking. As a result, the higher-order
plasmon modes turn into bright ones induced by Berry phase, which are supposed to
be dark in conventional metallic nanorings. In dielectric Möbius microring cavities,
non-integer mode number is formed due to the occurrence of the Berry phase, which
breaks the paradigm of topologically trivial behavior that an integer mode number is
required for constructive interference. In the end of the chapter, a non-cyclic Berry
phase acquired in non-Abelian evolution is discussed in cone-shaped microtube ring
cavities.



2 Optical Berry Phase in Micro/Nano-rings 35

Fig. 2.1 a Trivial evolution of light in cylindrical ring microcavity, and non-trivial evolutions in
b a Möbius ring and c cone-shaped microtube ring. The bottom panels show the corresponding
polarization evolutions on the Poincaré sphere. The variations of the major polarization axis of the
optical field E (red arrows) are shown with respect to the laboratory coordinate frame (XYZ). The
blue dashed lines represent light trajectories, while the red dotted lines represent the polarization
evolution trace on the Poincaré sphere. (After [14]. This work is licensed under a Creative Commons
Attribution 4.0 International License, http://creativecommons.org/licenses/by/4.0/.)

2.2 Berry Phase in Möbius Rings

The Möbius strip is a well-known one-sided three-dimensional ring structure. While
it has been investigated in other systems for years [17–20], it is of high interest to
study the effect of Möbius topology on optical wave resonances. A Möbius ring is
a WGM-type resonator, where a Berry phase accompanying adiabatic changes can
be generated due to a parallel transport of the in-plane polarized optical waves along
the twisted strip. The occurrence of the Berry phase leads to unusual optical interfer-
ence and manifests itself in a non-integer number of optical modes. The Berry phase
in Möbius-ring resonators is topologically robust against shape deformation of ring
structure. These investigations introduce topology to the field of optical microcav-
ities, and may lead to many promising applications in nanophotonics and quantum
information technologies.

http://creativecommons.org/licenses/by/4.0/
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2.2.1 Plasmonic Möbius Nanorings

Plasmonic nanoring resonators are known to support surface plasmon resonant
modes, which are expected to be essential elements of future subwavelength-scale
photonic systems [21–23]. Surface plasmons, which originate from collective oscil-
lations of electrons on metal surfaces, are able to couple with light, leading to the
formation of surface plasmon polaritons (SPPs). The SPPs wave can propagate along
the metal surface and form resonant modes in metallic nanostructures. In addition
to a dipole-like mode, which exists in all metallic nanostructures, metallic nanor-
ing resonators can support plasmonic WGM-like multiple modes, formed by self-
interference of SPP waves along the ring-like structures. Owing to the constraint
of resonance condition, only integer numbers of plasmon mode pairs (waveforms)
exist in nanoring resonators [24]. In conventional metallic rings, the integer numbers
of plasmon mode pairs show antisymmetric charge distributions, which do not pro-
vide any net dipole moment. Thus the WGM-like plasmon modes exhibit inhibited
radiative losses (so-called dark plasmon modes) in conventional metallic nanoring
resonators.

Traditionally, the plasmonic resonances in metallic nanostructures mainly con-
cern the structure size, geometry and symmetry, where the topology has attracted less
attention. In the following, we discuss the demonstration of topology induced anoma-
lous plasmon modes in metallic Möbius nanorings [15]. Due to the occurrence of a
Berry phase in theMöbius configuration, half-integer plasmonmodeswere observed,
which cannot exist in conventional plasmonic rings. Owing to symmetry breaking,
the higher-order plasmonmodes turn into bright ones in theMöbius nanorings, which
are supposed to be dark in conventional cylindrical rings. The feature of half-integer
numbers of plasmon modes as well as the corresponding resonant frequencies is
robust to the variation of the surface-charge distribution on the Möbius nanoring due
to the non-trivial topology. Owing to the ultra-small mode volume, an extremely high
sensitivity as well as a remarkable figure of merit was obtained in sensing perfor-
mance. Theseworks present a topologicalmetallic nanostructure for the investigation
of localized plasmon modes exhibiting unique phenomena in plasmonic applications
such as enhanced light-matter interactions and plasmonic nanolasers.

As an example, here a silver Möbius nanoring is prepared by rolling up a half-
twisted silver nanostrip, as schematically illustrated in Fig. 2.2. The dimension of
the nanostrip is set as w �80 nm in width, t �10 nm in thickness, and L �300π
nm in length. For comparison, a silver cylindrical ring is also constructed by rolling
up the same nanostrip without twist. The Drude model is adopted to describe the
dispersive permittivity of silver as ε(ω) � ε∞ −ω2

p/(ω
2 + iωγ ). The high-frequency

bulk permittivity is ε∞ � 6, the plasma frequency is ωp � 1.5 × 1016 rad/s and the
collision frequency is γ � 7.73 × 1013 rad/s [25]. The surrounding medium is air
with a refractive index of n �1. Linearly polarized light is employed to excite the
plasmon modes in the nanoring structures. Finite-element method (FEM) is used to
calculate the plasmonic modes using the commercial software COMSOL.
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Fig. 2.2 Plasmonmodes excited in a cylindrical nanoring (left panel), and aMöbius nanoring (right
panel) both made of silver. Similar dipole-like plasmonic resonant modes (0, 1) are identified in
both cylindrical and Möbius nanorings, in which the plasmon resonances ignore the ring structure.
Distinct antisymmetric higher order plasmonmodes are revealed in the cylindrical andMöbius ring,
formed by interferences of integer [(1, 1) and (1, 2)] and half-integer number [(1, 1.5) and (1, 2.5)]
of transverse-like waves, respectively, as indicated by the solid sinusoids. The charge distributions
of the plasmon modes are represented by false color (red and blue represent positive and negative
charges, respectively), shown in both the rings and the corresponding planar strip forms. (Reprinted
from [15], Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)

Wave resonances can be formed when SPP waves propagate along the ring tra-
jectory in the cylindrical and Möbius nanorings. These resonances are established
when resonant waves satisfying the resonant condition, i.e. an integer number (m)
of effective wavelength λ fits into the perimeter (L) of the trajectory. In contrast to
dipole mode, for higher-order resonance SPPs can oscillate along the lateral direc-
tion of the strip with an integer number (l) of the plasmon mode. In this sense, each
plasmon mode in the nanoring can be identified by a (l, m) index. As the basic plas-
monic resonance, the dipole plasmon-mode (0, 1) has no lateral oscillation along
the strip and can be found in both cylindrical and Möbius nanorings, as shown in
Fig. 2.2. Similar to previous reports, the dipole plasmon-mode is formed by charge
oscillations as a longitudinal wave in the metallic ring structure [24]. Such a charge
oscillation can be formed in all metallic structures.

For the higher-order plasmon resonances, the SPPs wave would oscillate along
the lateral direction of the nanostrip in addition to oscillating in the azimuthal plane
of the ring cavities. The lateral oscillation can be viewed as a transverse-like wave
with respect to the ring centerlines, where the waveforms are represented by the
periodic oscillation of plasmon modes (see Fig. 2.2). For the formation of construc-
tive interference, the resonant waves are required to be in-phase, or equivalently a
phase difference of an integer number of 2π, after one-round trip along the center-
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line trajectory to satisfy the resonant condition. In the cylindrical nanoring, integer
numbers (e.g. m=1, 2) of waves are present, and each waveform carries a phase
change of 2π, satisfying the resonant condition. This phenomenon can also be found
in optical WGM resonances in ring cavities [13, 16]. In contrast to the cylindrical
nanorings, half-integer numbers (i.e.m=1.5, 2.5) of resonant waves are supported in
the metallic Möbius nanorings. The formation of half-integer waves, i.e. half-integer
plasmonmode pairs, is induced by the occurrence of the Berry phaseπ in theMöbius
nanoring, which has been reported in Möbius-ring resonators for both radio and vis-
ible frequency resonances [16, 18], as well as in the half-twisted band structure of
topological insulators for spin transport [19].

The occurrence of Berry phase leads to anomalous surface charge distributions
on the non-orientable surface of a metallic Möbius nanoring. The anomalous surface
charge distribution breaks the symmetry that exists in conventional cylindrical rings,
consequently providing a net dipole moment, which is active in far-field excitation
and emission. Plasmon modes possessing a net dipole moment, such as the dipole-
like plasmon modes, are referred to as “bright modes”, which can be directly excited
and readily characterized by far-field means. On the contrary, higher order plasmon
modes without net dipole moment are called “dark modes”, which cannot be excited
nor detected in the far field due to efficient inhibition of radiative losses [26]. To
investigate the far-field properties, transmission (T) and reflectance (R) spectra of a
cylindrical ring and a Möbius ring are calculated, as shown in Fig. 2.3a, b, respec-
tively. Only one resonant peak located at 1408 nm is recognized in the cylindrical
ring, which is induced by the charge oscillation of the dipole mode (0, 1), as shown
in the right inset of Fig. 2.3a. The charge distribution in the dipole mode possesses
C1v symmetry, manifesting a net dipole moment. In contrast, for the higher order
plasmon modes the charge oscillations exhibit antisymmetric distributions of D1h

and D2h symmetries for modes (1, 1) and (1, 2), respectively. Hence, these modes
cannot be probed in either transmission or reflectance spectra due to the absence of
net dipole moment. The near-field calculation results of (1, 1) and (1, 2) plasmon
modes show that their optical resonant wavelengths are located at 565 and 539 nm,
respectively, as indicated in Fig. 2.3a.

In the Möbius nanoring, the resonant peak of the dipole mode (0, 1) is located at
1416 nm, as shown in Fig. 2.3b. Although the length of the centerline in the Möbius
ring is the same as that of the cylindrical ring, a slight mode shift of 8 nm is observed
due to the difference of dipole moment formed in the cylindrical and Möbius nanor-
ing. In contrast to the cylindrical nanoring where the higher order plasmon modes
exhibit dark feature, efficient far-field transmission/scattering peaks are observed at
550 and 522 nm for (1, 1.5) and (1, 2.5) plasmon modes, respectively, as shown
in Fig. 2.3b. The intrinsic resonances with half-integer mode numbers violate the
resonant condition valid in conventional rings. However, they are supported by the
Möbius ring due to the occurrence of Berry phase. The half-integer modes located
at the non-orientable plane of the Möbius ring allow for the presence of net dipole
moment and enable the feature of bright modes.

The quality (Q) factor of the dipole plasmon modes is relatively low owing to
significant radiative losses [24]. However, the Q-factors of higher-order modes (1,
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Fig. 2.3 Transmission (T) and reflectance (R) spectra of a cylindrical ring (a) and Möbius ring (b).
Bright modes (0, 1) caused by dipole-like surface charge oscillation are revealed in both cylindrical
and Möbius rings. The higher order plasmon modes exhibit dark feature in the cylindrical ring
due to the antisymmetric surface charge distribution, while they turn to be bright in the Möbius
ring due to the broken symmetry of charge distribution. The dark modes are indicated by dashed
curves. The insets display the near-field charge distributions (red and blue colors indicate positive
and negative charges, respectively) of the corresponding modes in the ring cavities. (Reprinted from
[15], Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)

1.5) and (1, 2.5) are around six times higher than that of the dipole mode. The Q-
factor enhancement indicates a smaller mode volume for the higher-order plasmon
modes in the Möbius nanoring. In the Möbius nanoring, the mode volume is as small
as 0.003λ3

0 calculated by the formula Veff � ∫
ε(r )E(r )2d3r/(εE2

max), where λ0 is
the resonant wavelength, ε(r ) the permittivity and E(r ) is the electric field strength,
ε is the permittivity at the Emax position. The small mode volume indicates a strongly
localized electric field with an enhancement factor of (Emax/E0)2 ≈ 1000 (Emax

is the local field at the plasmon mode and E0 is the electric field of the excitation
wave), which is promising for the investigation of the light-matter interactions.

Cylindrical rings possess rotational symmetry with respect to the ring axis. There-
fore, the resonant wavelength and surface charge distribution of both dipole and high
order plasmon modes are constant with respect to the excitation-polarization orien-
tation. As a result, the transmission peak of dipole modes is a constant resonant peak,
when excited under different polarization angles with respect to the ring axis. On
the contrary, the Möbius ring has no rotational symmetry C1. Therefore, the surface-
charge distribution (or net dipole moment) varies when the polarization orientation
of the excitation light changes. As a consequence, the resonant peaks of the dipole
mode vary when excited at different polarization orientations. Interestingly, for the
topology induced half-integer modes such as (1, 1.5), the resonant wavelength is
constant despite the changes of the charge distribution along the Möbius ring, as
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Fig. 2.4 Transmission spectra of the high order mode (1, 1.5) in the Möbius ring (a) and the mode
(1, 2) in the curved cylindrical ring (b) excited with different polarization angles. c Upon varying
the excitation polarization, the resonant wavelength is constant in Möbius nanoring due to the
topological structure, while shifts significantly in curved cylindrical nanoring. The insets show the
representative surface charge distributions in the two nanoring structures. (Reprinted from [15],
Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.)

shown in Fig. 2.4. Compared with the dipole mode, which occurs independently of
topology, the half-integer mode is induced by the topology of the Möbius nanoring.
The constancy of the resonant plasmon mode indicates that the net dipole moment
in total is constant, no matter how the charge distribution of the half-integer plasmon
mode changes on the Möbius ring. This topology origin can be further verified by a
similar examination in a cylindrical-like nanoring made of a curved but not twisted
nanostrip, i.e. having the same topology of the cylindrical ring. The higher order
plasmon mode (1, 2) shows the integer number of waves, and the corresponding res-
onant wavelength varies when excited at different polarization orientations, as shown
in Fig. 2.4b, c. This difference implies that the resonant peak constancy is induced by
the topology of theMöbius ring, rather than the curvature of the nanostrip. Moreover,
the mode intensity in the transmission spectrum varies when excited with different
polarization orientations. This transmission variation is caused by the change of
extinction cross section when exciting the Möbius ring with different polarization
orientations.

As the higher order plasmon modes in the Möbius ring possess small mode vol-
umes, a high sensitivity is expected due to the enhanced local field. Based on the
analysis of the mode (1, 1.5), a sensitivity of 1000 nm per refractive index unit
(RIU) is obtained, exhibiting an excellent bright-mode-based sensing performance.
The figure of merit (FOM) is calculated to further demonstrate the sensing perfor-
mance of the Möbius nanoring, where the FOM is defined as FOM�S/wλ (S is
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the sensitivity and wλ is the resonance line width). A FOM of 100 is calculated for
the mode (1, 1.5), which is remarkable for a plasmonic resonator. In addition, the
intrinsic absorption loss of metallic structures can be compensated by introducing
active/optical gain media, which can efficiently improve the Q-factor of plasmonic
nanosystems. Therefore, an even higher FOM can be expected, which is not only
attractive for sensing applications, but also interesting for nonlinear optics, such as
plasmonic nanolasers.

2.2.2 Dielectric Möbius Microrings

In this section we discuss the topological effects on constructive optical interference
in a Möbius ring made of a twisted dielectric strip [16]. As a reference, a cylindrical
ring structure was also considered in the calculations. For comparison, all the ring
structures are formed from strips equal in size and with the same refractive index n.
The strip thickness d is assumed smaller than the wavelength λ of the considered
light, i.e. d<λ/n, so that the electric field is stringently confined within the strip
during propagation. The strip width is taken larger than the wavelength, and the strip
length is chosen to be in the micrometer range to support optical resonances in the
visible spectral range.

Linearly polarized light is first considered for the discussion of WGM resonances
in Möbius ring resonators. Calculations for a cylindrical ring cavity confirm the
expected optical resonant modes with wavelength λ �L/m, where L is the optical
length and m is an integer mode number. In contrast to this, optical resonant modes
supported by a Möbius ring accommodate half-integer number of wavelengths inter-
fering in the ring resonator, and which is correspondingly indexed by a half-integer
mode number. Figure 2.5 shows examples of antinode patterns for optical resonances
in a cylindrical ring and aMöbius ringwithmode numbersm=8 and 7.5, respectively.
Although the length of the optical path in the cylindrical ring and the Möbius-ring
is the same, the resonant wavelengths are different (see Fig. 2.5b). This unusual
phenomenon is explained in the following by the presence of an optical Berry phase.

When a linearly polarized light is confined in the Möbius-ring structure, the opti-
cal electric field locally remains parallel to the plane of the Möbius strip, and conse-
quently the polarization orientation is forced to continuously vary along the twisted
strip during propagation in the Möbius-ring cavity (see Fig. 2.6a). This motion
exhibits an adiabatic parallel transport of the linearly polarized light in the smoothly
curved strip. In the adiabatic transport of a degenerate physical system, the Berry
phase can be quantified by the corresponding solid angle in the parameter space
determined by either the wave vector k, which forms a sphere in the momentum
space, or the wave polarization, which forms a Poincaré sphere.

For the parallel transport of in-plane polarized light [described by a � a+ + a−
where a+ and a− are right and left circular basis components] in a Möbius ring, the
continuous variation of the polarization orientation can be visualized by a closed
loop along the equator of the Poincaré sphere (see Fig. 2.6b) [4]. One full round trip



42 L.Ma et al.

Fig. 2.5 Constructive self-interference of light with integer and non-integer number ofwavelengths
for a cylindrical ring and aMöbius ring (with air as surroundingmedium). aCross-sectional resonant
antinode amplitude profiles calculated in cylindrical-ring (left) and Möbius-ring (right) resonators
with numbers of antinodes N�16 and N�15, respectively. The odd numbers of antinodes are
a result of constructive self-interference of light with a half-integer number of wavelengths. b
Calculated resonant spectra including two resonant modes for the cylindrical ring and the Möbius
ring. The modes labelled with half-integer azimuthal mode numbers correspond to theMöbius ring.
Both ring structures are formed from strips of the same size (320 nm wide, 2510 nm long, 80 nm
thick) with a refractive index n�3.5. (Reprinted from [16])

generates a geometric phase equal to half of the solid angle �/2�π for the right and
left circular polarization basis components as a′ � 1√

2

(
eiπa+ + e−iπa−

)
. Figure 2.6c

shows the optical self-interference for half-integer mode numbers in a Möbius ring.
Apparently, the dynamical phase, which changes by 2π for one wavelength, cannot
accomplish constructive interference in the Möbius-ring because it is exactly off-
phase in the case of half-integer numbers of wavelengths. However, the presence
of the geometric phase π leads to an effective wave-flip, which precisely compen-
sates for the unmatched dynamical phase. It is therefore the geometric phase π that
allows for constructive interference in the Möbius ring with non-integer numbers of
wavelengths. In this sense, the occurrence of the geometric phase changes the con-
ventional requirement that a difference equal to an integer number of wavelengths is
needed for constructive interference. Remarkably, the geometric phase is wavelength
independent, since it is only related to the intrinsic topological property of the phys-
ical evolution. In the model shown in Fig. 2.6, a single light wave is assumed to be
self-interfering after one round-trip. An alternative way to describe the resonances in
a ring cavity considers two light waves starting from the same point and propagating
in the opposite directions. In this model, the two beams meet after a half round-trip
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Fig. 2.6 Constructive interference of light with a half-integer number of wavelengths caused by
the presence of a geometric phase π after parallel transport of polarization along a Möbius ring.
a Sketch of parallel transport of a linear polarization along the Möbius ring in real space. b In
polarization vector space, the linear polarization state evolves along the equator of a Poincaré
sphere. c Generation of a twist-induced geometric phase of π in addition to the dynamical phase of
(2m−1)π leads to constructive interference with a half-integer number of wavelengths. The solid
circles represent optical resonant antinodes. Solid blue curve represents the light wave carrying
the dynamical phase. Dashed red curve represents the effective wave-flip caused by the geometric
phase. The green arrow points at the starting point, while the black arrows indicate the propagation
direction in the Möbius ring. (Reprinted from [16])

and interfere with each other. Both considerations result in an equivalent loop on the
Poincaré sphere, and therefore lead to the same result.

A geometric phase represents the global topological feature of a physical evo-
lution, which is therefore invariant to local distortions. In particular, the geometric
phase in a Möbius ring is topologically robust, since all topologically-equivalent
paths will project to the same loop on the Poincaré sphere. These topologically-
equivalent paths exist, for instance, when the Möbius ring is deformed by stretching
and bending the ring structure, or produced from a strip with an odd number of half-
twists. As shown in Fig. 2.7, in the case of the linearly polarized light, the geometric
phase π is invariant in both cases and causes waves to interfere with a non-integer
number of wavelengths.

The topological robustness of the geometric phase is a result of the gauge invari-
ance in the adiabatic evolution [3]. The gauge invariance, in turn, indicates that
the geometric phase is an important property of a physical system. A topologically-
protected geometric phase implies an intrinsic fault-tolerance towards environmental
perturbance, which is of profound importance for practical applications. In particular,
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Fig. 2.7 Topological protection of the geometric phase in transformed Möbius-ring structures.
From left to right: Optical resonant profiles in a three-half-twisted Möbius-ring, a Möbius-ring, a
stretched and twisted Möbius-ring. The number of antinodes N=15, which corresponds to 7.5λ
over the centerline, is shown as an example. (Reprinted from [16])

it has been shown that geometric phases can act as quantum logic gates in quantum
computation.

Following the analysis above, consider the introduction of light with different
ellipticities e (0 ≤ e ≤ 1) propagating in the Möbius ring. In this case, the major
axis orientation of the polarization ellipse is confined locally to stay in-plane in the
twisted strip, performing a cyclic evolution. The propagation of differently polarized
light rays in the Möbius ring projects a series of loops on a Poincaré sphere, varying
from the equator (linear polarization, e �1) to the two poles (circular polarization,
e �0), as shown in Fig. 2.8. The left (right) handed chirality is defined as that
of the Möbius ring along the propagation direction, which is found the southern
(northern) hemisphere of the Poincaré sphere. The solid angle (�) subtended by the
corresponding loop varies from 0 to 2π (in the northern hemisphere) and 2–4π (in the
southern hemisphere). Consequently, the Berry phase (ϕ =�/2) varies from 0 to π

andπ to 2π, respectively. The optical mode number can be defined asm�M i−ϕ/2π,
where M i is an integer number. By correlating the solid angle �, and therefore the
geometric phase ϕ, with the polarization ellipticity e spread over the Poincaré sphere,
the optical mode number behaves as shown in Fig. 2.8.When changing the ellipticity
from linear (e=1) to circular (e=0), the optical mode symmetrically approaches the
neighbouring integer numbers owing to the opposite light chirality. Themode number
rapidly changes from a half integer towards a whole integer when e changes from 0.5
to 1. At e=0, the right and left handed circular polarization states are degenerated
at integer mode numbers due to the trivial topology. This trivial topological effect is
due to the rotational symmetry of the circle depicted by the electric field vector in
the circular polarization. In this way, the optical mode number is continuously tuned
into an arbitrary fractional number other than only a half integer. Alternatively, an
arbitrary fractional number can also be realized, for example, in a Möbius ring made
of an anisotropic inhomogeneous medium, where the geometric phase might be no
longer restricted toπ due to a non-Abelian evolution. These findings introduce a non-
trivial topology to the field of optical microcavities, and may lead to many promising
applications in nanophotonics and quantum information technologies.
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Fig. 2.8 L.h.s. panel: a schematic of the optical Berry phases depending on the light polarization
state; r.h.s. panel: the resultant non-integer number modes as a function of the light polarization
state

2.3 Berry Phase in Asymmetric Microtube Rings

2.3.1 Optical Spin-Orbit Coupling in Anisotropic Medium

When spinning particles, such as electrons and photons, undergo spin-orbit coupling,
they can acquire a Berry phase in addition to the dynamical phase [1, 4, 9, 27–29].
The Berry phase was originally discussed for a cyclically evolving physical system
with an Abelian evolution, and was later generalized to non-cyclic and non-Abelian
cases, which are important fundamental subjects in this area and indicate promising
applications in various fields [6, 7, 9, 30]. In the present section, we discuss the
realization of the optical spin-orbit coupling in asymmetric microcavities and the
experimental observation of a non-cyclic optical geometric phase acquired in a non-
Abelian evolution [14]. This work is relevant to fundamental studies and implies
promising applications by manipulating photons in on-chip quantum devices.

Microtube cavities are fabricated by releasing differentially strained SiO/SiO2

bilayer nanomembranes (in circular pattern) which curl into microtube structures
on a silicon substrate [31]. To support the optical spin-orbit coupling, cone-like
asymmetric microtubes are prepared by releasing and rolling up tubes in an uneven
fashion as discussed previously. The resonators are subsequently coated with a layer
ofHfO2 by atomic layer deposition (ALD) tomodify their effective refractive indices.
As shown in Fig. 2.9, the tube has less than two windings in the end of the tube,
where the measurements were performed. The layered thin tube wall (~100 nm)
is examined using cross-sectional scanning electron microscopy (SEM). The white
traces in outer sides of the tube wall correspond to the HfO2 layer, while the middle
dark layer corresponds to the SiO/SiO2 nanomembrane. The refractive index of the
tube wall is calculated by averaging the refractive indices of each layer in the tube
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Fig. 2.9 a SEM image of a microtube prepared by rolling up a nanomembrane. b Cross-sectional
SEM image of a rolled-up microtube revealing multi-layered thin-wall tube structure, where the
HfO2 layers appear bright and the middle SiO/SiO2 nanomembrane appears dark

wall. Therefore, the averaged refractive index of the tube wall varies along the tube
axis due to the variation of the number of windings.

Optical microcavities, which confine light to small volumes by a resonant circu-
lation in a dielectric medium, play an indispensable role in both fundamental studies
and a wide range of applications. In a general theory, describing the evolution of light
in a dielectric medium, a quantum-mechanical diagonalization procedure is applied
to Maxwell equations and Berry’s phase theory [9], giving the effective Hamiltonian

h
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]
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where p is a momentum operator, ε0(r) represents the scalar isotropic component
of the medium, I
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· ṗ denotes the
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describes the medium
anisotropy.

In the conventional optical WGM microcavities, such as a cylindrical ring res-
onator (see Fig. 2.1a), the electric field vector does not change with respect to the
wave vector k in the process of the propagation. In addition, the resonant light
propagates along a closed-loop trajectory, which is distinct from the open helical
trajectories, which have been used to enable the optical spin-orbit interactions [4, 10,
28]. Unlike the propagation via helical trajectories, the wave vector k experiences a
trivial evolution, when propagating along a closed loop. As such, the optical spin-
orbit interaction is irrelevant, and the correspondingHamiltonian contains only the h

∧

0

part, which results in ordinary discrete eigenmodes in the optical WGM resonators.
Experimentally, the eigenmodes manifest themselves by discrete peaks in the reso-
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nant spectra. Each peak in the resonant spectrum is formed by self-interference with
an integer number of waves along the closed-loop trajectory. In these systems, the
optical polarization states are conserved at each resonance.

However, the optical spin-orbit coupling can be induced in specially designed
cavity structures. For example, one can introduce topology into a WGM cavity by
employing a Möbius ring as an optical microring cavity. Although the wave vector
k experiences a trivial evolution in this geometry, the transverse electric field twists
around during the propagation along the centerline (see Fig. 2.1b). In this way, an
effective orbital angular momentum (OAM), similar to that of an optical vortex or a
transformed light beam, is generated for the spin-orbit coupling. Thus, the effective
Hamiltonian takes the form h

∧

� h
∧

0 + h
∧

SO I , where the spin-orbit coupling leads
to the occurrence of a geometric phase. This extra phase leads to a non-integer
number of waves for constructive interferences along a closed-loop trajectory, which
has been discussed in previous sections. Similar to the previously reported helical
waveguides, this behavior represents an Abelian evolution, where the polarization
orientation varies, while the polarization eccentricity does not.

In the microtube cavity, optical WGM-type resonances are established via optical
self-interference along a closed-loop trajectory guided by the cylindrical tube wall.
To pump the resonances, a laser line (at 532 nm) is focused on the larger tube edge,
where resonant modes of higher Q-factor exist. The laser excites luminescent defects
in the amorphous silicon oxide microtube, which emit light in the visible spectral
range at room temperature. Due to the subwavelength-thin tubewall, photons linearly
polarized along the tube wall are allowed to circulate around a closed trajectory
within the microtubes, which ensures that the initial state of the resonant light is
linearly polarized with the polarization orientation parallel to the tube axis. Finally,
the photons circulating along the closed trajectory escape from the microtube cavity
and are then measured and analyzed by a laser confocal configuration.

When the light propagates in the thin-walled microtube, the electric field vector
rotates around the tube axis being forced by the cone-shape of the microtube (see
Fig. 2.10b). This rotation generates an effective OAM L along the tube axis. In the
conventional WGM cylindrical cavities, the wave vector k [indicating the direction
of the spin angular momentum (SAM)] of the resonant light is orthogonal to the tube
axis; thus, there is no possibility to generate the spin-orbit interactions, even if there
is an OAM along the axis. However, at the larger end part of a cone-shaped tube,
the average refractive index varies along the tube axis owing to the variation in the
number of windings. In this particular geometry, the resonant trajectory slightly tilts
out of plane in order to reduce the optical path according to Fermat’s principle. This
tilt effect is illustrated in Fig. 2.10a, where the resonant trajectory has to tilt away to
reach a minimum optical length in a cone-shaped microtube cavity. It is this tilted
trajectory that causes the SAM to be not orthogonal to the OAM, which, in turn,

enables the coupling between the spin and the orbital degree of freedom
(
h
∧

SO I

)
.

In addition, the resonant light experiences an anisotropic refractive index in the
asymmetric tube when it propagates along a tilted trajectory, which contributes to
the h

∧

A term. To discuss this effect, the effective refractive index is calculated by
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Fig. 2.10 a The resonant trajectory (red curve) has to tilt to provide a minimum optical length in
a cone-shaped microtube cavity. b An effective orbital angular momentum L is generated by the
rotation of the optical electric field around the tube axis. c Schematic shows the optical spin-orbit
coupling enabled in a cone-shaped microtube cavity

solving the Maxwell’s equations in the curved microtubular structure. In a planar
slab waveguide, the first-order approximation is sufficient for the calculation of the
effective refractive index. In the microtubular structure, the curvature plays a role for
the effective refractive index and therefore the second-order correction needs to be
considered [32].

For the case of light propagating paraxially, the effective refractive index nax is
calculated from:

[
∂2

∂ρ2
+
1

ρ

∂

∂ρ
− 1

ρ2
+ ε(ρ)

(ω

c

)2
]

F � ε(x)avg

(ω

c

)2
F (2.2)

For the case of light propagating in the azimuthal direction, the effective refractive
index naz is calculated from:

[

ρ2 ∂2

∂ρ2
+ ρ

∂

∂ρ
+ ε(ρ)

(ω

c

)2
ρ2

]

F � R2ε(θ)avg

(ω

c

)2
F, (2.3)

where R is a squared average radius of the microtube. In Fig. 2.11, the effective
refractive indices of nax and naz are plotted as a function of the wavelength. It is
shown the microtube cavity exhibits an anisotropic effective refractive index. In a
tilted trajectory in the tubular cavity, the light travels in a weakly anisotropic inho-
mogeneous medium, which would lead to a non-Abelian evolution as theoretically
predicted in [9].



2 Optical Berry Phase in Micro/Nano-rings 49

Fig. 2.11 Effective
refractive indices of nax and
naz are plotted as a function
of the wavelength, showing
anisotropy of the
microtubular structure

2.3.2 Non-cyclic Berry Phase Acquired in Non-Abelian
Evolution

The terms h
∧

SO I and h
∧

A determine the polarization evolution of the optical wave.
By expanding the two terms in (2.1) in the basis of Pauli matrices σ

∧

, the expression

−
[

λ
2π A

∧

· ṗ − 1
2	
∧]

� λ
2π α · σ

∧

exhibits a similar form to that of electrons under the

interaction between the spin and orbital magnetic moments, where the vector α plays
the role of an “effective magnetic field” [9]. Based on the Schrödinger equation, the
polarization evolution equation reads [9, 30]

ȧ � i
[
A
∧

· ṗ − π

λ
	
∧

]
a, (2.4)

where the polarization state a �
(
a+
a−

)

is comprised of right a+ �
(
a+
0

)

and left

a− �
(
0
a−

)

components in the circular polarization basis. A well-known solution

of (2.4) takes the form

a � P exp

[

i
∫ t

0

(
A · ṗσ

∧

3 − π

λ
σ
∧

1

)
dτ

]

a(0), (2.5)

where P represents the path-ordering operator, and a(0) � 1√
2

(
1
1

)

is the linear

polarization state parallel to the tube axis, which is supposed to be the initial state.
The first term in the integral accounts for the Berry phase
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ϕSO I �
∫ t

0
A · ṗσ

∧

3dτ . (2.6)

The second term in the integral in (2.5) results in a factor CA that originates from
the anisotropy of the system. CA enables the interplay between the two polarization
states that gives rise to themutual conversion of the right and left circular polarization
components a+ and a−. One should note that the tensor 	

∧

� σ
∧

1 is non-diagonal due
to the anisotropy of the medium. In the present system the Berry phase is non-cyclic;
in general it takes the form [7]

ϕSO I � arga(0)|a + i
∫ t

0
dτ ṗ · a(p(τ ))|∇p|a(p(τ )), (2.7)

where a is the final state on an open path in the parameter space. Unlike for the cyclic
case, a non-cyclic geometric phase usually cannot easily be derived from (2.7), and
practical measurements could be more complicated [33, 34]. A different convenient
strategy is elaborated to measure this noncyclic geometric phase [14].

Starting from (2.5), one can present the polarization evolution in terms of the
Jones vector

a �
(
a+
a−

)

� exp

( −iϕ iCA

iCA iϕ

)
1√
2

(
1
1

)

� 1√
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos
√

ϕ2 + C2
A + i(ϕ − CA)

sin
√

ϕ2+C2
A√

ϕ2+C2
A

cos
√

ϕ2 + C2
A + i(ϕ + CA)

sin
√

ϕ2+C2
A√

ϕ2+C2
A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(2.8)

The∓iϕ terms denote the geometric phase acquired for each circular basis state. |a+|2
and |a−|2 represent the redistributed circular components after the mode conversion,
where

|a+|2 � 1

2

⎛

⎝1 − 2ϕCA

sin2
√

ϕ2 + C2
A

ϕ2 + C2
A

⎞

⎠; |a−|2 � 1

2

⎛

⎝1 + 2ϕCA

sin2
√

ϕ2 + C2
A

ϕ2 + C2
A

⎞

⎠.

(2.9)

It is the non-diagonal element iCA in the matrix in (2.8) that leads to the coupling
and, consequently, to a mutual conversion between the two circular polarization
components a+ and a−.

For optical characterizations, a 50× objective lenswas used to focus the excitation
laser beam on the tube wall, while the emitted photons were collected by the same
objective and sent to the spectrometer. The polarization states of the resonant light
were examined by a fixed polarizer in front of the detector of the spectrometer and
a rotatable λ/2 plate. By rotating the λ/2 plate, the polarization orientation of the
measured light can be rotated step-by-step and subsequently filtered by the polarizer
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Fig. 2.12 a In a rolled-up asymmetric microtube being pumped by a laser beam (532 nm), the
linearly polarized light evolves into elliptically polarized one with the major axis tilted out of
(with an angle ϕ) the tube axis. b Resonant mode intensity maps of a linear polarization (Lp) state
measured from a symmetric tube without a spin-orbit interaction and an elliptical polarization (Ep)
state measured in the presence of the spin-orbit coupling of light in an asymmetric tube. (After [14].
This work is licensed under a Creative Commons Attribution 4.0 International License, http://crea
tivecommons.org/licenses/by/4.0/.)

and recorded by the detector. In this way, both the polarization orientation (with
respect to the tube axis) and the polarization eccentricity can be resolved.

It is well known that the resonant light in WGMmicrocavities is either transverse
magnetic (TM) or transverse electric (TE) linearly polarized. For symmetric micro-
tubes, the measured optical electric field is linearly polarized and oriented parallelly
to the tube axis for the TM modes. However, in cone-shaped microtube cavities
the resonant light is no longer linearly polarized. Figure 2.12b shows the intensity
maps for the linearly (Lp) and elliptically polarized (Ep) modes as a function of the
orientation angle (0°–360°), which are measured from a symmetric and an asym-
metric tube, respectively. In the intensity map measured from the symmetric tube,
the polarization state is clearly shown to be linearly polarized along the tube axis.
In the asymmetric tube case, the varying but unbroken polarization trace is char-
acteristic of elliptical polarization. Moreover, the major axis of the ellipse (or, in
other words, the polarization orientation) is found to tilt away from the tube axis.
These unusual phenomena go beyond the conventional knowledge of optical WGM
resonances in microcavities and can be attributed to the occurrence of a geometric
phase in a non-Abelian evolution of light [14].

As mentioned above, the initial state of the resonant light in the microtube cavity
is linearly polarized. A linear polarization state is comprised of the in-phase compo-
nents of the right and left circular polarization components as a(0) � a+(0)+ a−(0),
with the same probability amplitude

(|a+(0)|2 � |a−(0)|2 � 1/2
)
, as schematically

shown in Fig. 2.12a. Due to the spin-orbit coupling, the right and left circular com-
ponents acquire a geometric phase with opposite signs: a � a+e−iϕ + a−eiϕ , where

http://creativecommons.org/licenses/by/4.0/
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ϕ is a geometric phase, |a+|2 and |a−|2 are redistributed vector amplitudes for each
component due to themode conversion, as described in (2.9). As shown in Fig. 2.12a,
the conversion of amplitudes between the two circular components leads to a change
from a linear to an elliptical polarization, while the geometric phase causes the orien-
tation of the major axis of the polarization to tilt by an angle (equal to ϕ) with respect
to the initial orientation. Since the outgoing state differs from the incoming one as
stated above, the evolution generates a non-cyclic geometric phase. Here we show
that the non-cyclic geometric phase can be readily measured by simply recording the
tilt angle of the light polarization ellipse. The change of the circular basis states is
evidence for the lack of independent modes, which is a consequence of the intricate
non-Abelian evolution as described above. Since the photons are guided in the tube
wall and their polarization states vary smoothly, the evolution can be described as an
adiabatic process [4, 28].

The resonant light experiences the spin-orbit coupling in an anisotropic medium,
when resonating in an asymmetric microtube cavity, hence the polarization state
(described by the eccentricity and the tilt angle) continuously changes during the
resonances, as schematically shown in Fig. 2.13a. However, the polarization state
canonly bemeasuredwhen the light escapes from themicrotube cavity, atwhich point
the final state of the evolution has been reached. In order to depict the evolution trace,
a series of final polarization states were measured from different asymmetric tubes,
in which the resonant light experiences different extents of the polarization evolution.
Figure 2.13b shows these series of polarization states plotted on a Poincaré sphere.
In our measurements, tilt angles (the Berry phases) up to ~44.5° and an eccentricity
of 0.7 is recorded. It is found that a larger eccentricity is accompanied by a larger tilt
angle (ϕ) due to their co-evolution in (2.5). This kind of the evolution trace can be
well reproduced by (2.8), indicating a good agreement between the theoretical model
and measurements. In addition, we have performed polarization measurements for
different mode frequencies in the same tube cavity and found that the tilt angle as
well as the eccentricity is independent of the wavelength. This is a clear evidence
that the effect is of purely geometric, rather than dynamical origin.

In contrast to previous reports on optical spin-orbit coupling, where the right- and
left-handed circular polarization basis states are often spatially separated [28, 35],
here we do not observe such a spatial separation of the spin components, but rather
an amplitude conversion between basis vectors during the evolution, as discussed
above. This process is systematically shown in Fig. 2.14 by comparing the variation
of the squaredmoduli of the coefficients |a+|2 and |a−|2 accompanied by the tilt angle
ϕ. In the measured elliptical polarization curves, the maximum intensity represents
the sum of the two moduli squared |a+|2 + |a−|2, while the minimum represents
the difference |a+|2 − |a−|2. Based on the measured results, the respective squared
amplitudes for the right |a+|2 and left |a−|2 circular components are extracted. The
two squared vector amplitudes vary in an opposite way and therefore result in the
vector splitting of the spinning photons in a Hilbert space. The evolution traces of
the two vector amplitudes agree well with the theoretical model of (2.9), as shown
in Fig. 2.14.



2 Optical Berry Phase in Micro/Nano-rings 53

Fig. 2.13 a The polarization state of light circulating in an asymmetric tube changes from linear
to elliptical one, which is recorded by defining a wave-accompanying coordinate frame (bottom
panel). In this process, the major axis of the evolving polarization states ascribes a spiral around the
tube axis, which is shown with respect to the laboratory coordinate frame (top panel). b A series of
polarization states (red dots) measured after different extents of evolutions in different asymmetric
tubes are plotted on a Poincaré sphere. The blue line plotted according to (2.9) traces the non-cyclic
evolution from the linear to elliptical polarization states. (After [14]. This work is licensed under a
Creative Commons Attribution 4.0 International License, http://creativecommons.org/licenses/by/
4.0/.)

Light propagating around a dielectric microsphere cavity has been used to mimic
the effect of gravitational lensing. Furthermore, the analogy between a static gravita-
tional field and an anisotropic medium has been utilized to realize a Spin-Hall effect
triggered by a gravitational field. In this sense, our asymmetric microtube cavity
could provide an effective analogue for the laboratory study of the light evolution in
a gravitational field. Moreover, in WGM microcavities light is confined in a small
volume. This avoids a large space required in the previously reported open light-path
systems, and is therefore attractive for integrating photonic applications on a chip.
This finding may motivate the search for many novel applications, such as those for
on-chip quantum information technologies, or exploiting interactions of light with
chiral molecules.

The cone-like asymmetric optical microcavities establish an ideal platform to
realize the spin-orbit coupling for the examination of non-trivial topological effects
in the context of a non-Abelian evolution. The non-cyclic geometric phase and the
mode conversion for degenerate photon systems can be readily demonstrated in a
compact optical microtube cavity. The geometric phase can be directly measured
by simply monitoring the polarization tilt angles, while the eccentricities indicate
the mode conversion between the right and left circular basis components. This
issue, which is interesting from both fundamental and experimental points of view,
implies promising applications related to manipulating photons in on-chip integrable
quantum devices.

http://creativecommons.org/licenses/by/4.0/


54 L.Ma et al.

Fig. 2.14 Measured vector amplitudes of the right (a+) and left (a−) components with the concur-
rent geometric phase ϕ. The evolution traces agree well with the theoretical model in (2.9) (dashed
curves). Top panel shows (l.h.s.) a linear polarization comprised of in-phase rotating right and left
circular polarization components, and (r.h.s.) geometric phase +ϕ (shown with the bold green arc)
acquired for a− and −ϕ (shown with the dotted blue arc) acquired for a−. (After [14]. This work
is licensed under a Creative Commons Attribution 4.0 International License, http://creativecommo
ns.org/licenses/by/4.0/.)
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Chapter 3
From Dot to Ring: Tunable Exciton
Topology in Type-II InAs/GaAsSb
Quantum Dots

José M. Llorens, Vivaldo Lopes-Oliveira, Victor López-Richard,
José M. Ulloa and Benito Alén

Abstract We present an experimental and theoretical study about the carrier con-
finement geometry and topology in InAs/GaAsSb quantum dots. The investigated
sample consists of a field-effect device embedding a single layer of dot-in-a-
well InAs/GaAsSb nanostructures. These nanostructures exhibit large electron-hole
dipole moments and radiative lifetimes under externally applied electric fields. Both
phenomena are related to the type-II band alignment existing between the two mate-
rials which, in principle, could also result in a change of the hole orbital confine-
ment topology from simply to doubly connected. The latter aspect will be con-
firmed by ensemble magnetophotoluminescence experiments at 4.2 K. The oscilla-
tions observed in the photoluminescence intensity and degree of circular polarization
will be described by an axially symmetric k · p model combining vertical electric
and magnetic fields. Due to the large spin-orbit coupling of III-Sb nanostructures,
the modulation of the orbital confinement geometry and topology reported here shall
open a venue to control the spin dynamics by external voltages. This exciting idea
will be theoretically discussed through band-effective models including spin-orbit
coupling and anisotropic confinement effects.
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3.1 Introduction

InAs and AlSb form together with GaSb the so-called “6.1 Ångstrom” family.With a
very similar lattice constant, these semiconductor compounds can be stacked and/or
alloyed to fabricate unstrained heterostructures whose fundamental band-gap cover
a spectral (energy) range from 12.4 µm (0.1 eV) for InAsSb to 0.77 µm (1.615eV)
forAlSb: the largest energy span of all III-V lattice-matched families. They also have,
together with InSb, the largest electron mobilities, the highest electronic g-factors
and the biggest spin-orbit coupling of all III-V semiconductors. All these character-
istics are of fundamental character and give antimony-based semiconductors major
potential for the future of electronics, optoelectronics, and quantum information
technologies.

Quantum information technologies rely on our ability to manipulate the quan-
tum properties of matter. With III-V quantum semiconductors, the state of the art
is currently defined by experiments done using InGaAs QDs in a GaAs matrix. To
name a few examples, bright single-photon sources have been developed using QDs
either stand alone or embedded in optical resonators like microcavities and micropil-
lars [1–3]. By increasing the Q-factor of the optical resonator, the rate of emission
of single photons can be increased by several orders until the strong coupling regime
between light and matter is eventually reached. Such entanglement between carrier
spins and photons is necessary to create essential quantum information technologies
like quantummemories and repeaters. Quantum dots are also at the heart of quantum
light emitting diodes [4–7]. Direct electrical operation is one of the advantages of
solid-state technologies over single atom or crystal defect approaches. These inte-
grated sources have been used in a proof-of-principle demonstration for quantum
key distribution, [8] but have yet to make commercial impact.

Experimental demonstrations of quantum technologies using Sb-containing
nanostructures are significantly less mature. Optical isolation of individual nanos-
tructures has been demonstrated a few times revealing nanostructures with sharp
excitonic emission [9–11]. III-Sb nanostructures grown on GaAs emit in the tele-
coms band and could provide quantum light sources for 1310 and 1550 nm wave-
lengths [12–14]. GaSb/GaAs and InAs/GaAsSb quantum dots and rings grown on
GaAsare especially appealing for quantummemories andgates since they can confine
single hole spins more efficiently than InGaAs/GaAs QDs [15–20]. The dephasing
rate of the hole spin due to hyperfine coupling with the nuclei is orders of magnitude
smaller than for electrons. In addition, the large g-factor and spin-orbit coupling of
III-Sb might boost the manipulation of the hole spin state in quantum information
processing operations [21].

An emergent application of III-Sb nanostructures for quantum information sci-
ence and technology relies in the realization of topological insulators and Majorana
fermions with these materials [22]. The high-mobility, strong spin-orbit coupling
and small fundamental energy gap are among the most wanted material character-
istics to build topologically protected quantum states in highly correlated electron
systems. These quantum states form the spanning basis of topological quantum bits,
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which thanks to their non-local character (spatially delocalized) become largely pro-
tected from the environment and are thus highly coherent. These systems however are
meant for electrical readout of their quantum states and do not interact with visible
and infrared light as required for quantum communication technologies.

Such requirements might be fulfilled instead by other III-Sb quantum nanostruc-
tures with type-II confinement, including InAs/GaAsSb quantum dots, where voltage
tuneable geometry and topology could open new paths for single spin manipulation
as discussed below.

The chapter is organized as follows: Sect. 3.2 describes the growth process, device
layout and experimental techniques. It also summarizes the structural and morpho-
logical parameters that define the InAs/GaAsSb quantum dots studied here. Their
response to an externally applied vertical electric field is investigated in Sect. 3.3.
Large electron-hole dipole moments (vertical and lateral) and radiative lifetimes are
found and a theory is presented which suggests a hole orbital confinement topology
changing from simply to doubly connected as a function of the electric field. This
latter possibility is throughly discussed in Sect. 3.4 where experiments and theories
combining external electric andmagnetic fields are explained in the framework of the
Aharonov-Bohm effect. Finally, the voltage modulation of the exciton g-factor found
in our system is analyzed through effective models including spin-orbit coupling and
anisotropic confinement effects in Sect. 3.5.

3.2 Samples and Experiments

To study voltage tunable effects on type-II InAs/GaAsSb nanostructures, a p-i-n
diode structure was grown by molecular beam epitaxy (MBE) on an n-type GaAs
(001) substrate. InAs QDs were grown by depositing 2.7 monolayers (ML) of InAs
at 450 ◦C and 0.04 ML/s. After 20 s of growth interruption, the QD layer was capped
with a 6 nm thick GaAsSb layer grown at 470 ◦C and was subsequently covered with
intrinsic GaAs grown at 580 ◦C. The nominal Sb content was 28% and the intrinsic
region of the p-i-n diode spans 400nm embedding the QDs and GaAsSb in its centre
as shown in Fig. 3.1a.

We have proven in the past that a rapid thermal annealing treatment (RTA) is
beneficial for these nanostructures, not only blueshifting their fundamental energy
and narrowing and boosting their emission as shown in Fig. 3.1b, but alsomaintaining
the type-II band alignment [23]. The same RTA treatment was applied in this case.
Regarding the QD structural properties, transmission electron microscopy reveals
that the QDs become flatter (more quantum disk-like) after annealing. The average
QD height is reduced by 1 nm (from 3.5 to 2.5 nm) while the QD height distribution
becomes narrower (the standard deviation decreases from 0.57 to 0.39 nm).The base
diameter increases by 6 nm (from 16 to 22 nm) and the thickness of the capping layer
decreases∼1 nm, from 6.5 to 5.5 nm. Regarding the Sb content actually incorporated
in the capping layer, far from the QDs we find that xSb remains uniform and equal
to 20 ± 1% (slightly lower than the nominal value). All this information can be
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(b)(a)

Fig. 3.1 a Schematics of the device structure with doping concentrations, layer thicknesses and
active layer composition indicated. Reprinted from [20], with the permission of AIP Publishing. b
Photoluminescence spectrum obtained at 15 K in a similar sample before and after applying a rapid
thermal annealing treatment [23]

incorporated in a realistic theoretical model to calculate the electronic structure in
different situations as described below.

Several devices were defined on the wafer by conventional optical lithogra-
phy techniques and investigated by photoluminescence (PL) and time resolved PL
(TRPL) as a function of external electric and magnetic fields applied in the growth
direction. At 5 K, the sample was mounted in a cryostat equipped with piezo motors
while a 785 nm laser diode, either continuous wave (CW) or pulsed in the ps range,
was focused down to a 50µmdiameter spot. For CWmeasurements, the emitted light
was detected with a peltier cooled InGaAs photodiode array attached to a 0.3 m focal
length spectrometer. For time resolved measurements we used a fast InGaAs photo-
multiplier (transit time spread 400 ps) attached to a 0.3 m focal length spectrometer
and connected to time correlation electronics.

Ambipolar electric fields were supplied by biasing the device in the rectifying
region while magnetic fields were applied in the Faraday configuration using a 9 T
superconducting magnet. In the latter case, light polarization was also analyzed in
the σ+ and σ− basis.

3.3 Voltage Tunable Exciton Geometry

For many years, self-assembled In(Ga)As/GaAs QDs have been the preferred sys-
tem to debug new quantum optical information technologies concepts in the solid
state. Owing to its type-I band alignment, electrons and holes in this system are
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strongly confined within the In(Ga)As material, being the response of their ground
state wavefunctions to the external bias correspondingly small and similar for both
carriers [24–26]. Typical values are∼0.08meV/kVcm−1 for quantum rings of 3.6 nm
ofmaximum height [25, 27, 28]. As a function of the QD height the shift might range
from 0.014meV/kV cm−1 at 5.4 nm to 0.29meV/kV cm−1 at 7.8 nm [29]. A possible
way to extend the energy tunability is to confine separately electrons and holes in
the two different QDs of a vertical QD molecule. A shift of 0.97 meV/kV cm−1 has
been reported for such an indirect transition, in clear contrast with the intradot shift
in the same system 0.113 meV/kV cm−1 [30].

For the type-II band alignment, in which either the holes or electrons are confined
within the QD whereas the complementary particle remains weakly localized out-
side, the electro-optical response is comparatively unexplored. It is expected that the
weakly confined particle would be more sensitive to external stimuli, resulting in a
larger electrical polarizability along with other characteristics associated to the very
different confinement regime for electrons and holes [16, 17, 31]. The confinement
potential for electrons and holes together with their mutual Coulomb interaction
define the size and the symmetries of the density of probability of the neutral exci-
ton wavefunction, named hereafter, exciton geometry. At low excitation power, only
one electron and one hole are confined at a given time. Multicharged exciton states
are not populated and thus high order Coulomb terms are not relevant for the exci-
ton geometry formation. Furthermore, being spatially separated, the leading terms
of the neutral exciton Coulomb interaction: electron-hole attraction and exchange
are smaller than in type-I systems [32]. In the following, the exciton geometry in
type-II InAs/GaAsSb nanostructures and its evolution under an electric field applied
in the growth direction will be investigated. Firstly, we will study the permanent
dipole moment and polarizability, then, to get further insight over the in-plane exci-
ton confinement, we will showmeasurements of the exciton radiative lifetime. These
experiments will be discussed in the framework of a realistic theoretical model of
the energy band structure described in Sect. 3.3.3.

3.3.1 Exciton Dipole Moment and Polarizability

For an Sb amount exceeding ≈16%, the valence band alignment across the
InAs/GaAsSb interfaces turns from type-I to type-II, as revealed by the excitation
power and temperature dependence of the photoluminescence (PL) studied by sev-
eral authors [17, 18, 33, 34]. Thus, for the particular amount used here of ≈20%,
the holes have been fully expelled from the QDs to the capping layer already at zero
field, leaving the electrons confined within the InAs QD.

When a vertical electric fieldF is applied, electrons and holes are brought together
or apart changing the exciton energy E through the quantum confined Stark-effect
(QCSE) [35]. The second order perturbation theory equation E(F) = E0 − pF +
βF2 can thus be used to extract the permanent electron-hole dipole moment p and
polarizability β analyzing the voltage dependence of the PL spectrum. The results are
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Fig. 3.2 Evolution of the
photoluminescence in a
vertical electric field at 5 K.
Each spectrum has been
normalized to its maximum
for clarity. Inset: the ground
state peak energies (circles)
follow
E(F) = E0 − pF + βF2

(solid line) in the rectifying
region

displayed in Fig. 3.2. At 38 kV cm−1, the spectrum is dominated by the ground state
emission centered at 1.134 eV with full with at half maximum FWHM ≈ 36meV.
The shoulder at higher energies corresponds to an excited state whose integrated
intensity after gaussian deconvolution varies with field (21% of the total emission at
38 kV cm−1 and 6% at 112.5 kV cm−1). Therefore, in the following we focus only
on the fundamental transition.

Figure 3.2 shows how in the rectifying region (40–113 kV cm−1) the ground state
peak energy shifts by 13 meV, nearly 40% of its inhomogeneous bandwidth, while
theFWHM remains constant in the same range of electric fields (variation< 1meV).
A fit to the perturbation theory equation is shown in the inset of the same figure. The
permanent dipole positive value p/e = 1.48 nm indicates that the hole average vertical
position is above the electron one at zero bias as expected. We find a polarizability
β = −0.32 µeV kV−2 cm2 and an average shifting rate of ≈0.118 meV/kV cm−1

which are large but comparable to the values found for InAs/GaAs quantum dots
mentioned above. It should be noted that the polarizability of a particle of mass m∗
in an infinitely deep quantum well of width L scales like β ∝ m∗L4 [36]. Thus one
would expect a greater change in the polarizability by expelling the heavier particle
(hole) from theQD to the 6 nm thickGaAsSb capping layer. To explain this result, the
hole shall be strongly localized in practice. According to results shown in Sect. 3.3.3,
such localization comes from the strain and piezoelectric fields surrounding the InAs
QD even in the absence of Coulomb interaction.

3.3.2 Exciton Lifetime

The analysis of the QCSE shown above does not provide much insight about the
exciton wavefunction spread in the growth plane. This information can be accessed



3 From Dot to Ring: Tunable Exciton Topology … 63

more directly through the evolution of the PL spectrum in a magnetic field applied
in the Faraday configuration as shown in Sect. 3.4. The exciton radiative lifetime
on the other hand strongly depends on the electron-hole overlap in all three spatial
directions and its value can be straightforwardly related to changes in the vertical
and lateral confinement geometry as explained below.

To analyze the carrier dynamics in our device we have performed time resolved
photoluminescence experiments also at 15 K. Fig. 3.3a contains decay curves
recorded for two values of the electric field. The solid lines represent the convo-
lution of the system response with single exponential decay fits for each dataset. We
obtain long decay times, in excess of 6 ns, confirming that carriers exhibit type-II
confinement after the RTA [23]. The full evolution of the decay time with the exter-
nal electric field is represented in Fig. 3.3b. For each point, the decay time and its
statistical error were estimated at the maximum of the emission following the Stark
shift of the ground state.

The decay time increases up to a maximum of 7.5 ns at 42 kV cm−1 before
decreasing abruptly as shown in Fig. 3.3b. This dome shape arises from two com-
peting processes. The region of lifetime increase up to 50 kV cm−1 corresponds
to the vertical separation of the electron and hole wavefunctions dictated by the
QCSE. The region of lifetime decrease will be associated to the reduction of the

(a) (b)

(c)

(d)

Fig. 3.3 a TRPL experimental data obtained at 5 K and corresponding decay curve fits are plotted
with symbols and lines, respectively. The system response is plotted with gray line. b Best fit of the
theoretical radiative lifetime (solid line), tunneling time (dotted line), and effective lifetime (thick
solid line) to the experimental decay times (circles). c Evolution of the radiative lifetime for varying
QD diameter and tSRL = 6 nm. d Evolution of the radiative lifetime for varying SRL thickness and
DQD = 22 nm (a and b adapted from [20])
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electron tunnelling time through the InAs/GaAs interface. It can be calculated using
the Wentzel-Kramers-Brillouin approximation for a triangular well [37]:

1

τtun
= �

8m∗
eH

2
exp

{
−4

3

√
2m∗

e

e�F
[Ec − Ee(F)]3/2

}
(3.1)

where we introduce the electron effective mass of compressed InAs, m∗
e = 0.1, the

GaAs band edge at the QD base, Ec = 0.765 eV, H = 2.3 nm, for the QD height
determined independently, [23] and Ee(F) for the electron ground state energy.

Both contributions can be calculated independently from the electron and hole
wavefunctions and energies obtained in Sect. 3.3.3. The black solid curve in Fig. 3.3b
has been obtained using the nominal parameters for the grown nanostructures. It
slightly overestimates the experimental lifetimes in the region of lifetime increase,
but otherwise the nominal parameters nicely reproduce the experimental evolution.

A better fit could be obtained varying the diameter of the QD, DQD and/or the
thickness of the GaAsSb SRL, tSRL. At zero bias, increasing any of them leads to
longer radiative lifetimes as shown in Fig. 3.3c, d, respectively. To analyze such
evolution, color maps of the density of probability of the ground state electron and
hole states have been depicted in Figs. 3.4 and 3.5. The color map for each carrier
has been averaged in the [110] and [110] crystal directions and its scale has been
normalized to themaximumobtained for the nominal values: tSRL = 6 nmandDQD =
22 nm. Coulomb interactions are not considered in the model, thus, band offsets at
the material interfaces together with strain and piezoelectric fields fully determine
the electron and hole overlap.

Fig. 3.4 Color maps of the
density of probability of the
ground state electron and
hole states calculated
varying the QD diameter for
tSRL = 6 nm and
F = Fz = 0 kV cm−1
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Fig. 3.5 Color maps of the density of probability of the ground state electron and hole states
calculated varying SRL thickness for DQD = 22 nm and F = Fz = 0 kV cm−1

At zero bias, the ground state electron wavefunction is well localized and centered
within the QD volume. Although the density of probability spreads in the growth
plane as theQDdiameter increases, the leakage in the surroundingGaAs andGaAsSb
barriers diminishes as shown inFig. 3.4. For the samebias, the heavyhole ground state
is bound to regions within the GaAsSb SRL where the strain deformation is large.
This creates a characteristic annular pattern which for a round symmetric QD is only
modulated by the different piezoelectric field in the [110] and [110] directions [17,
18]. The large valence band offset between GaAs0.81Sb0.20 and GaAs prevents any
significant leakage of the hole wavefunction out of the SRL. The hole penetration
in the QD volume is however more pronounced and, as expected, decreases in the
central regions of the QD as the diameter increases. These qualitative effects lead
to an overall reduction of the electron-hole overlap with increasing QD diameter
and, numerically, to the non monotonic increase of the radiative lifetime observed in
Fig. 3.3c.

Changing the thickness of the SRL also causes a major impact in τrad but leaves
the electron wavefunction mostly unaffected as depicted in Fig. 3.5. This is a purely
valence band effect. Type II InAs/GaAsSb QD systems have been reported whose
lifetimes are as long as 65 ns [38] and get reduced for thinner SRL thicknesses [39]. A
large SRL thickness is very effective in diminishing the strain field around theQDand
the quantum confinement in the barrier [12]. The net result is a rather delocalized hole
only bound to the electron by Coulomb effects. The type-II QD system investigated
here presents much faster radiative recombination and, as discussed above, has a
polarizability, β, not very different from the one found for large InAs/GaAs QDs.
The contour maps in Fig. 3.5 show the transition from one regime to the other. For
tSRL ≤ 6 nm the heavy hole is strongly bound to the InAs/GaAsSb interface and has
a substantial penetration within the QD volume. Under these conditions, the indirect
exciton might be a very effective probe to map the hole spin and the topological
changes of the hole wavefunction in an external field as discussed in the following
sections.



66 J.M. Llorens et al.

3.3.3 Energy Levels Versus Electric Field

We have developed an eight-band k · p theoretical model for the QD based on the
geometrical characterization of the capped nanostructure reported in [23]. The same
model was employed previously for the study of the influence of Sb in the QD [40]
and in the cap layer [18]. We have considered a lens shaped Ga0.27In0.73As QD of
11 nm radius and 2.3 nm height embedded in a conformal GaAs0.81Sb0.20 strain
reducing capping layer of 6 nm thickness unless stated otherwise. The structure
was surrounded by a GaAs matrix. The applied electric field was introduced in the
model through charge neutral contacts, meaning that complications derived from the
dopants distribution were not taken into account. We considered a linear dependence
of the electric potential across the intrinsic region of the device described in Sect. 3.2.
We obtain the energy levels of the electron and hole states solving the eight-band
k · pHamiltonian including the effects of the strain and linear piezoelectric field [41].
From the electron and hole wavefunctions we also computed the radiative lifetimes,
τrad, and the expected value of the vertical (in-plane) electron and hole separation,
〈ze-h〉=〈zh〉 − 〈ze〉 (〈ρe-h〉 = 〈ρh〉 − 〈ρe〉), and density of probability distribution for
each type of carrier.

The permanent dipole moment is related to the expectation value of the electron
and hole z coordinate at F = 0 kV cm−1 through p/e = 〈ze-h〉 = 〈zh〉 − 〈ze〉. Our
model predicts that the strain and piezoelectric potentials are enough to stabilize
the hole wavefunction above the electron one at zero bias with p/e = 2.3 nm very
close to the experimental value p/e = 1.48 nm quoted in Sect. 3.3.1. In addition,
we find that the polarizability βkp = −0.39 µeV kV−2 cm2 also agrees well with the
experimental valueβexp = −0.32 µeVkV−2 cm2, concluding that the keyparameters
of the electrical response of these QDs are well reproduced by the k · pmodel using
the nominal parameters.

In the application sphere, a large p and β are desirable to fabricate electro-
absorptionmodulatorswith smallmodulation voltages and low insertion losses. From
the discussion in the previous sections, it became clear that we need to increase the
thickness of the SRL to increase the polarizability at the expense of larger radiative
lifetimes. Figure 3.6 summarizes the results. We find p/e (nm)= 1.4, 2.2 and 3.2 and
β (µeVkV−2 cm2) = −0.21, −0.39 and −0.78 for tSRL (nm) = 4, 6 and 8, respec-
tively. As shown in Fig. 3.6b, the larger p/e value translates in slower radiative
dynamics of the system at zero bias while, as expected, the larger β value brings
much wider modulation of the radiative lifetime when applying vertical electric
fields [37].

An additional feature arises from the large asymmetry between electron and hole
confinement geometry. As shown in Fig. 3.6a, in the investigated bias range, the
energy of the strongly confined ground state electron changes by less than 1 meV
and almost independently of tSRL. Therefore, the large energy shifts and β values of
the InAs/GaAsSb QD system are entirely due to the electrical modulation of the hole
wavefunction. For the tunnelling dynamics the situation is reversed. We have found
that the hole ground state cannot tunnel through the GaAs interface due to its deeper
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(a) (b)

Fig. 3.6 a Theoretical evolution of different parameters calculated varying the vertical electric field
and SRL thickness: a fundamental transition energy (solid lines) and electron ground state energy
(dashed lines), b effective lifetime (solid lines) and tunneling lifetime (dashed lines). Adapted
from [20]

confinement potential in the GaAsSb layer and its large effective mass. Meanwhile,
at ≈60kVcm−1, the electron tunnelling through the standard InAs/GaAs interface
becomes very effective quite independently of the GaAsSb layer thickness (dashed
lines in Fig. 3.6b).

A system where electron and hole confinement geometry can be tuned indepen-
dently can be exploited in optoelectronic devices such as QD lasers [42–44] and
photovoltaic solar cells [45–50]. Yet, our calculations suggest that the external elec-
tric field also induces a change in the hole wavefunction topology opening a venue
for new applications. The idea is better explained looking at the contour maps shown
in Fig. 3.7a. The density of probability for each carrier has been depicted for vary-
ing F . In contrast to typical type-I systems, here the hole can move easily within
the GaAsSb SRL pushed by the external electric field, not only changing the ver-
tical dipole moment 〈ze-h〉, but also winding around the QD and inducing a large
modulation of the in-plane dipole moment 〈ρe-h〉. The calculated dipole moments
are depicted in Fig. 3.7b. At F = 0, 〈ρe-h〉 is already 9 nm with 〈ze-h〉 = 2.3 nm. A
reverse bias (F ≥ 0), causes an upward shift of the hole wavefunction increasing
the vertical dipole moment and decreasing the in-plane one, which might achieve
〈ze-h〉 = 10 nm and 〈ρe-h〉 = 0 nm at F = 200 kV cm−1. In this reverse bias region
is where the radiative lifetime increase is more apparent as described above. On the
other hand, for F ≤ 0, the hole will move downwards towards the underlying GaAs
barrier. Since there is no significant penetration through this interface, the in-plane
dipole moment remains large and mostly unchanged by the field, making this bias
region the most favorable for the observation of optical Aharonov-Bohm effects as
explained in the following section.
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(a) (b)

Fig. 3.7 a Color maps of the density of probability of the ground state electron and hole calculated
for varying electric field. b Expected value of vertical (blue solid line) and radial (red dashed line)
separation between electron and hole. The insets show three dimensional color plots of the ground
state hole wavefunction probability density calculated at the indicated electric fields. Reprinted
from [20], with permission of AIP publishing

3.4 Voltage Tunable Exciton Topology

In the previous section, the probability density calculated by the eight-band k · p
model provided a set of intuitive pictures to understand the electrical modulation of
the hole wavefunction in the InAs/GaAsSb QD system. We have found that for F =
Fz ≤ 0, the combination of type-II confinement, strain and piezoelectric fields results
in a holewavefunction that adopts a non-singly connected topology (ring-like) and the
formation of a large in-plane permanent dipole. The effect of a magnetic field applied
along the growth direction in a type-I nanostructure is a well studied problem [51].
In contrast, in a type-II nanostructure, the non-singly connected topology and the
in-plane dipole shall result in the appearance of a relative Berry phase between the
electron and hole wavefunctions. An excellent introduction to the topic can be found
in Chap. 1 [52] and, in particular for type-II QDs, Chap. 11 [53] of the current book.
The key signature to identify the optical Aharonov-Bohm effect is the change in
orbital angular momentum of the electron with respect to the hole. From an optical
point of view, this means that the exciton ground state evolves with the applied
magnetic field from a bright state into a dark state, hence producing a fade-out of
the emitted intensity. In actual samples such a reduction on the emitted light is
not observed because of the reduced symmetry of the system, i.e. the total angular
momentum is not a good quantumnumber.As a consequence, oscillations in intensity
are observed instead of a quench [54–56]. Quantum nanostructures with ring-like

http://dx.doi.org/10.1007/978-3-319-95159-1_1
http://dx.doi.org/10.1007/978-3-319-95159-1_11
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topology for electrons, holes or both are known as quantum rings (QR) and have been
the object of intense theoretical and experimental research in the last years [57]. In this
endeavour, it was soon revealed that the charge separation between electron and hole
in the radial direction is crucial for the observation of optical or excitonABoscillatory
effects [55, 58]. Generally speaking 〈ρe-h〉 is relatively small in type-I QR systems
making the detection of optical AB effects a challenging task [59, 60]. In this context,
a vertical electric field was proven useful to modulate 〈ρe-h〉 without destroying the
ring potential and thus identify voltage tunable AB oscillations in GaAs/AlGaAs
QR [61, 62]. The spatial separation occurring in semiconductor nanostructures with
type-II confinement shall make the observation of optical AB effects more amenable
even if the ring-like topology emerges for only one type of carrier [53, 63–65]. In the
following, we will show how thanks to the polarizability of the hole wavefunction
characteristic of the InAs/GaAsSb QD system, voltage tunable topological effects
might be also more pronounced.

3.4.1 Magneto-Photoluminescence

To investigate optical AB effects in our sample, magneto-photoluminescence (MPL)
spectra were recorded at 5 K in the Faraday configuration. For every magnetic field,
B: 0–9T, a PL spectrum was recorded for V (V) = −1, 0 and 1 (F = 63, 38 and
13 kV cm−1, respectively). Each spectrum was normalized by its corresponding
excitation power. To do so, the laser power was registered simultaneously being its
value constant within ±4% during the whole experiment and within ±2 parts per
thousand while recording the three spectra at each B.

Figure 3.8 shows the evolution of the MPL obtained this way for σ+ detection.
The electric field not only changes the peak emission energy and intensity as already
discussed, but it also changes the magnetic response of the sample. To maintain a
unified description, the CW excitation power was kept approximately the same in
the experiments of Sect. 3.3.1 and here. Thus, the PL emission comprises two bands
which at 0 V and 0 T are split by ≈36 meV. These bands arise from ground state
and excited state recombination whose integrated intensity ratio was >7 throughout
the experiment. To discuss the magnetic properties of the InAs/GaAsSb QD system,
the inhomogeneously broadened ground state emission will be analyzed separately.
To do so, a conventional gaussian deconvolution procedure has been performed as
depicted in Fig. 3.8d–f. From the deconvolutedMPL peak energy, Eσ , and integrated
intensity, Iσ

PL, we obtain the average energy shift, Eav(B) = (Eσ+ + Eσ−
)/2, unpolar-

ized intensity, Iu(B) = (Iσ+
PL + Iσ−

PL )/2, Zeeman splitting, ΔEz(B) = Eσ+ − Eσ−
, and

degree of circular polarization, DCP(B) = (Iσ+
PL − Iσ−

PL )/(Iσ+
PL + Iσ−

PL ) for the ground
state alone.

Figure 3.9 gathers ΔEav(B) = Eav(B) − E(0) and ΔEz(B) for the three inves-
tigated voltages. Solid lines are conventional fittings to the perturbation theory
expected evolution: ΔEav(B) = αDB2 and ΔEz(B) = μ0gB, where μ0 is the Bohr
magneton, and αD and g represent the quadratic diamagnetic shift coefficient and
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(a) (b) (c)

(d) (e) (f)

Fig. 3.8 Evolution in magnetic field of the σ+ polarized PL spectrum for three different device
bias (a–c). Measurements done at 5 K in the Faraday configuration. Gaussian deconvolution of
MPL spectra measured at 63 kV cm−1: d original data curves, e curves resulting from gaussian
deconvolution, f individual gaussian components for ground state (GS) and excited state (ES).
Adapted from [66]

Fig. 3.9 a–c Average
energy shift in magnetic field
of the fundamental transition
at different electric fields
(open symbols). Solid lines
stand for the corresponding
parabolic fits with
diamagnetic shift coefficient,
αD (μeV/T2), indicated. d–f
Experimental Zeeman
splitting (open symbols) and
g-factors extracted from the
corresponding linear fits
(solid lines). Adapted
from [66]

(a) (b) (c)

(d) (e) (f)
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g-factor for the type-II exciton, respectively. Both functions describe accurately the
data, except for an initial linear deviation for ΔEav(B) at small magnetic fields. We
observe that both αD and g are affected by the external electric field and also that
oscillations in magnetic field are absent for the ground state peak energy. The relative
g-factor change is almost 50% and shall be attributed to the voltage modulation of
the spin-orbit coupling that will be discussed in detail in Sect. 3.5.

The αD variation is smaller but exhibits a clear diminishing trend reducing the
reverse bias. For a magnetic field applied in the growth direction, the diamagnetic
shift coefficient is directly proportional to the exciton wavefunction extension in
the growth plane [67]. This simple relation works better for low magnetic fields,
where Landau level formation and changes of the exciton binding energy can be
safely ignored. For high magnetic fields, strong deviations from a quadratic shift
are expected [51]. In the investigated range, our data follow a quadratic evolution
but the diamagnetic shift increases with the electric field while the in-plane exciton
dipole moment (and thus the exciton size) decreases as discussed in Sect. 3.3.3.
We believe that this discrepancy is related to the crossing of electronic levels with
different angular momentum in the fundamental state. These level crossings are the
signature of AB effects in quantum rings and might reveal themselves as a flattening
of ΔEav(B) and the observed evolution of αD versus F . In addition, the fact that the
tunnelling becomes more important as the positive field increases might also affect
the value αD. Next section will cover these issues in more detail.

The relative evolution of the MPL unpolarized intensity, ΔIu(B), and DCP are
depicted in Fig. 3.10. The DCP is positive, as expected from the negative g-factor,
and evolves with magnetic field from a rather monotonic dependence at 63 kV cm−1

to a clearly oscillatory one at 13 kV cm−1. In the same bias range, ΔIu(B) show
even more abrupt changes. At large positive electric fields, the unpolarized intensity
increases with B exhibiting a strong magnetic brightening. The dependence follows
a fixed linear slope with small oscillations which are only apparent plotting the first
derivative of the data. Reducing the bias, the magnetic brightening effect diminishes
and, for 13 kV cm−1, an oscillatory dependence can be clearly seen on the data.

Fig. 3.10 a–c Evolution in
magnetic field of the degree
of circular polarization of the
fundamental transition at
different electric fields (open
symbols). d–f Same for the
relative change of the
unpolarized PL intensity. The
first derivative of the data is
shown with a gray line where
relevant. Adapted from [66]

(a) (b) (c)

(d) (e) (f)
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In the quantum ring literature,MPL intensity oscillations are related to the changes
in the ground state angular momentum arising from the AB effect. Voltage modu-
lation of such oscillations have been reported for type-I InAs/GaAs single quantum
rings by Ding et al. [61, 68]. The modulation being associated to changes in the
effective quantum ring confinement potential. Such oscillations must diminish with
the positive electric field as the hole wavefunction moves upwards changing from
ring-like to QD-like topology (see Fig. 3.7). Our experiments inmagnetic field, while
done on QD ensembles, look compatible with this picture. In the following, a theo-
retical analysis will be performed which shall give a more quantitative description
of these effects.

3.4.2 Energy Levels Versus Magnetic Field

The model used to explain the results in Sect. 3.3 was constructed on top of the
NextNano numerical tool. The symmetry group of the Hamiltonian, including the
piezoelectric field, is C2v . For such a system there is no good quantum number
to label the electronic states. The topological changes to be described here arise
from complex state crossings and anticrossings in the valence band which would be
difficult to describe without a proper labeling scheme. Thus, we have opted for a
custom model forcing the whole Hamiltonian to be axially symmetric which results
in a C∞v description. Hence, even in the multiband case, the states can be labeled
according to the z-component of the total angular momentum (M ). The introduction
of amagnetic field (B) along the [100] direction results in a systemwithC∞ symmetry
and the states with positive and negative M become non-degenerate. Under these
approximations, each electronic state is expressed as:

Ψ (M )(r) =
8∑

k=1

F (M )

m,k (r)uk =
8∑

k=1

1√
2π

eimφF (M )

m,k (ρ, z)uk , (3.2)

where uk is the Bloch amplitude of the k band at the origin of the Brilloin zone,
F (M )

m,k (r) is the envelope function associated to the k Bloch component and is defined
by the z-projection of the orbital momentum (m). We have expressed the envelope
function in cylindrical coordinates defined by a phase factor characterized by m and
a two dimensional component F (M )

m,k (ρ, z). The k · p Hamiltonian together with the
confinement potential is solved by expanding the envelope function in a complete
basis of functions. This basis is defined by the eigenfunctions of a hard-wall cylinder.
Strain plays a critical role in our system, given that it is responsible of the hole
confinement in the SRL. The zincblenda crystal structure has lower symmetry than
our Hamiltonian, therefore we are forced again to describe the strain distribution
as that of an isotropic material, i.e. the elastic constant C11 is approximated by
the value C12 + 2C44. The impact of the strain on the QD electronic structure is
described by the Bir-Pikus Hamiltonian. An additional consequence is the absence
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of a piezoelectric field, since no polarization charges are induced by an isotropic
strain in these semiconductors. Further details are moved to the appendix Sect. 3.6.

3.4.2.1 Exciton Level Crossings

Wewill rely on the excitonic picture in the presentation of the numerical results. Each
electron (hole) state is defined by the quantum number Me(h) introduced in (3.2).
Hence, the exciton states are defined by the addition of the total angular momen-
tum of the constitutive particles M = Me + Mh. The only optically active exciton
states are those characterized by M = 0,±1. The emitted photons are polarized
along the z direction forM = 0 and circularly polarized σ± forM = ±1. As a refer-
ence QD, we consider one of equal geometrical parameters as those of Sect. 3.3:
RQD = 11 nm, HQD = 3 nm, tSRL = 6 nm and dWL = 0.5 nm and composition
Ga0.25In0.75As (QD) and GaAs0.80Sb0.20 (SRL). In Fig. 3.11 we show the exciton
energy levels close to the ground state. The sign and value ofM can be inferred from
the color lines as well as the radiative rate. We have selected three values of electric
field coincidental with the experimental values shown in Fig. 3.8, i.e. 10, 40 and 60
kV cm−1 together with two extreme values (−30 and 115 kV cm−1) to stress the role
of the hole wavefunction localization. To understand the effect of the magnetic field
in our system, we start by focussing at the dispersion for F = 115 kV cm−1 (large
reverse bias). AtB = 0 T, the ground state is composed of the fourth-fold degenerated
quadruplet with M = ±1,±2. The magnetic field splits this level into two almost
two-fold degenerated branches. In particular, the M = ±1 can be distinguished by
the non-zero radiative rate (dots over the line) and the intense color used in the rep-
resentation. This four exciton states result of the combination of two electron and
two hole states whose dominant Bloch amplitudes are |1/2,±1/2〉 and |3/2,±3/2〉.

Fig. 3.11 Exciton energy levels refereed to the ground state energy at B = 0 T. Blue lines are states
with M = −1, red M = 1, light-red M > 1, light-blue M < −1 and black M = 0. The spot size
is proportional to the radiative rate
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From the addition of angular momentum, it is direct to infer that the envelope func-
tion multiplying the Bloch amplitudes are defined by m = 0. This explains the weak
dependence of the internal structure of the quadruplet to the electric field and hence
to the topology of the hole wavefunction. Irrespective of whether the hole is located
above the apex of the QD (F = 115 kV cm−1) or close to its bottom (F = −30
kV cm−1) the energy levels are weakly perturbed. In contrast, the excited states get
strongly modified with the electric field. These states are characterized by |m| > 0
an are more sensitive to the effective radial confinement as the hole drifts downhill
within the SRL.

The increase on the number of exciton states in the region close to the ground
state as a function of the applied electric field is a remarkable property of our system.
Fig. 3.11 clearly shows the ability of the system to evolve from the trivial electronic
structure of a QD (F > 60 kV cm−1) to an enrichedmixture of states of different total
angular momentum (F < 60 kV cm−1). Our model predicts two crossings between
the M = 3 excited state and the M = −1 (bright) and M = 2 (dark) ground states.
Explicitly, these crossings take place at B = 5.4 and 7.8 T for F = 10 kV cm−1,
respectively. These crossings occur at fields within the range of the experimental
values presented before. This would result in, at least, one optical Aharonov-Bohm
(AB) oscillation. Its observation would depend on the thermalization of the excited
carriers and the eventual relaxation of the selection rules in the actual system as
explained below. The positions of the crossings in themagnetic field axis as a function
of the applied electric field are shown inFig. 3.12a.As expected forAB related effects,
the number of crossings and their actual position depends on the exciton in-plane

(a) (b)

Fig. 3.12 a Value of the magnetic field at the crossing between the energy levels of the excitons
M = 2 and M = 3 (solid line) and M = −1 and M = 3 (dashed line). b Diamagnetic coefficient
for the electron state (solid line), hole (dashed line) and the exciton (thick-solid line)
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dipole moment which, in our case, decreases with the electric field, as discussed
in Sect. 3.4. This result strongly supports that the oscillatory dependence observed
for the DCP and unpolarized integrated intensity in Fig. 3.10 is a consequence of a
change in the total angular momentum of the ground state and hence a signature of
the AB.

Our ensemble experiment prevents the observation of energy resolved features
in the inhomogeneously broadened PL spectrum. Yet, our results clearly show that
larger emission energy shifts versusB anddiamagnetic shift coefficients take place for
larger electric fields (reverse bias) (Fig. 3.9a–c). Figure 3.12b shows the theoretical
evolution obtained for αD for the electron, hole and bright exciton (|M | = 1). The
first thing to observe is the drop of the hole diamagnetic shift with the increasing
electric field. This is expected since, as the hole drifts from the apex towards the base,
its wavefunction spreads in the SRL plane (see Fig. 3.7) increasing the diamagnetic
shift from ∼5 to ∼15 µeV/T2, accordingly. [67] In the same bias range, the electron
diamagnetic shift goes from from ∼23 to ∼32 µeV/T2, increasing with the reverse
bias. This is a consequence of the spill-over of the electron wavefunction in the GaAs
barrier underneath.As discussed in Sect. 3.3, forF > 60 kVcm−1, electron tunneling
out of the InAs QD becomes noticeable, increasing the value of 〈ρe〉 and hence of
αD. Both contributions must be added to compare with the experimental diamagnetic
shift evolution. Experimentally, αD finds a minimum value of 33.6 µeV/T2 at F =
13 kV cm−1 and increases to 43.7 µeV/T2 at F = 63 kV cm−1. Meanwhile, the
calculated exciton values find a maximum value of 38.3 µeV/T2 at F = −30 kV
cm−1 and decreases to 34.3 µeV/T2 at 70 kV before increasing again due to the
electron tunneling. Thus, without any fitting parameter, our axially symmetric theory
correctly predicts themagnitude of the diamagnetic shift and the relevance of electron
tunneling for large reverse bias, but it cannot reproduce the experimentally observed
decreasing trend as we approach F = 0. As shown in Fig. 3.11, in this bias range, the
ground state of the electron-hole system is composed mostly of states with angular
momentum |M | > 1. These states are purely dark in our theory but might achieve
oscillator strength if the symmetry of the actual confinement potential is lowered.
This would explain the lower experimental value found for αD near F = 0 and will
be discussed in detail in the next section.

3.4.2.2 In-Plane Asymmetry Effects

Both the tuning of the spin splitting and the diamagnetic shift can arise from the
symmetry reduction in the confinement potential or the competition between the
external magnetic field and the intrinsic field arising from spin orbit coupling effects.
As such, this section addresses the link between spatial symmetry and spin properties.
It has been profusely reported that quantum dot elongation can take place after
capping. The strain fields that build up during this process provoke the anisotropic
segregation of In atoms leading to an eccentricity increase of previously cylindrical
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systems [69, 70]. Analogous process is also triggered during the synthesis of type-
II InAs/GaAsSb quantum dots which also might lead to anisotropic piezoelectric
fields [17, 71]. Thus, it is a goal of our following discussion to assess the effects
of in-plane confinement anisotropy in the electronic properties. To this end, we
introduce an effective mass description of both the conduction and valence band,
and incorporate the effects of confinement asymmetry for electrons and holes in
a model that can emulate quantum dots and rings within the same framework, as
well as the resulting Rashba spin orbit coupling fields arising from confinement and
external fields.

As one would expect, there are pronounced spatial asymmetry effects in the angu-
lar momentum quantization and the spin character of different states. Degeneracies
are broken and these asymmetries, introduced or enhanced by shape anisotropies and
by the confinement potential itself, are found to play an important role in determining
the magneto-optical response.

The eigen-value problem for the conduction band will be solved by expanding
the corresponding wave functions in the basis of the eigen-solutions of the following
effective mass Hamiltonian,

H = �
2

2μ∗ k
2 + V0(z) + V0(ρ) + g∗μB

2
B · σ , (3.3)

with k = −i∇ + e/�A and the magnetic field pointing along the growth z-direction,
whereσ is the Pauli matrix vector, andA = B/2ρϕ̂. For the unperturbed basis, V0(z)
will be assumed as a rigid wall potential profile while the in-plane confinement in
polar coordinates takes the form reported in [72]

V0(ρ) = a1
ρ2

+ a2ρ
2 − 2

√
a1a2, (3.4)

which allows obtaining an exact solution that covers both the quantum ring con-
finement and the quantum dot. The parameters a1 and a2 define the structure shape
and for a1 �= 0, a ring with radius RQR = (a1/a2)1/4 is obtained. In turn, by setting
a1 = 0, a parabolic quantum dot with effective radius R2

QD = �/(2π
√
2a2μ∗) can

be emulated. For the valence band basis, used to expand the Luttinger Hamiltonian
eigen-solutions, we use an analogous separable problem yet assuming anisotropic
effective masses in (3.3), and replacing g∗/2 and σz, by−2κ and the angular momen-
tum matrix for j = 3/2, Jz, respectively.

The solution for the 3D Schrödinger equation, Φ(ρ,ϕ, z), corresponding to the
potential profile in (3.4) is given by

ψ
(e/h)
n,m,l(ρ,ϕ, z) = φ(e/h)

n,m (ρ,ϕ)χ
(e/h)
l (z)ue/h, (3.5)

where χ
(e/h)
l (z) is the wave function for a rigid square well and ue/h = |j,mj〉 are

the basis functions at the Brillouin zone center in the Kane model: |1/2,±1/2〉,
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|3/2,±3/2〉 and |3/2,±1/2〉, for the electron, heavy hole, and light hole states,
respectively. The planar wave function has the form

φ(e/h)
n,m (ρ,ϕ) = 1

λ(e/h)

(
Γ [n + M(e/h) + 1]

2M(e/h)n!(Γ [M(e/h) + 1])2
)1/2

×
(

ρ

λ(e/h)

)M(e/h) e−imϕ

√
2π

e
− 1

4

(
ρ

λ(e/h)

)2

×1F1

(
−n,M(e/h) + 1,

1

2

(
ρ/λ(e/h)

)2)
, (3.6)

where 1F1 is the confluent hypergeometric function, n = 0, 1, 2, . . . is the radial
quantum number, and m = 0,±1,±2, . . . labels the angular momentum. The corre-
sponding eigen-energies for the 3D problem are

E(e/h)
n,m,l,sz

=
(
n + 1

2
+ M(e/h)

2

)
�ω(e/h) − m

2
�ω∗

c(e/h)

−μ∗
(e/h)

4
ω0(e/h)

2RQR
2 +

(
l2π2

�
2

2μ∗
(e/h)L

2

)
+ g∗

(e/h)μBB · sz, (3.7)

with M(e/h) =
√
m2 + 2a1μ∗

(e/h)

�2 , ω∗
c(e/h) = eB/μ∗

(e/h), ω0(e/h) =
√
8a2/μ∗

(e/h), ω(e/h) =√
ω2
c(e/h) + ω2

0(e/h) and λ(e/h) =
√

�

μ∗
(e/h)ω(e/h)

.

The symmetry constrains can be subsequently relaxed by reshaping the in-plane
confinement in the following way, V (ρ,ϕ) = V0(ρ,ϕ) + δ · ρ2 cos2 ϕ. This is an
extension of the profile proposed in [73, 74], where the term controlled by the param-
eter δ determines the quantum ring eccentricity of the outer rim of the confinement.
The values of the eccentricity are given by e = √

1 − a2/(a2 + δ), for δ > 0, that
corresponds to an elliptical shrinking, or e = √

1 − (a2 + δ)/a2 for δ < 0, that leads
to an elliptical stretching. Additionally, an electric field along the growth direc-
tion can be considered by inserting the term eFz into V (z) that will couple the wave
function components,χ(e/h)

l (z), with different parities and finally, the spin orbit inter-
action can be introduced through the Rashba contribution to the total Hamiltonian
HR = αcσ · (∇V × k) for the conduction band or HR = αvJ · (∇V × k), for the
valence band.

Increasing the eccentricity provokes the mixing of angular momentum compo-
nents, or enhances it, if some degree of hybridization is already present in the valence
band. This plays a crucial role in the character of the ground state of both conduction
and valence bands and affects the diamagnetic shift when compared to the cylindrical
symmetric case.

The eccentricity breaks the cylindrical symmetry and so the angular momentum
stops being a good quantumnumber. The impact on the valence band energy levels for
the first few states confined in a quantum ring have been displayed in Fig. 3.13a. For
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Fig. 3.13 a Calculated
energy levels in a quantum
ring for the top valence
subband: solid curves
correspond to an eccentric
ring while the dashed curves
are calculated for a
cylindrical geometry. b
Calculated weight
coefficients for the ground
state as function of magnetic
field strength for the
symmetric and asymmetric
cases

(a)

(b)

this calculation we have omitted the spin splitting. Note the degeneracy lifting high-
lighted in the picture that reduces the effective diamagnetic shift of the valence band
ground state. This can also be traced down to the character modulation withmagnetic
field as the symmetry is reduced. In Fig. 3.13b the weight coefficients resulting from
the diagonalization of the valence band Hamiltonian have been depicted. The sym-
metric case shows the expected angular momentum crossings for the quantum ring
states with sharp transitions of the character. In constrast, the eccentricity softens the
character evolution with field.

3.5 Spin Manipulation Through SO Coupling

Additionally to the angular momentum hybridization, the modification of the wave-
function shape also translates into the spin tuning as reported inSect. 3.4.1.According
to the results presented in Fig. 3.9, the spin splitting energy is also affected by the
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modifications induced in the effective confinement and this appears as a monotonic
tuning of the g-factor. Such effects can be unveiled once the spin-orbit coupling is
introduced into the electronic structure description as reported by several authors
[75–81].

The expression for the spin orbit Hamiltonian assuming the confinement profile
that includes all the asymmetry terms is given by

HR = 2αcσz

[(
−a1

ρ2
+ a2ρ

2 + δρ2 cos2(ϕ)

)
eB

2c�
− iδ sin(ϕ) cos(ϕ)

− iδρ sin(ϕ) cos(ϕ)
∂

∂ρ
− i

ρ2

(
−a1

ρ2
+ a2ρ

2 + δρ2 cos2(ϕ)

)
∂

∂ϕ

]
(3.8)

− αc
∂V

∂z

{
σ+

[
e−iϕ

(
∂

∂ρ
− i

ρ

∂

∂ϕ
+ eB

2c�
ρ + 1

ρ

)]

− σ−
[
eiϕ

(
∂

∂ρ
+ i

ρ

∂

∂ϕ
− eB

2c�
ρ + 1

ρ

)]}
,

with σ± = 1/2(σx ± σy), being σi the components of the Pauli matrices.
In turn, we can separate the spin orbit effects induced by confinement and asym-

metry into first or higher order contributions. The latter ones are produced by the
coupling of previously unperturbed levels and appear strongly when these levels
cross inducing (or enhancing) anticrossings, mostly at higher fields. The first order
terms appear already at vanishing fields and may provoke, for instance, the tuning
of the effective Landé factor. We shall focus the discussion on these ones.

We can extract from (3.8) the diagonal terms that contribute to the first order
renormalization of the spin-splitting of the ground state with m = 0 for B → 0,
ΔEspin = ΔE(0) + ΔE(1), in the basis of unperturbed states introduced by (3.5). The
zero order value is essentially the Zeeman splitting given by

ΔE(0) = g∗μBB, (3.9)

and, in the case of the conduction band spin orbit Hamiltonian, the first order con-
tribution will be reduced to

ΔE(1) = 4m0αc

�2

[
a2

{
1 + sign(δ)

e2

2 − [
1 + sign(δ)

]
e2

} 〈
ρ2

〉 − a1

〈
1

ρ2

〉]
μBB.

(3.10)

For the valence band, the expression is analogous. This allows introducing the first
order correction to the Landé factor defined as g(1) ≡ ΔE(1)/(μBB) and one may
now assess the relative effect of the confinement shape on the spin splitting. Note in
Fig. 3.14a that by fixing a2 and increasing a1 the quantum ring radius increases as a
result of widening the inner rim. Such a modulation of the confinement profile can
either increase or decrease the Landé factor correction according to the value of the
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Fig. 3.14 a In-plane
confinement profiles for
fixed a2 and varying a1.
b Calculated first order
correction of the Landé
factor for fixed a2 and
varying eccentricity as
function of a1

(a)

(b)

eccecntricity and the sign of δ as has been displayed in Fig. 3.14b. For large enough
rings, the eccentricity may even lead to an absolute reduction of the Landé factor.

If in contrast, the parameter a1 is fixedwhile increasing a2, the confinement poten-
tial shrinks as a result of the reduction of the external radius. This condition is plotted
in Fig. 3.15a while the corresponding first order correction to the g-factor appears in
panel(b). Such a reduction of the quantum ring radius provokes a monotonic increase
of this factor regardless the value of the eccentricity.

To assess the absolute values of the g-factor correction, and the relevance of
antimonides in that respect, we may contrast two systems with relatively small and
large spin orbit coupling: GaAs, GaSb and InSb, respectively. For electrons in the
conduction band of these materials, the Rashba coefficient is αGaAs

c = 5.206 e Å2,
αGaSb
c = 33.1 e Å2 and αInSb

c = 523.0 e Å2 [83], respectively. According to these
values the units used in Figs. 3.14 and 3.15 for the Landé factor corrections are
0.0028 for GaAs, 0.0168 for GaSb and 0.28 for InSb.
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Fig. 3.15 a In-plane
confinement profiles for
fixed a1 and varying a2.
b Calculated first order
correction of the Landé
factor for fixed a1 and
varying eccentricity as
function of a2

(a)

(b)

For a1 = 0, the first order correction to the Zeeman splitting induced by the spin
orbit coupling can be calculated exactly for the ground state of a quantum dot [82]

g(1) = 2m0αc

μ∗R2
QD

[
1 + sign(δ)

e2

2 − [
1 + sign(δ)

]
e2

]
. (3.11)

This result is depicted in Fig. 3.16 and illustrates how the Landé factor correction
grows as the quantum dot volume is reduced be it by shortening RQD or by shrinking
the lateral confinement into an ellipse. Thus, the symmetry reduction induced by
a finite eccentricity reduces the effective diamagnetic shift of the ground state in
a quantum ring as the angular momentum states become intermixed. In turn, the
spin states are also modified by both asymmetries and lateral confinement. For a
quantum ring, such amodulation is not trivial anddepends on theway the confinement
shape is modified. Overall, reducing the volume leads to an absolute increase of the
Landé factor as discussed for the quantum dot case. The monotonic increase of the
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Fig. 3.16 Calculated first
order correction of the Landé
factor as function of the
eccentricity for a quantum
dot according to [82]

experimental effective g-factor displayed in Fig. 3.9 can be unambiguously ascribed
to the effective confinement shrinkage and symmetry reduction caused by the vertical
drift of the hole wavefunction in the SRL.

3.6 Conclusions

In summary, we have presented experimental evidence on the tuning of the electronic
structure of type-II InAs/GaAsSb quantum dots under vertical electric and magnetic
fields. Induced by the external bias, the drift of the hole wavefunction in the soft
confinement of the GaAsSb layer encompasses a wide range of geometrical and also
topological changes in the effective potential. These changes cannot be easily induced
in type-I systems and provide a rich variety of insights on the way geometry affects
the electronic structure and thus the optical response. The observed effects have
been emulatedwith theoretical approaches that include electronic confinement, strain
fields and spin effects on the same foot. In particular, we report how the application
of an external bias tunes independently the electron and hole confinement geometry.
Under certain bias conditions, the hole confinement topology changes and magnetic
field oscillations are observed. The oscillations follow the orbital quantization of the
hole state and are thus susceptible to the confinement size and eccentricity. Overall,
thanks to the large spin-orbit coupling of III-Sb compounds, the modulation of hole
orbital quantization is also accompanied by the tuning of the exciton g-factor and
might pave the way for the voltage control of spin degrees of freedom as required by
nanotechnologies.
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Appendix: Axially-Symmetric Model Details

For the sake of simplicity, the SRLmodel presented in the Sect. 3.3 has been slightly
modified to discussmagnetic field induced effects within the k · p formalism. Instead
of a continuous layer conformal to the QD, we have consider an overlayer of finite
extension. The number of geometrical parameters hence reduces to six as can be seen
in Fig. 3.17. This approximation simplifies the strain calculation, as border effects on
the overlayer are avoided. There is no impact on the results from a qualitative point
of view, since, as we will show below, the hole wavefunction localizes either in the
surroundings of the QD or in its interior. The material band parameters are extracted
from [84]. The parameters used to describe the spin Zeeman effect are shown in
Table 3.1. The values of the compounds GaInAs and GaAsSb are obtained through
linear interpolation when no bowing parameters is reported.

In the implementation of the model we have adopted a further approximation,
only the band edges are consider to the be discontinuous across the nanostructure
interfaces. The motivation is two-fold. In first place we preserve the Hermiticity of
the Hamiltonian avoiding the problem of the operator symmetrization. In second
place, we simplify the calculation of the Hamiltonian matrix elements, which can be
computed just once significantly speeding up the construction of the Hamiltonian.
Such an approximation is justified for QDs exhibiting a type-I alignment, as the
wavefunction is strongly localized in a homogeneous domain, inside of the nanos-
tructure. However, our system could exhibit either type-I or type-II band alignment,
meaning that in the latter case either the conduction and valence band states will be

Fig. 3.17 Depiction of the geometrical model to describe a QD of radius RQD and height hQD,
a SRL of thickness tSRL and a wetting-layer of thickness dWL embedded in hard-wall cylinder of
radius R and height Z

Table 3.1 Parameters related with the spin Zeeman effect. The values of GaAs and InAs are taken
from [83] (p. 221) and those of GaSb from [85] (pp. 486 and 491)

g k q

GaAs −0.44 1.20 0.01

InAs −14.90 7.60 0.39

GaSb −9.25 4.60 0.00
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hosted by different materials. To solve that issue, we decided to decouple both bands
which implies to nullify the Kane parameter. Hence the holes states will be described
by a 6 × 6 Hamiltonian and the electron states by a 2 × 2 Hamiltonian. As most of
the phenomenology observed in the experiments is associated to the properties of
the hole states, we consider this approximation as safe in the context of the current
study.

The strain field is calculated as if the semiconductor material were elastically
isotropic. The procedure is based on the Eshelby’s inclusions method [86]. The
lattice mismatch between the quantum dot and overlayer with respect to the GaAs
matrix can be computed independently because of the linearity of elasticity equations.
Analytical and compact expressions are obtained for the Fourier transform of the
strain tensor [87]. In the past, we successfully used thismethod to explain Raman [88,
89] and middle energy ion scattering [90] experiments.

The basic equations of the k · p method are very compact. However, when many
bands are considered to be in interaction a broad set of choices in terms of notation
and basis expansion appears. To maintain the consistency in the development of the
model, we follow the derivation of Trebin et al. [91, 92]. The final Hamiltonian
results of adding the k · p, the strain interactions (Bir-Pikus Hamiltonian) and the
magnetic interactions:

H = Hk·p + Hε + HB. (3.12)

We have neglected the linear ki terms in the valence-valence interaction, the quadratic
kikj and εij terms in the conduction-valence interaction and the kiεjk in the strain-
induced interactions. The solution of the Schrödinger-like equation is obtained by
expanding the envelope: wavefunction of (3.2) in the eigenfunctions of a hard-wall
cylinder:

F (M )

m,k =
∑
α,μ

N (m)
α Jm

(
k(m)
α ρ/R) √

2/Z sin [μπ (z/Z − 1/2)] , (3.13)

where Jm(x) is the Bessel function of order m, k(m)
α is its zero number α = 1, 2, . . .,

μ = 1, 2, . . .,R and Z are the radius and height of the expansion cylinder and

N (m)
α =

√
2

R
∣∣∣Jm+1

(
k(m)
α

)∣∣∣ (3.14)

is the normalizationof the radial part. This definitions ensure theorthonormality of the
expansion basis. By writing the Hamiltonian (3.12) in the associated representation,
the electron and hole states are obtained after solving the eigenvalue problem. A
similar procedure was followed in [93, 94]. Further details can be found in [95].
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Chapter 4
Self-organized Quantum Rings:
Physical Characterization and
Theoretical Modeling

V.M. Fomin, V.N. Gladilin, J. van Bree, M.E. Flatté,
J.T. Devreese and P.M. Koenraad

Abstract An adequate modeling of self-organized quantum rings is possible only
on the basis of the modern characterization of those nanostructures. We discuss
an atomic-scale analysis of the indium distribution in self-organized InGaAs quan-
tum rings (QRs). The analysis of the shape, size and composition of self-organized
InGaAs QRs at the atomic scale reveals that AFM only shows the material coming
out of the QDs during the QR formation. The remaining QDmaterial, as observed by
Cross-Sectional Scanning Tunneling Microscopy (X-STM), shows an asymmetric
indium-rich crater-like shape with a depression rather than an opening at the center
and determines the observed ring-like electronic properties of QR structures. A the-
oretical model of the geometry and materials properties of the self-organized QRs
is developed on that basis and the magnetization is calculated as a function of the
applied magnetic field. Although the real QR shape differs strongly from an ide-
alized circular-symmetric open-ring structure, Aharonov-Bohm-type oscillations in
the magnetization have been predicted to survive. They have been observed using the
torsion magnetometry on InGaAs QRs. Large magnetic moments of QRs are shown
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to originate from dissipationless circulating currents in the ground state of an elec-
tron or hole in the QR. Examples of prospective applications of QRs are presented
that do and do not utilize the topological properties of QRs.

4.1 Introduction

Remarkable advancements in the field of self-assembled quantum rings (QRs) are
a result of mutually stimulating developments of novel fabrication technologies,
powerful characterization instruments and adequate theoretical approaches. A strik-
ing example is the rapidly progressing production and investigation of InxGa1−xAs
self-assembled QRs, which are represented in detail in Chaps. 7 and 8 and [1–4].
A deep insight into the structure of QRs and quantum dots is obtained on the base
of the Cross-Sectional Scanning Tunneling Microscopy (X-STM), see, for instance,
Chap. 5 and reviews [5, 6]. In the present Chapter, we demonstrate that a high level
of complexity is needed for a dedicated theoretical model to adequately represent the
specific features of QRs as determined by X-STM. The model of a self-assembled
QR, which is singly connected and anisotropic, suggested in [7, 8] has found a vast
number of applications and developments. In particular, it was used to demonstrated
that Aharonov–Bohm oscillations in the magnetization and the magnetic suscepti-
bility peak persist even though self-assembled QRs are singly connected and show
a pronounced shape anisotropy, to interpret the magnetization behavior of a self-
assembled QR in a nice quantitative agreement with the experiment [9], to demon-
strate that inherent structural asymmetry combined with the interparticle Coulomb
interactions, plays a crucial role in the diamagnetic shift of excitons and biexcitons
in self-assembledQRs [10], to analyze effects due to a tensile-strained insertion layer
on strain and electronic structure of self-assembled QRs [11, 12]. Using significantly
simplifiedmodels of the QR shape, only qualitative conclusions could be drawn, e.g.,
on the energy spectra [13] and magnetic response [14].

InxGa1−xAs QRs are formed by capping self-organized quantum dots (QDs)
grown by Stranski-Krastanov (SK) mode with a layer thinner than the dot height and
subsequent annealing [1]. During this process, the QDmaterial suffers an anisotropic
redistribution, resulting in elongated ring-shaped islands on the surface, with crater-
like holes in their centers as was shownwith AFMmeasurements [1]. The dot-to-ring
transition has been attributed to a dewetting process which expels indium from the
QD [15] and a simultaneous temperature dependent Ga–In alloying process [16].
Capacitance and far-infrared spectroscopy measurements on buried QR structures
have provided evidence of the Aharonov-Bohm oscillation [2]. Although no direct
measurements were available, an electronic radius of about 14nm was deduced.
This led to the conclusion that the QR shape as determined from AFM topography
is preserved when buried [2]. Until [17], however, no structural measurements of
buried QRs have been available. Evolution of InAs/GaAs QDs partially capped with
GaAs has been experimentally studied as an annealing process transforms them first
into QRs and later into holes penetrating the whole cap layer, [18], shape, compo-

http://dx.doi.org/10.1007/978-3-319-95159-1_7
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sition, and optical emission being monitored by using AFM, X-ray photoemission
microscopy, and photoluminescence, respectively. The sizes of self-assembled QRs
determined by Cross-Sectional Transmission Electron Microscopy (X-TEM) [19]
matched the AFM results. In-plane mapping by grazing-incidence X-ray diffraction
[20] has revealed the lateral extent of strained regions in the buried buried InxGa1−x

AsQRs; a comparison between strain and composition maps of QDs and QRs allows
for inferring on how the QR configuration affects its optical characteristics. Devel-
opment of conductive scanning microscopy-based characterization tools, allows for
the investigation of the electrical properties of individual self-assembled GeSi QRs
at the nanoscale by combining the scanning Kelvin microscopy, conductive AFM
and scanning capacitance microscopy [21]. On this base, the electrical properties of
a QR have been explained by the fact that the QR rim has a lower barrier height with
respect to the tip and a higher carrier density, giving rise to a higher conductivity at
the rim compared to the QR opening and the wetting layer.

Although detailedmeasurements of theQR structure and composition are required
for quantitative descriptions of the QR magnetization, the fundamental origin of the
large magnetic moments can be identified even in simplifiedmodels of the QR shape.
As the magnetic moment of a semiconductor heterostructure describes the linear
response of an electronic state to an applied magnetic field, the origin of the mag-
netic moment should lie in the eigenstates of the heterostructure in the absence of any
magnetic field. For bulk semiconductors the very large magnetic moments originate
from the presence of Spin-correlated orbital currents, induced by the spin-orbit inter-
action [22, 23]. The spatial structure of these spin-correlated orbital currents has been
calculated, both analytically and numerically, for a variety of spherically or cylindri-
cally symmetric III-V heterostructures [22, 24]. These dissipationless ground-state
currents are fundamentally orbital currents, but they are forced to track the spin of
the electronic state through the role of the spin-orbit interaction. Implications of this
current picture for other settings [25–29], including topological insulators, have been
identified.

For a simply connected topology, the peak spin-correlated orbital currents are
located midway between the center of the structure and the edge, along the axes
perpendicular to the orientation of the spin. ForQRs, however, there are two locations
exhibiting peak currents, with counter-propagating directions. Calculations of the
spin-correlated orbital currents show that their contribution to the magnetic moment
of the spin depends almost entirely on the difference between the outer and inner
radius of the QR.

4.2 X-STM Characterization

Measurements of the vertical Stark effect of excitons confined to individual QRs
[4] showed rather large dipole moments with opposite sign as compared to QDs
[30]. Theoretical calculations indicated that both the observed electronic radius and
dipole moment of the QRs were inconsistent with the geometry as determined by
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AFM. In order to unambiguously resolve this discrepancy, twenty layers of QRs
separated from each other by 18nm were grown by using solid source molecular-
beam epitaxy (MBE) on a Si-doped n-type GaAs (001) substrate and the shape, size,
and composition of buried QRs were analyzed at the atomic scale by cross-sectional
scanning tunneling microscopy (X-STM) [7, 8]. The X-STM measurements were
performed in an ultra-high-vacuum chamber on the orthogonal (110) and (11̄0) cross-
sectional surfaces.

Figure4.1 shows an AFM image of the surface layer of the structure. The ring-
shaped islands (density 1010 cm−2) are elongated along the [11̄0] direction, with an
outer size of about 100 by 70nm and an average height of about 1nm. The holes in
the center of the islands are asymmetric as well and have a size of 30 by 20nm and a
depth of about 0.5–1.5nm. Figure4.2a shows a large scale X-STM image of three of
the QR layers. The bright spots correspond to In atoms in the top layer of the cleaved
surface. In the image the cross-sections of two flat indium-rich nanostructures can be
seen. The averaged height profiles, taken across the middle QR layer in the growth
direction between the points A and B, are displayed in Fig. 4.2b. The profiles clearly
indicate two peaks in the indium concentration. The highest peak can be attributed to
the wetting layer on which the QDs are formed during growth. The presence of the
second indium layer is attributed to the accumulation of segregated indium from the
wetting layer at the surface of the partial capping layer and to surface migration of
indium atoms that have been expelled from the quantum dots during QR formation
[31–34]. The separation between the wetting layer and the second indium layer
increases with about 2 bilayers towards the nanostructure. This change in separation
is in agreement with the height and diameter of the uncapped QRs as measured by

Fig. 4.1 1 × 1 µm2 atomic
force microscopy image
showing the anisotropic
distribution of InAs/GaAs
dot material after 2nm GaAs
capping and 1min annealing
at growth temperature under
As2 flux. The height scale is
0 (dark) to 2.5 nm (bright).
The height of the
ring-shaped islands is about
1 nm. Atomic steps can be
seen in the image. After [7]
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(a)

(b) (c)

(d)

Fig. 4.2 a Empty states X-STM image showing two buried QRs, Vsample = 1.45V. b Averaged
apparent height profiles taken in the growth ([001]) direction across the InAs layer between points
A and B of panel (a). The height profiles are averaged over a distance of 10nm and show two peaks
in the indium concentration. Panels c and d show the filled states topography images of a cleaved
QR in the (11̄0) plane and (110) plane, respectively, Vsample = −3V. The height scale is 0 (dark)
to 0.25nm (bright). After [7]

AFM. Thus at least to some extent the shape of the ring-shaped islands as observed
by AFM is preserved after capping.

Enlarged views of the nanostructures can be seen in Fig. 4.2c and d where we
show filled states topography images of the orthogonal (11̄0) and (110) cleavage
planes, which correspond with the short and long axis of the ring-shaped islands
observed by AFM, respectively. The nanostructures have a crater-like shape which
can be attributed to the remainder of the quantumdots after theQR formation process.
It is clearly seen that these quantum craters do not have an opening at the center.
Furthermore, in the [110] direction, the rim of the quantum crater appears brighter
and higher (8 BLs) compared to the [11̄0] direction where the rim is less pronounced.
This asymmetry is attributed to the preferential diffusion of the dot material in the
[11̄0] direction [35] as can be seen from the elongation of the ring-shaped islands
in Fig. 4.1. The indium-rich asymmetric crater-like shapes, observed in the X-STM
measurements, differ substantially from the ring-shaped islands on the surface of
uncapped QR structures. The observation that buried QRs have a smaller size and a
larger height than the ring-shaped islands as revealed by AFM, offers an explanation
for the observed discrepancies between the measured and theoretical values for the
electronic radius and dipole moment of the QRs [36].
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Fig. 4.3 Layer structure of
the InAs/GaAs sample for
magnetization, consisting of
29 layers of self-assembled
InAs nanostructures. The
nanostructures are located
between two 24nm GaAs
layers. The repeated
sequence contains a
modulation doping layer,
which provides electrons to
the nanostructured layers.
Two additional doping layers
are inserted to accommodate
for the depletion toward the
capping layer and the
undoped substrate. After [9]

Figure4.3 schematically shows a QR sample used to study persistent currents in
QRs. The sample was grown by molecular beam epitaxy and contains 29 mutually
decoupled periods [17]. Each period consists of a nanostructured InAs layer, between
two 24 nm GaAs layers, and a 2nm doped (7 × 1016 cm−3 Si) GaAs layer, that
provides electrons to the InAs nanostructures. Using a one-dimensional Poisson
solver, the average number of electrons per nanostructure was estimated to be less
than 1.5. The sample is capped by a final nanostructured layer. By performingAtomic
Force Microscopy (AFM) on this layer, the nanostructure density was determined
to be 9 × 109 cm−2 per layer. Photoluminescence (PL) experiments showed a single
peak, indicating a unimodal size distribution, at 1.3 eV which is typical for these
nanostructures [16]. The FWHMof the PL peak is 40meV, fromwhich the estimated
size dispersion is about 5%.

4.3 Modeling of Shape and Materials Properties

By imaging QRs at a high voltage [Vsample = −3V; see Fig. 4.2c and d], electronic
contributions to the contrast in the image areminimized and only the true outward sur-
face relaxation due to the lattice mismatch (7%) between the InAs and surrounding
GaAs is imaged. The outward relaxation of the cleaved surface is used to deter-
mine the indium composition of the quantum craters [37, 38]. The quantum craters
are modeled with a varying-thickness InGaAs layer embedded in an infinite GaAs
medium. The bottom of the InGaAs layer is assumed to be perfectly flat and paral-
lel to the xy-plane. The height of the InxGa1−xAs layer as a function of the radial
coordinate ρ and the angular coordinate ϕ is modeled by the expression
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h(ρ, ϕ) = h0 +
[
h̃M (ϕ) − h0

] {
1 − [ρ/R̃(ϕ) − 1]2

}

{
[ρ − R̃(ϕ)]/γ̃0(ϕ)

}2 + 1
, ρ ≤ R̃(ϕ),

h(ρ, ϕ) = h∞ + h̃M (ϕ) − h∞{
[ρ − R̃(ϕ)]/γ̃∞(ϕ)

}2 + 1
, ρ > R̃(ϕ) (4.1)

with

h̃M (ϕ) = hM (1 + ξh cos 2ϕ) , γ̃0(ϕ) = γ0
(
1 + ξγ cos 2ϕ

)
,

γ̃∞(ϕ) = γ∞
(
1 + ξγ cos 2ϕ

)
, R̃(ϕ) = R (1 + ξR cos 2ϕ) . (4.2)

Here, h0 corresponds to the thickness at the center of the crater, hM to the rim height
and h∞ to the thickness of the InxGa 1−xAs layer far away from the ring-like structure.
The γ0 and γ∞ parameters define the inner and outer slopes of the rim, respectively.
The parameters ξh, ξγ , ξR describe the ring-shape anisotropy. An example of the QR
shape, described by (4.1), is shown in Fig. 4.4a.

A three-dimensional finite element calculation based on elasticity theory has been
applied to determine the relaxation of the cleaved surface of the modeled QR.
With R = 10.75nm, h0 = 1.6nm, hM = 3.6nm, h∞ = 0.4nm, γ0 = γ∞ = 3nm,
ξh = 0.2, ξγ = −0.25 and ξR = 0.07, an indium concentration of 55% (see Fig. 4.5)
results in a calculated surface relaxation that matches the measured relaxation of the
cleaved surface, as shown in [8]. This set of geometric parameters of a QR is selected
as standard for the calculations discussed below, unless stated otherwise.

Fig. 4.4 a Height of a QR as a function of the radial and the azimuthal coordinates as mod-
eled by (4.1) with R = 11.5nm, h0 = 1.6nm, hM = 3.6nm, h∞ = 0.4nm, γ0 = 3nm, γ∞ = 5nm,
ξh = 0.2, ξγ = ξR = 0. b The adiabatic potential governing the electron motion in an unstrained
In0.6Ga0.4As QR shown in panel (a). After [39]
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Fig. 4.5 Indium distribution
in the yz plane in the QR.
After [39]
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4.4 Theory of Electronic Properties of One-Electron Rings,
Including Magnetization

The single-particle Hamiltonians in a strained ring have the form [40, 41]

He = −�
2

2

(
∇ + ie

�
A

)
1

me(re)

(
∇ + ie

�
A

)
+ Ve(re) + δEe(re) − eVP(re),

(4.3)

Hh = −�
2

2

(
∇ − ie

�
A

)
1

mh(rh)

(
∇ − ie

�
A

)
− Vh(rh) − δEh(rh) + eVP(rh),

(4.4)

where me(re) [mh(rh)] is the conduction-electron [heavy-hole] mass and A =
eϕHρ/2 is the vector potential of the uniformmagnetic fieldB = ezB. Ve(re) [Vh(rh)]
is the bottom of the conduction band [top of the valence band], determined by the In
content x, in the absence of strain. The strain-induced shift of the conduction band

δEβ = aβ

(
εxx + εyy + εzz

)
(4.5)

depends on the hydrostatic component of the strain tensor εjk . Here, β = e, h.
The shear strains give rise to the piezoelectric potential

VP(r) = − 1

4πε0εr

∫
divP

|r − r′|d
3r′ (4.6)

determined by the piezoelectric polarization Pi = eijkεjk , where for InAs and GaAs
only the piezoelectric moduli e123 = e213 = e312 are other than zero; εr is the rel-
ative dielectric constant. The relevant material parameters are: eInAs123 = 0.045C/m2,
eGaAs123 = 0.16C/m2, aInAse = −5.08eV, aGaAse = −7.17eV, aInAsh = 1.00 eV, aGaAsh =
1.16eV [42]. The band gap and the effective masses as well as the parameters e123
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and aβ for InxGa1−xAs are taken from a linear interpolation between the correspond-
ing values for InAs and GaAs.We further assume that for the conduction and valence
bands in InxGa1−xAs the band edge variations with x in the absence of strain are to
each other as 7:3.

The single-particle Schrödinger equations are solved within the adiabatic approx-
imation, using the Ansatz:

Ψ (β)(r) = ψ
(β)

k (z; ρ, ϕ)Φ
(β)

kj (ρ, ϕ), (4.7)

where the index k numbers subbands due to the size quantization along the z-axis:

[
−�

2

2

∂

∂z

1

mβ(ρ, ϕ, z)

∂

∂z
± Vβ(ρ, ϕ, z) ± δEβ(ρ, ϕ, z) ∓ eVP(ρ, ϕ, z)

]
ψ

(β)
k (z; ρ, ϕ)

= E
(β)
k (ρ, ϕ)ψ

(β)
k (z; ρ, ϕ). (4.8)

In (4.8), the upper (lower) sign stands for conduction electrons (heavy holes), i.e.
for β = e (β = h). The Schrödinger (4.8) for the “fast” degree of freedom (along
the z-axis) is solved numerically, obtaining, in particular, the adiabatic potentials
E (β)

k (ρ, ϕ).
An example of the calculated adiabatic potential E (e)

1 (ρ, ϕ), which corresponds
to the lowest state of the size quantization along the z-axis, is shown in Fig. 4.4b. A
QR – though it reveals a potential hill near its axis – is a singly connected structure.
So, it is not evident whether or not electronic states in it resemble those in a doubly
connected (ideal ring-like) geometry.Moreover, the adiabatic potential possesses two
pronounced minima, which can be regarded as the potential profile of two quantum
dots. If the potential minima are deep enough, then the electron is localized in one
of those quantum dots, and no persistent current occurs at all.

Figure4.6 shows the adiabatic potentials E (e)
1 (ρ, ϕ) corresponding to the indium

distribution (see Fig. 4.5) and strain data for a realistic QR as found using the finite-
element numerical calculation package ABAQUS [43], which is based on the elas-
ticity theory. Due to strain the depth of a potential well for an electron significantly
decreases (cp. panels b and a in Fig. 4.6). The influence of the piezoelectric potential
on the shape of the adiabatic potential E (e)

1 along the x- and y-axes is almost negligi-
ble. For the direction x = y, the effect of the piezoelectric potential on E (e)

1 is more
pronounced but still does not seem to be crucial in governing the electron in-plane
motion.

The Schrödinger equations for the “slow” degrees of freedom,

[
−�

2

2

(
∇ρ,ϕ ∓ e

�
A

) 1

m(β)

k (ρ, ϕ)

(
∇ρ,ϕ ∓ e

�
A

)
+ E (β)

k (ρ, ϕ)

]
Φ

(β)

kj (ρ, ϕ)

= E(β)

kj Φ
(β)

kj (ρ, ϕ), (4.9)
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Fig. 4.6 Adiabatic potential, calculated in the absence (a) and in the presence (b) of strain, as a
function of the radial coordinate ρ for three different in-plane directions, determined by the angular
coordinateϕ. In panel (b), heavy (thin) curves are obtainedwith (without) the piezoelectric potential.
After [39]

with the upper (lower) sign for β = e (β = h) and the effective masses

m(β)

k (ρ, ϕ) =
∫

dz
∣∣∣ψ(β)

k (z; ρ, ϕ)

∣∣∣
2
mβ(ρ, ϕ, z) (4.10)

determine the eigenstates of the in-plane motion, which are labeled by the index
j. We are interested in the lowest states of an electron and a hole in the quantum
ring. Therefore, we restrict our calculations to the states in the lowest subband of
the (strong) size-quantization along the z -axis (i.e., we consider states with k = 1).
For each value of the applied magnetic field, the electron and hole eigenstates in the
quantum ring are found by numerical diagonalization of the adiabatic Hamiltonian,
which enters the lhs of (4.9).

The effect of the ring-height anisotropy on the oscillations of the calculated zero-
temperature electron magnetic moment μ as a function of magnetic field B [44] is
illustrated in Fig. 4.7, where we compare themagnetic moment for QRswith nonzero
ξh and ξγ with the results for a perfectly symmetric ring. The magnetic moment of
an electron in the applied magnetic field H is calculated as

μ = −μB

Z

∑
j

exp

(
−E(e)

1j

kBT

)
∂E(e)

1j

∂B
, (4.11)

whereμB is theBohrmagneton,T is the temperature andZ = ∑
j exp

(
−E(e)

1j /(kBT )
)
.

Shape anisotropy of the QR results in a mixing of electron states with different mag-
netic quantum numbers. Variations of the height of the rim h̃M (ϕ) with ϕ tend to
suppress oscillations of μ versus B. However, well-pronounced oscillations of μ(B)
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Fig. 4.7 Magnetic moment induced by the ground-state persistent current as a function of the
applied magnetic field for unstrained In0.6Ga0.4As QRs with R = 10.75nm, h0 = 1.6nm, hM =
3.6nm, γ0 = γ∞ = 3nm, ξR = 0 at different values of the anisotropy parameters ξh and ξγ . After
[39]

can be expected even for QRs with a strong shape anisotropy, provided that the width
of the rim changes as a function of ϕ in antiphase with the rim height. Remarkably,
this condition is satisfied for realistic SAQRs as characterized by X-STM [7] (see
also Fig. 4.6).

In Fig. 4.8, the lowest electron energy levels, calculated with and without effects
due to strain, are shown as a function of the applied magnetic field B. Since the
potential well for an electron in the strained QR is relatively shallow (see Fig. 4.6b),
there are only few discrete energy levels below the continuum of states in the GaAs
barrier. Due to a reduced potential barrier at the center of a strained ring, the effec-
tive electron radius decreases when taking into account strain. Correspondingly, the
transition magnetic fields, where the ground and first excited electron states inter-
change, are higher in a strained ring than in an unstrained one. Strain-induced effects
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Fig. 4.8 Electron energy spectra in a QR, calculated without a and with b taking into account
effects due to strain. Energies are counted from the bottom of the conduction band in unstrained
InAs. The region of continuum as assessed by our numerical simulation is shadowed. After [39]
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reduce the magnitude of variations of the adiabatic potential as a function of the
azimuthal angle. As a result, the mixing of electron states with different magnetic
quantum numbers, which occurs due to shape anisotropy of a QR, is weakened. Con-
sequently, at relatively weak fields B the energy spacing between the lowest electron
state (which arises from the state with L = 0 in a circularly symmetric ring) and the
first excited state (which arises from the state with L = 1 in a circularly symmetric
ring) is strongly enhanced due to strain, while the zero-field splitting between the
first and second excited states (which correspond to L = 1 and L = −1 in a circularly
symmetric ring) is significantly reduced.

As shown in Fig. 4.9, the main effect of strain on the behavior of the electron
magnetic moment μ(B) is a shift of transition fields towards higher B. This shift,
already noticed when discussing the electron energy spectra, appears because strain
makes shallower the potential well in the rim. When decreasing the depth of this
potential well, the electron states tend to those in a flat disk. This leads to an overall
shift of the curve μ(B) (at nonzero B) towards larger negative values. The oscillation
amplitudes for μ(B) are not significantly influenced by strain. There are two com-
petitive effects of strain on these amplitudes. On the one hand, due to strain-induced
reduction of the potential-well depth, there is an increasing penetration of the electron
wave function into barriers, so that the effective width of the ring increases. Such an
increase of the ring width tends to decrease the oscillation amplitude. On the other
hand, the strain-induced reduction of the potential-well depth weakens the influence
of shape anisotropy on electron states. Correspondingly, the suppression effect of
shape anisotropy on the oscillations of μ(B) is weakened, too. As further illustrated
in Fig. 4.9, an increase of the temperature tends to smooth out the Aharonov-Bohm
oscillations of μ(B). Importantly, suppression of the first Aharonov-Bohm oscilla-
tions (at relatively low B) is not dramatic for liquid He temperatures.

Fig. 4.9 Magnetic moment
of an electron, calculated
without strain with and
without taking into account
effects due to strain. In the
case of a strained QR, the
results for different
temperatures are shown.
After [39]
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4.5 Observation of the AB Effect Through Magnetization

In [9], the AB oscillations of persistent currents were detected via the magnetic
moment of electrons in a highly homogeneous ensemble of InAs self-assembled
QRs. The magnetic moment of the nanostructures was obtained from magnetization
experiments using a torquemagnetometer [45]. Thesemeasurementswere performed
at temperatures ofT =1.2KandT =4.2K inmagnetic fields up to 15T.The sensitivity
of the magnetometer was 2.8 × 10−12 J/T, i. e. 3 × 1011μB at B = 14T, and it was
limited by mechanical noise, which was about 8% of the experimentally observed
oscillation magnitude. The total magnetization of the sample was due to about 1.5 ×
1011 nanostructures with a total number of electronsN ∼ 2.2 × 1011. Over the entire
magnetic field range a relatively large background signal was observed due to the
substrate and to dia- and paramagnetic materials close to the sample. To enhance
the visibility of the AB oscillations, this linear background was subtracted and the
signal was normalized to the total number of electrons N in the sample, resulting in
the magnetic moment per electron μ =M /N [Fig. 4.10a]. To prove that the observed
oscillation is not an artefact due to the background subtraction, we also plot the
first derivative of the signal [inset to Fig. 4.10a], which is much less sensitive to
the monotonous background. This procedure reveals an oscillation around 14T as a
fingerprint of the AB effect.

Fig. 4.10 a Oscillation in
the magnetic moment per
electron, obtained at 1.2K
and at 4.2K, after
subtracting the linear
background from the
measured signal, dividing by
the total number of electrons,
and averaging over several
measurements. The inset
shows the first derivative of
the experimental magnetic
moment with respect to B at
T = 1.2K. b Calculated
magnetic moment, and its
derivative (inset), of a single
electron in a nanostructure at
different temperatures. After
[9]



104 V.M. Fomin et al.

Figure4.10b shows the calculated magnetization curve, which results from aver-
aging over a QR ensemble with a size dispersion of 5%, consistent with the measured
width of the PL peak. As seen from a comparison between Fig. 4.10a, b, the model
described in the previous section accurately explains the position of the observed AB
oscillation around 14T, rather than at 5T expected for an ideal 1D ring of the same
radius. This difference in the position of the AB oscillations is due to the influence of
strain in the self-assembled “volcano-like”QRsaswell as to the singly-connectedness
of these QRs. Figure4.10b also shows the calculated magnetic moment for higher
magnetic fields that are not yet accessible by magnetization experiments. The higher
order AB oscillations are strongly damped. This is a consequence of the presence of
the magnetic field in the rim of the QRs, which enhances the electron localization
close to the minima of the adiabatic potential. In Fig. 4.10b the calculated results
are plotted for three temperatures. Without including size variations of the QRs, the
calculated amplitude of the AB oscillations decreases with increasing temperature
(see Fig. 4.9). A negligible temperature effect on the electron magnetic moment in
Fig. 4.10b is due to the QR ensemble averaging.

The shown results confirm the existence of an oscillatory persistent current in
self-assembled QRs containing only a single electron. Even though the investigated
nanostructures are singly connected and anisotropic, they show the AB behavior that
is generally considered to be restricted to ideal (doubly connected) topologies.

4.6 Theory of Two-Electron Systems and Excitons
in Quantum Rings

The purpose of the first part of this section is to consider the contribution from QRs
with two electrons to the magnetization. The Hamiltonian of the two electrons in a
QR is represented as

Hee(r1, r2) = He(r1) + He(r2) + VCoul(r1, r2), (4.12)

where He(r1) is the single-electron Hamiltonian [see (4.3)], VCoul(r1, r2) describes
the Coulomb interaction between the electrons with radius-vectors r1 and r2. In
order to obey the Pauli exclusion principle, the spin-singlet (spin-triplet) states in the
two-electron rings must possess orbital wave functions which are symmetric (anti-
symmetric) with respect to the permutation of the coordinates of electrons. Aimed
at finding two-electron eigenstates, we start with constructing the basis functions,
which describe the orbital wave functions of spin-singlet and spin-triplet states in
the absence of the electron-electron interaction:

Ψ
(ee,0)
j1j2

(r1, r2) = cj1j2
[
Ψ

(e)
1j1 (r1)Ψ

(e)
1j2 (r2) + Ψ

(e)
1j1 (r2)Ψ

(e)
1j2 (r1)

]
, (4.13)

Ψ
(ee,1)
j1j2

(r1, r2) = cj1j2
[
Ψ

(e)
1j1 (r1)Ψ

(e)
1j2 (r2) − Ψ

(e)
1j1 (r2)Ψ

(e)
1j2 (r1)

]
, j1 �= j2, (4.14)
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where cj1j2 = 1/
√
2 for j1 �= j2 and cj1j1 = 1/2. We numerically diagonalize the

Hamiltonian (4.12) in the above basis, looking for the wave functions of the two
interacting electrons in the form

Ψ̃
(ee,S)
J (r1, r2) =

jmax∑
j1=1

j1−S∑
j2=1

AJj1j2Ψ
(ee,S)
j1j2

(r1, r2), (4.15)

where S = 0 (S = 1) in the case of spin-singlet (spin-triplet) states (see [46] for more
details).

For short, the states Ψ
(ee,S)
j1j2

for S = 0, 1 are labeled below as (j1, j2)S , where
the numbers j1 and j2 correspond to the order of the single-electron energy levels
at B = 0. The states Ψ̃

(ee,S)
J are labeled as (J )S for S = 0, 1. In Fig. 4.11 the calcu-

lated two-electron energy spectra are plotted for the cases of no electron-electron
interaction and with the Coulomb interaction taken into account. It is worth recalling
here that the index j, rather than the electron angular momentum L, is specific for
single-electron eigenstates in an anisotropic quantum ring. Approximately, the cor-
respondence between the states of two electrons in a quantum ring with account for
the Coulomb interaction and the states of two non-interacting electrons in a quan-
tum ring is as follows: (1, 1)0 → (1)0; (2, 1)0 → (2)0; (2, 2)0 → (3)0; (2, 1)1 →
(1)1; (3, 1)1 → (2)1. Due to the Coulomb interaction, the degeneracy between the
spin-singlet and spin-triplet states is lifted. For example, there is a significant splitting
between the spin-singlet (2)0 and the spin-triplet (1)1 states, although the correspond-
ing states of two non-interacting electrons (2, 1)0 and (2, 1)1 are degenerate. This
fact indicates a strong exchange interaction in the quantum ring under consideration.
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Fig. 4.11 Energy spectrum of two noninteracting a and interacting b electrons in a strained QR as
a function of the applied magnetic field. For S = 0, 1 the states Ψ

ee,S
j1,j2

of noninteracting electrons

are labeled as (j1, j2)S , where the numbers j1 and j2 correspond to the order of the single-electron
energy levels at B = 0. All triplet energy levels (j1, j2)1 for j1 �= j2 overlap with singlet energy
levels (j1, j2)0. The states Ψ̃

ee,S
J of interacting electrons are labeled as (J )S for S = 0, 1. The region

of the energy continuum as obtained from our numerical simulation is shadowed. After [46]
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While at relatively low magnetic fields the ground state in Fig. 4.11b corresponds
to the lowest spin-singlet energy level, at B ≈ 10T the ground state becomes spin-
triplet.With further increasing magnetic field, the lowest spin-singlet and spin-triplet
states sequentially replace each other as the ground state. This behavior is reminiscent
of theAharonov-Bohmeffect in a single-electron quantum ring.AtB ≈ 12T the state
originating from (1, 1)0 reveals anticrossing from those states which originate from
(2, 1)0 and (2, 2)0.

In Fig. 4.12, the calculated magnetic moment μ of the two non-interacting and
interacting electrons is plotted as a function of the applied magnetic field. The
Coulomb interaction leads to a more complicated oscillating structure of μ ver-
sus B as compared to the case when the electron-electron interaction is absent. In
particular, the first oscillation of the magnetic moment shifts due to the Coulomb
interaction towards weaker magnetic fields. One of the reasons for this shift is an
increase of the effective electronic radius of the ring due to the mutual Coulomb
repulsion of the two electrons. At B > 15 T, the Aharonov-Bohm oscillations of the
magnetic moment are still present, but substantially smoothed out.

As implied by Fig. 4.12, for two-electron anisotropic QRs with radial sizes
∼10nm, the Aharonov-Bohm-effect-related phenomena appear at magnetic fields
∼10T. In the experiment on magnetization [9], no appreciable oscillations are
detected in the above region. Therefore one may assume assumed that the observed
Aharonov-Bohm effect [9] is mainly due to the single-electron quantum rings in the
ensemble of rings under investigation.

In [47, 48], the method presented in [46] for two-electron QRs, has been extended
to excitons in QRs and applied to calculate the exciton energy spectra and the optical
transition probabilities in QRs with a realistic anisotropic singly connected shape.
The Hamiltonian of an exciton in a strained quantum ring is

Hex = He + Hh + VCoul(re, rh), (4.16)

Fig. 4.12 The calculated
magnetic moment of two
noninteracting (interacting)
electrons in a strained
quantum ring is shown by
the thin (heavy) lines for two
different temperatures. After
[46]
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where He [Hh] is the single-particle Hamiltonian of an electron [a hole] determined
by (4.3) [(4.4)], VCoul(re, rh) describes the Coulomb interaction between an electron
and a hole with radius-vectors re and rh, respectively. We consider hear only heavy
holes and treat them within the one-band model.

In order to find exciton eigenstates, we start with constructing the basis functions,
which describe a non-interacting eh-pair:

Ψ
(eh)
jejh (re, rh) = Ψ

(e)
1je (re)Ψ

(h)
1jh (rh). (4.17)

Then we diagonalize the Hamiltonian (4.16) in the above basis, looking for the
exciton wavefunctions in the form

Ψ
(ex)
J (re, rh) =

jmax∑
je,jh=1

AJjejhΨ
(eh)
jejh

(re, rh). (4.18)

Then for each value of the applied magnetic field B the lowest exciton states are
found by numerical diagonalization of the Hamiltonian (4.16) in the basis (4.17).

The effect of the electron-hole Coulomb interaction on the energy spectrum
and transition probabilities is illustrated in Fig. 4.13 for an unstrained azimuthally
isotropic In0.55Ga0.45As/GaAs ring-like structure with the shape shown in the inset to
Fig. 4.13a. Due to strong selection rules, applicable for the highly symmetric struc-
ture under consideration, only a small fraction of the states of the non-interacting
eh-pair, namely the states with zero envelope angular momentum Le + Lh = 0, are
dipole active. As seen from Fig. 4.13a, the electron-hole Coulomb interaction, which
mixes eh-states with the same Le + Lh and different Le(= −Lh), ne, nh, leads to anti-
crossing for the lowest two dipole-active energy levels (for a non-interacting eh-pair,
the corresponding levels cross each other). This mixing of states due to the electron-
hole Coulomb interaction is accompanied by a redistribution of oscillator strengths
(usually, in favor of lower-lying states). This is illustrated in Fig. 4.13b, where we
plot the spectral distributions of the calculated probabilities P for optical transitions
to different states of an exciton. In order to enhance visualization, a small Gaussian
broadening (∼1meV) is introduced for all the energy levels. In the energy range,
which corresponds to anticrossing of the lowest two dipole active energy levels, the
upper of these two levels becomes “dark”, while the transition probability P for the
lower level increases.

The electron energy spectrum, the magnetization, and the optical-transition prob-
abilities were analyzed for excitons in strained axially symmetric ring-like structures
(see the inset in Fig. 4.14a) with different In concentration in the In-rich region. The
strain-induced flattening of the adiabatic potential makes the structure under consid-
eration “disk-like” rather than“ring-like”. However, when increasing the In content
x, the depth of the adiabatic potential well in the In-rich region significantly increases
both for an electron and for a hole. This results, in particular, in a decrease of the
electron ground-state energy (see Fig. 4.14a). In Fig. 4.14b, we show spectral dis-
tributions of the calculated probabilities P for optical transitions to different states
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Fig. 4.13 a Energies of the lowest dipole active exciton states in an unstrained axially symmetric
In0.55Ga0.45As/GaAs ring-like structure as a function of the applied magnetic field. Inset: Shape
of the structure. b Spectral distribution of the optical transition probabilities P for an exciton as a
function of the applied magnetic field (Γ = 1meV). After [48]
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Fig. 4.14 a Energies of the lowest electron states in a strained axially symmetric
In0.65Ga0.35As/GaAs ring-like structure as a function of the applied magnetic field. Inset: Shape
of the structure. b Spectral distribution of the optical transition probabilities P for an exciton as a
function of the applied magnetic field (Γ = 1meV). After [48]

of an exciton in a strained In0.65Ga0.35As/GaAs ring-like structure. At relatively low
magnetic fields B, a complicated pattern of P starts for energies∼100meV above the
lowest exciton state. This energy region actually corresponds to continuum states.

In Figs. 4.15 and 4.16 we show the calculated probabilities P of optical transitions
for ring-like structureswith x = 0.7 andwith realistic shape anisotropy. As seen from
Fig. 4.15a, for a noninteracting electron-hole pair there is a crossover in the ground-
state energy around B = 15T, in agreement with magnetization experiments [9].
The Coulomb interaction results into a smooth behavior of the ground-state energy
as function ofB, as shown in Fig. 4.15b. Due to the Coulomb interaction the oscillator
strengths of the two lowest “bright” eh-states are significantly redistributed in favor
of the lowest level. Therefore, despite a relatively large splitting between these two
exciton energy levels, the upper one is practically unresolvable in the case of an
appreciable energy-level broadening, Γ = 10meV (see Fig. 4.16).
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Fig. 4.15 Calculated optical transition probabilities for an anisotropic strained In0.7Ga0.3As/GaAs
QR with R = 9nm, h0 = 1.6nm, hM = 3.6nm, h∞ = 0.4nm, γ0 = γ∞ = 3nm, ξR = ξγ = 0,
ξh = 0.2, Γ = 1meV, in the case of a a noninteracting electron-hole pair and b an interacting
electron-hole pair. The arrows correspond to the first excitonic AB resonance in the ground state.
After [49]
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Fig. 4.16 a Shape of the structure (top) and broadened spectral distributions of P for an exciton
in the anisotropic unstrained In0.7 Ga0.3As/GaAs QR with R = 9nm, h0 = 1.6nm, hM = 3.6nm,
h∞ = 0.4nm, γ0 = γ∞ = 3nm, ξR = 0, ξh = 0.2, ξγ = −0.25, and with Γ = 10meV. b Same as
in panel (a) but for a strained ring with ξγ = 0. After [47]
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4.7 Experiments on Excitonic Properties of Quantum Rings

In [49], the exciton energy level structure of a large ensemble of InAs/GaAs quantum
rings was experimentally investigated by photoluminescence spectroscopy in mag-
netic fields up to 30T for different excitation densities. For the PL studies, a sample
containing a single layer of QRs [16] was mounted in a liquid-helium bath cryostat at
T = 4.2 K. Static magnetic fields up to 30T were applied parallel to the growth direc-
tion and the PLwas detected in the Faraday configuration. The dependence of the QR
emission energy on the excitation density is shown in Fig. 4.17a. The ground-state
emission energy of the QRs is centered around 1.308eV, typical for these nanostruc-
tures [16]. The ground-state emission has an inhomogeneous broadening with a full
width at half maximum of 20 meV.With increasing excitation density two additional
peaks can be resolved. These peaks have an energy of 39 and 63 meV above the
ground-state energy.

To investigate the influence of the ringlike geometry on the excitonic behavior in
the excited states of the QRs, the magneto-PL of these structures for higher exci-
tation intensities was measured. With increasing B, both resolvable excited states
split up in two separate peaks. Each of the PL peaks splits further with a smaller
energy separation into two peaks of opposite circular polarization [see Fig. 4.17b].
Figure4.18a shows the higher excitation data in σ−-polarization as function of B in
intervals of 1 T. The calculated transition probabilities are plotted in Fig. 4.18b. The
calculated and measured spectra show a qualitative resemblance. Within the theo-
retical model, which was successfully applied to explain the magnetization behavior
of QRs on similar samples [9, 39], one finds that for all realistic ring parameters
the PL of the first-excited state is concealed by the ground-state luminescence if an
inhomogeneous broadening of about 20meV is included. The ring character of the

(a) (b)

Fig. 4.17 a PL as a function of excitation density, for which the lowest (highest) excitation density
is 102W cm−2 (105W cm−2). Two excited states can be distinguished for higher excitation density
located 38 and 63 meV above the ground-state emission energy. b The energy diagram showing
the peak position in B in both σ− (empty circles) and σ+ (filled circles) polarization. The QRs
exhibit splittings into two states of the different excited states, in contrast to QDs where a third peak
(indicated by the dashed line) is observed. After [49]
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Fig. 4.18 aExperimentalσ+ photoluminescence spectra of self-assembled InGaAs/GaAs quantum
rings in magnetic fields from 0T (the lowest curve) to 30T (the highest curve) with the step 1T. The
two lowest peaks at B = 0 are indicated with labels “0” (at 1.30735eV) and“1” (at 1.34945eV),
corresponding to the peaks “0” and“1” in panel (b), where the theoretical spectra of the optical
transition probabilities are shown (cf. Fig. 4.16b). After [48]

nanostructures under consideration results in non-equidistant energy level splittings
in the exciton diagram and in a magnetic field induced splitting of each excited state
into two states. This is in contrast to what has been observed in the measurements
on quantum dots [50–52], which show a magnetic induced splitting of the d -state
into three states and equidistant energy levels.

In contrast to the AB effect of single electrons in QRs under consideration, an
excitonic AB effect in an ensemble of those QRs was not observed nor expected
based on the theoretical model [48, 49]. The absence of prominent oscillations in
the ground-state energy of the calculated exciton spectra as compared to the case
of a noninteracting electron-hole pair is a consequence of the Coulomb interaction.
As implied by the results of magnetophotoluminescence measurements on single
InGaAs/GaAs QRs [53], the amplitude of the AB oscillations in the ground-state
energy of a QR is as small as about fewμeV, so that in a PL spectrum of an ensemble
of QRs these oscillations are fully hidden due to the size and shape dispersion of
QRs.

4.8 Spin-Correlated Orbital Currents in QRs

Carriers in III–V semiconductors1 can have magnetic moments much larger than
expected on basis of their bare orbital L and spin J angular momenta, due to the
presence of spin-correlated orbital currents [23]. The spatial distribution of these

1This section is based on [24], certain parts of which are reproduced here with permission.
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currents has recently been studied in the context of semiconductor nanostructures
[22]. In this section we will explore how these spin-correlated currents affect the
magnetic moment of electrons in idealized QRs [24]. The orbital magnetic moment
µorb can be found [54] from the orbital current density j (r), as described in [24], by

µorb = 1

2

∫

V
r × j (r) d3r = 1

2

∑
s

∫

Vs

r × j(r) d3r, (4.19)

where the moment is a summation of moments from each of s unit cells having
volume Vs. The average current density 〈j〉s in a unit cell is:

〈j〉s = 1

Vs

∫

Vs

j(r) d3r. (4.20)

Using 〈j〉s we split the orbital current into an itinerant current (IC) that flows into
and out of a unit cell, and a localized current (LC) whose average over the unit cell
vanishes, given by j(r) − 〈j〉s. The magnetic moment can then be expressed as [55]:

µorb = 1

2

∑
s

{
Vsrs × 〈j〉s︸ ︷︷ ︸

Itinerant current (IC)

+
∫

Vs

(r − rs) × {j(r) − 〈j〉s} d3r

︸ ︷︷ ︸
Localized (circulating) current (LC)

}
(4.21)

where rs is the vector pointing to unit cell s. The first term is the orbital moment
due to itinerant currents, while the second term is the sum of orbital moments due to
a (circulating) current localized within each unit cell. These orbital currents follow
from [56]:

j (r) = e�

m0
Im

{
Ψ ∗ (r) ∇Ψ (r)

}
. (4.22)

The LC contributions are small compared to the IC contributions, and will be
neglected here.

For nanostructures the envelope function approximation (EFA) is an accurate way
to describe the state Ψ (r) in more detail [57, 58]:

Ψ (r) =
∑
i

Fi(r)ui(r), (4.23)

where the wave function is written as the product of a Bloch state ui(r) of band i with
its corresponding spatially slowly varying envelope function Fi(r), assumed to be
constant in a unit cell. This results in currents which are related to the Bloch velocity
(BV) and envelope velocity (EV):
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j(r) = e�

m0

∑
i,j

Im
{
u∗
i (r)uj(r)

[
F∗
i (r)∇Fj(r)

]
︸ ︷︷ ︸

Envelope velocity related (EV)

+F∗
i (r)Fj(r)

[
u∗
i (r)∇uj(r)

]
︸ ︷︷ ︸

Bloch velocity related (BV)

}
(4.24)

The BV related current dominates over the EV related current by∼ d/a0, where d is
the typical size of the envelopewave function and a0 the size of the unit cell [22]. This
coincides with the condition for the validity of the envelope function approximation.
For realistically sized nanostructures, the BV related current is ≥5 times the EV
related current. Thus we shall ignore the EV related current here; for more details
about these subdominant currents consult [24].

The unit cell averaged current density for the BV related current 〈j〉BV becomes:

〈j〉BV(rs) = 1

Vs

e�

m0

∑
i,j

Im
{
F∗
i (rs)Fj(rs)〈ui|∇|uj〉

}
(4.25)

where 〈ui|∇|uj〉 are momentum matrix elements. These are only non-zero when i
labels a conduction band state and j a valence band state. Since we are examining
a stationary state, the divergence of the current is zero. The current must therefore
circulate within the nanostructure along a closed surface. This resembles a current
loop extended throughout the nanostructure and arising completely from the inter-
mixing of valence band states in the ground state of the nanostructure. This BV
related itinerant current leads to a magnetic moment

µIC-BV(rs) = μB

∑
i,j

Im{F∗
i (rs)Fj(rs)(rs × 〈ui|∇|uj〉)}. (4.26)

Generally speaking, the k · p Hamiltonian H can formally be decomposed in
terms having respectively cylindrical, cubic and tetragonal symmetry:

H = Hcyl + Hcub + Htet (4.27)

using a procedure reported in [59]. Since we will be investigating cylindrically sym-
metric nanostructures, we will use only the cylindrically symmetric partHcyl. More-
over, it has been shown [59] that Hcub is proportional to a difference of Luttinger
parameters, γ3 − γ2, which is for most semiconductors a small quantity compared
to γ1 and γ2. This Hamiltonian will now be block diagonal in a basis of eigenstates
of Fz (where F = L + J is the total angular momentum) [60]:

H =
∑
Fz

HFz (4.28)
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since only Fz = LE,z + Jz , the projection of the total angular momentum on the
symmetry axis, remains quantized for nanostructures with cylindrical symmetry. A
convenient basis are the product states:

|Fz; J , Jz; k, kz〉 = |J , Jz〉|k, kz,LE,z = Fz − Jz〉 (4.29)

where |J , Jz〉 are Bloch functions, |k, kz,LE,z = Fz − Jz〉 the envelope wave func-
tions, k is the radial wave number, and kz the wave number along the symmetry axis
(which we choose to be the z-axis). The envelope wave function has the coordinate
representation:

〈r, θ, z|k, kz,LE,z = Fz − Jz〉 = (4.30)

iLE,z

2π

{
JLE,z (kr) + ξNLE,z (kr)

}
eiLE,zθeikzz

where Jl(r) is the lth-order Bessel function of the first kind, Nl(r) is the lth-order
Neumann function of the first kind, and ξ a dimensionless parameter determined
by the boundary conditions. Using the transformation as outlined in [60], we can
representHcyl in the cylindrical envelope basis. Although the transformation of [60]
is correct, the cylindrical symmetry is not correctly introduced in their Hamiltonian.
Wehave therefore used the correctly derivedHamiltonian of [59]. TheHamiltonian of
[60] andourHamiltonian are identical in the spherical approximation (γ2 = γ3 = γ23,
where γ23 = 2

5γ2 + 3
5γ3). We will show that only in the cylindrical approximation it

will be possible to independently tune the confinement energy andmagneticmoment.
We now consider a ring, with inner radius Rin, outer radius Rout, and height H , of

which the confining potential is given by:

V (r, z) =
{
0 Rin ≤ r ≤ Rout and |z| ≤ H/2
∞ elsewhere

(4.31)

In contrast to the case of cylindrical disks [24], the Neumann functions NLE,z (r) do
play a role, since the origin is not involved in the wave function. The parameter ξ

is therefore non-zero and should follow from the boundary conditions. Since the
electron ground state predominantly originates from conduction band states, we
choose the approximate boundary condition:

〈r, θ, z|k, kz, 0〉r=Rin,r=Rout,z=±H
2

= 0 (4.32)

This condition leads to the system of equations:

{
J0(kRin) + ξN0(kRin) = 0

J0(kRout) + ξN0(kRout) = 0
(4.33)
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which determine (ξ, k) for a given (Rin,Rout). Although this system of equations is
not generally analytically solvable, it can be inferred that both ξ and kRout depend
only on the ratio Rin/Rout. This can also be seen when analyzing the asymptotic limit
of the equations, which results in approximate solutions:

k ≈ π

Rout − Rin
(4.34)

ξ ≈ tan
(
kRout + π

4

)
(4.35)

These approximate relations resemble the ones found for spherical shells [24]. In
Fig. 4.19a we plot the current distribution of a ring with Rin/Rout = 1

3 . The presence
of an inner and outer surface of the nanostructure leads to two oppositely circulating
current loops. Thus the topology of the nanostructure has a profound influence on the
orbital current distribution. These two current loops carry an equal amount of current,
so that, irrespective of the size, the integrated current is zero. The orbital moments
generated by each of the currents will partially cancel, the degree of cancellation
depending on the ring thickness. This result was to be expected, since the radial
wave number is determined by the ring thickness Rout − Rin, and the orbital moment
of a disk depends on R/ρ0,1 = 1/k. The orbital moment can therefore only be tuned
either via the thickness or the height of the ring.

Tobe complete, the above reasoning only holds as long as the approximate solution
is valid: in general, k might not depend only on the ring thickness. We have therefore
computed numerically the solution of the boundary conditions, and used them to
numerically calculate the radius dependence of the most important integrated orbital
momentµIC-BV, see Fig. 4.19b. It can readily be seen that this orbitalmoment depends
only on the ring thickness. Only when Rin approaches zero, Rout starts to have an

(a) (b)

Fig. 4.19 a The xz-cross-section of the spatial distribution of the normalized magnitude of the
ey-component of 〈j〉BV of a ring. Similar to the spherical shells, there are two oppositely circulating
current loops. For the plot we choose Rin/Rout = 1

3 . b The dependence of µIC-BV (in μB) on the
ring thickness Rout − Rin and outer radius Rout, for an InAs ring with H = 100nm. Similar to the
spherical shells, the orbital moment depends only on the ring thickness, as can be seen from the
white contour lines. After [24]
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influence too. These small values of Rin correspond to an inner region comparable to
the unit cell of the crystal, and the validity of the envelope function approximation is
questionable. Finally we note that having a finite barrier will also lead to substantial
changes at small Rin: tunneling through the inner region reduces the strength of the
inner current loop and decreases the radius of the outer current loop, both leading to
a reduction of the degree of cancellation of the orbital moments.

4.9 Applications of QRs

From a fundamental point of view, semiconductor QRs are fascinating topological
structures,whoseunique features are represented in the present book. Fromanapplied
point of view it is less obvious, where the applications of QRs can be found, if one
wants to utilize the unique topological properties of QRs. The suggested applications
of QRs that make use of the topological properties are, not surprisingly, primarily
found in the field of spintronics and involve spin manipulation of carriers captured
in or passing through the ring structure. In order to exploit the topological properties
of QRs, it is crucial that the phase scattering and spin scattering rates of carriers
in the QR, which lead to decoherence of QR states, are small. This unfortunately
limits any by now suggested application to low temperatures andmakes the chance of
real applications in the near future very dim. However, additional applications have
been suggested that do not depend on the topological properties of QRs, but use,
for instance, the special charge distribution or the frequently observed anisotropy
in the shape of self-assembled rings. Below, we will first discuss some examples of
applications that do not utilize the topological properties of QRs and then a number
of examples that are based on topologically induced features.

In 2003, Granados and Garcia [16] reported a strong dependence of the PL spec-
trum on the actual shape of InAs/GaAs self-assembled quantum structures. Depend-
ing on the growth conditions during capping and annealing of InAs self-assembled
dots they observe quantum dots, QRs and more complicated structures. The lumi-
nescence for these structures varied from 1.1eV (quantum dots) to 1.35eV (QRs)
depending on the shape of the nanostructure. This shift is of course due to the shal-
lower confinement of the carriers in a QR compared to those captured in a quantum
dot. This feature does not, however, make them attractive, because typically more
effort is put in getting the emission of semiconductor nanostructures at longer (rather
than shorter) wavelengths that are accessible by standard InAs/GaAs quantum dots.
Nevertheless, InAs/GaAs QR structures have been analyzed for their use in THz
detectors, because they give rise to a very low dark current [61] and GaAs/AlGaAs
QRs have been proposed in solar cells because these strain-free QRs might give rise
to a better quantum efficiency [62], see also Chap.14. In these applications, neither
the topology, nor the ring-shaped charge distribution is essential for the operation of
the device.

http://dx.doi.org/10.1007/978-3-319-95159-1_14
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The following applications make use of the special geometry of the ring without
exploiting the topological aspects. Due to the fact, discussed in detail in the present
Chapter, that InAs/GaAs QRs are often asymmetric [7], they can give rise to a strong
optical anisotropy [63, 64]. This property can be useful in situations, where optical
polarization detection or manipulation is needed. The ring-shaped potential, inde-
pendent of any in-plane anisotropy, is important in type-II QRs that have been shown
to work as memory devices with a long storage time because of the spatial separation
of the electron and hole, which prevents carrier recombination [65]. In these devices
the hole is confined in a dot potential, whereas the electron is confined in a ring
potential that runs around the dot. Wavefunction engineering in a similar quantum
dot-ring nanostructure was proposed in [66]. They proposed electrical gating to con-
trol exciton relaxation and absorption by manipulating the confinement parameters.
The envisioned device can be actively tuned from being highly absorbing to almost
transparent in a specific part of the infrared or microwave spectrum.

More sophisticated is the idea to control the transition probability of an electron-
hole pair captured in a ring by transforming a bright exciton state into a dark exciton
state and vice versa [67]. In this device, the combination of a perpendicular magnetic
and in-plane electric field is used to control the exciton state and this should make
it possible to store and to release an optically excited exciton in a QR, which can be
also be read out by an additional approach. Interestingly, GaAs/AlGaAs double QRs
obtained by droplet epitaxy [68] have been proven to show photon antibunching,
which is essential for single photon devices. Only the inner ring showed a strong
photon antibunching, whereas this is relaxed in the outer ring probably due to a
stronger inhomogeneity in the potential of the outer ring. Without being specific the
authors suggest that these single photon emitting ring structures can be of relevance
for quantum computational devices.

Themost exciting applications are of course those that are based on the topological
properties of the ring geometry. Not without surprise, these applications lie in the
field of quantum computing, where spin manipulation is of essence. For instance,
sequential spin flips were observed in lithographic GaAs/AlGaAs QRs [69]. In these
QRs, operating in the Coulomb blockade regime, experimental results were obtained
that showed the ability to probe individual spin flips, which is an important step
towards accurate spin control. The detection of spin flips was possible due to the
characteristic electronic spectrum of the QR structure. Spin relaxation in QRs and
dots was explored [70]. The authors report higher spin stability in a QR than in a
quantumdot, supporting the use ofQRs as a spin qubit. They also present a discussion
on quantum state manipulation in a QR in relation to its use as a spin qubit [70].

In summary, the ongoing studies revealed great potentialities of QRs as basis
elements for a broad spectrum of applications, starting from THz detectors, efficient
solar cells andmemory devices, through electrically tunable optical valves and single
photon emitters, and further to spin qubits for quantum computing.
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Chapter 5
Scanning-Probe Electronic Imaging
of Lithographically Patterned Quantum
Rings

F. Martins, D. Cabosart, H. Sellier, M.G. Pala, B. Hackens, V. Bayot
and S. Huant

Abstract Quantum rings patterned from two-dimensional semiconductor het-
erostructures exhibit a wealth of quantum transport phenomena at low temperature
and in a magnetic field that can be mapped in real space thanks to dedicated scanning
probe techniques. Here, we summarize our studies of GaInAs- and graphene-based
quantum rings by means of scanning-gate microscopy both at low magnetic field,
where Aharonov-Bohm interferences and the electronic local density-of-states are
imaged, and at high magnetic field and very low temperatures, where the scanning
probe can image Coulomb islands in the quantum Hall regime. This allows decrypt-
ing the apparent complexity of the magneto-resistance of a mesoscopic system in
this regime. Beyond imaging and beyond a strict annular shape of the nanostruc-
ture, we show that this scanning-probe technique can also be used to unravel a new
counter-intuitive behavior of branched-out rectangular quantum rings, which turns
out to be a mesoscopic analog of the Braess paradox, previously known for road or
other classical networks only.
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5.1 Introduction

Electron systems confined in mesoscopic quantum rings (QRs) patterned from two-
dimensional charge carrier systems exhibit awealth of quantum transport phenomena
at low temperature and in a magnetic field such as the Aharonov-Bohm effect (AB)
or the quantum Hall effect (QH). These effects have usually been observed thanks to
measurements of the device electrical resistance vs themagnetic field. Such data yield
“global” information on the phenomenon, i.e. on the scale of the device. During the
last fifteen years, numerous attempts have beenmade to obtain real-space information
on these mesoscopic phenomena down to the nanometer scale (i.e. on a smaller scale
than the device size), thanks to dedicated scanning probe techniques.Mapping locally
these phenomena give new insights,which allow for amore in-depth comparisonwith
simulations. This chapter focuses on GaInAs- and graphene-based open QRs that
are imaged by scanning-gate microscopy (SGM), a variant of electric atomic-force
microscopy (AFM), which can access to the intimate behavior of buried electronic
systems, not accessible to the tip of scanning tunneling microscopy (STM).

After a brief introduction to SGM in Sects. 5.2 and 5.3 focuses on the low-
magnetic field range where the conductance modulations of a ring device induced by
the scanning probe provide rich patterns that are either concentric or radial with the
ring geometry. The concentric patterns, primarily seen when the tip scans outside the
ring area [1], image in real space the AB interferences taking birth in the ring device
as a consequence of its ability to capture a magnetic flux or to differentially probe
in its two arms a remote electrostatic potential. Radial patterns, that are seen when
the probe scans directly over the ring, indirectly map the electronic local density of
states (LDOS) at the Fermi energy [2, 3], as does STM in a direct way for surface
electron systems [4]. Quantum simulations give a limit to the range of validity for
the correspondence between conductance and LDOSmaps and show how robust this
correspondence can be against, for example, the introduction of impurities in the ring
materials [5].

Beside conventional semiconductor systems, the last decade has witnessed the
advent of new types of materials with unusual charge carrier dynamics. The most
striking example is graphene, a two-dimensional crystal of carbon atoms arranged on
a honeycomb lattice [6]. Charge carriers in graphene behave as massless relativistic
particles and novel properties emerge in particular close to the Dirac point, where
valence and conduction bands touch. Section 5.4 focuses on QRs carved out of
graphene, and examine the consequences of the peculiar band structure and charge
carrier dynamics on scanning gate imaging of coherent transport in such devices.
In particular, radial patterns were also imaged in disordered graphene rings [7],
and they were found to be recurrent when varying the charge carrier energy [8].
The observation is consistent with an earlier theoretical prediction of “relativistic
quantum scars” [9] , i.e. semiclassical orbits scarring the LDOS.

At high magnetic field, which is the focus of Sect. 5.5, the charge carrier system
enters into the QH regime, where electrons should only be transmitted through spa-
tially separated edge states (ESs) near integer filling of the Landau levels. In contrast
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to extended 2D systems that exhibit vanishing longitudinal resistance concomitant to
Hall plateaus in the QH regime, mesoscopic devices lead to surprising observations
[10], such as pseudo-AB oscillations with “sub-periods” and “super-periods” com-
pared to the orthodoxABoscillations seen at low field. To explain these observations,
recent models [11] put forward the theory that, when counter-propagating ES come
close to each other, electrons can hop between ES, or tunnel through quantum Hall
insulating islands. Such islands, also called localized states, are made of ES rotating
around hills or dips in the potential landscape, or around the central antidot in a ring
geometry. SGM reveals to be very powerful in locating QH islands in GaInAs QRs,
and in revealing the spatial structure of transport inside the QH interferometer that
they form [12]. Locations of QH islands are found by modulating, with the scanning
tip, the tunneling between ESs and confined electron orbits. Tuning the magnetic
field, SGM unveils a continuous evolution of active QH islands [12]. This allows
decrypting the complexity of high-magnetic field magnetoresistance oscillations,
and opens the way to further local-scale manipulations of QH localized states.

In Sect. 5.6we consider the possibility to control the electron transport through the
buried semiconductor nanostructure by means of the SGM tip. In doing so, we find
evidence for a counterintuitive behavior of mesoscopic networks [13] that presents
a striking similarity with the Braess paradox encountered in traffic or classical net-
works [14]. A simulation of quantum transport in a two-branch mesoscopic network
of rectangular shape reveals that adding a third branch can paradoxically reduce
transport efficiency. This manifests itself in a sizable conductance drop of the net-
work. A SGM experiment using the tip to modulate the transmission of one branch
in the network reveals the occurrence of this paradox by mapping the conductance
variation as a function of the tip voltage and position [13].

5.2 A Brief Introduction to the Technique of Scanning-Gate
Microscopy

Unlike common AFM-based imaging techniques, scanning gate microscopy does
not rely on a measurement of the cantilever property (i.e. its deflection angle, or
resonance frequency shift), but rather of the device electrical characteristics. The
principle of SGM [15–17] is sketched in Fig. 5.1. A voltage-biased (Vtip) metal-
coated AFM tip is laterally scanned at an altitude of a few tens of nm over the device
surface to perturb locally its electrical conductance G (or resistance). The changes
in the device conductance �G are mapped as a function of the relative tip-sample
position (x,y) to draw a �G(x,y) SGM map. Depending on the device impedance,
a current-biased device (I) or voltage-biased (V) configuration can be used. The
whole setup is immersed into a cryostat to operate down to below 100 mK for the
coldest SGM setups [12, 18]. Optionally, an external magnetic field can be applied.
The combined low-temperature and magnetic field environment requires the use
of cryogenic magnetic-free displacement units, such as for example titanium-made
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Fig. 5.1 Principle of scanning-gate microscopy. Frame a depicts a sketch of a SGM experiment
on a ring-shaped device that hosts a buried 2DEG. A current Iapp is applied to the device and
the voltage drop Vm across it is measured, while the biased tip (Vtip) is raster scanned over the
device. A perpendicular magnetic field B is applied. In frame b, curved lines sketch the tip-induced
isopotential lines φ felt by the buried electron system. For a sufficiently negative tip voltage, a
depleted region is formed below the tip in the case of semiconductor 2DEGs (not for graphene)

inertial step motors [19, 20] for the in situ coarse positioning of the tip relative to
the nanostructure over a few millimeters. In our setup, fine positioning over a few
micrometers for image acquisition is ensured by commercially available piezoelectric
scanner elements.

Using an AFM environment allows for locating the active device by measuring
the sample topography, e.g. by using the dynamic mode of the AFM. Instead of using
an optical method to measure the AFM cantilever deflection, as commonly done in
AFM, it is advantageous to use a light-free setup [21], so that photosensitive devices
remain under dark conditions during the entire experiment. One solution consists in
gluing the AFM cantilever on a piezoelectric tuning fork, and monitoring the shift
�f of its resonance frequency observed when the tip approaches the surface. Sample
topography is performed by using a feedback loop on �f while scanning the tip over
the device surface. Once the device topography has been mapped, SGM is performed
by lifting the tip at some tens of nanometers (typically 20–50 nm) above the surface
and scanning it along a plane parallel to the 2D electron gas (2DEG), with a voltage
applied to the tip. SGM measurements are carried out without contact between tip
and sample, so that there is no electrical current through the tip, which acts indeed
as a flying nanogate.

SGM has been used to image a broad range of transport-related phenomena in
various nanostructures, such as for example the branching of conductance channels
transmitted throughquantum-point contacts (QPCs) [16, 17, 22],magnetic steering in
a series of connectedQPCs [23], Coulombblockade in quantumdots [24–26], scarred
wavefunctions in quantum billiards [27], and various graphene-based nanodevices
[28–35], including in the quantum Hall regime [34]. We refer the reader to [36] for a
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Fig. 5.2 Sketch of the electrostatic AB effect in a QR due to the tip bias. The cone and disk stand
for the tip and potential range, respectively. Approaching the tip to the QR from the left modifies
the electrostatic potential felt by the electrons in the left arm, tuning the wavefunction interference
at the output of the device from destructive (a) to constructive (b)

more extensive review. In the rest of this chapter, we focus on our own work devoted
to GaInAs- and graphene-based QRs.

5.3 Imaging of Quantum Rings in the Low-Field
Aharonov-Bohm Regime

If electrons maintain their phase coherence over sufficiently long distances, an open
QR sees its conductance peaking when electron waves interfere constructively at the
output contact, and decreasing to a minimum for destructive interference. Varying
either the electrostatic potential in one arm, e.g., by approaching the SGM biased tip
as shown schematically in Fig. 5.2, or the magnetic flux captured by the QR allows
the interference to be tuned. This gives rise to the electrostatic [37] and magnetic
[38] AB oscillations in the ring conductance.

These interference phenomena can be imaged in real space by SGM [1]. An
example of such imaging is shown in Fig. 5.3. Here, the QR is patterned from a
Ga0.3In0.7As-based heterojunction with carrier concentration and mobility at 4.2 K
of 2.0 × 1016 cm−2 and 100.000 cm2 V−1 s−1, respectively. The QR is connected
to the 2D electron reservoir, which is buried 25 nm below the free surface, by two
upper and lower narrow constrictions. The mean-free path and coherence length in
Ga0.3In0.7As at 4.2 K are 2 and 1 μm, respectively, so that the electron transport
is in the ballistic and (partly) coherent regimes. The coherent nature is confirmed
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(a) (b) (c)

(d) (e)

Fig. 5.3 SGM images (a–c) of a GaInAs QR whose geometry is shown schematically by full lines
(image size: 2 μm×2 μm; T�4.2 K; zero magnetic field). The inner and outer ring diameters are
210 and 610 nm, respectively. The images are acquired for different tip voltages Vtip indicated on
the figures and are all filtered [1] to compensate for a slowly varying strong background, which
masks part of the interference pattern. Frames d and e are two sequences of profile plots as function
of the tip bias. Each horizontal line corresponds to a vertical average of the conductance map in
regions (α) and (β) shown in Fig. 5.3c, respectively. Adapted from [39]

by the observation of AB oscillations in the magneto-conductance when the QR is
subjected to a perpendicular magnetic field [1].

One also observes an electrostatic AB effect which gives rise, at low magnetic
field, to a well-developed fringe pattern in the SGM conductance image of the QR
when the tip scans outside the QR. This outer pattern is mainly concentric with
the ring geometry, as can be seen in the sequence of images shown in Fig. 5.3a–c
obtained at different voltages applied to the tip. The interference pattern is here best
seen on the left part of the ring, possibly due to a ring asymmetry. The qualitative
interpretation in terms of a scanning-gate-induced electrostatic AB effect is that as
the tip approaches the QR, either from the left or right, the electrical potential mainly
increases on the corresponding side of the QR (see Fig. 5.2). This induces a phase
difference between electron wavefunctions traveling through the two arms of the
ring, and/or bends the electron trajectories, tuning the interference alternatively from
constructive to destructive, thereby producing the observed pattern. Figure 5.3d, e
shows how the interference pattern evolves for increasing tip voltages when the tip
scans over the left hand-side and right hand-side regions of the QR, respectively [39].
It is clear from this figure that for increasing tip voltages the interference fringes shift
away from the QR to the left in d and to the right in e, respectively. This is a direct
manifestation of the tip-induced electrostatic AB effect. From Fig. 5.3d, we find that
a phase shift of π is obtained for a tip bias variation �tip �1.75 V [39].
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Fig. 5.4 Quantum simulation of a SGM experiment on a QR in the presence of positively charged
impurities. The outer diameter, inner diameter and opening width are 530, 280, and 120 nm, respec-
tively. The effective mass is 0.04 m0 as in GaInAs (m0 is the free electron mass). The Fermi energy
is EF �107.4 meV. Frames a and b are simulated images of the LDOS and conductance changes
(in units of G0, the quantum of resistance), respectively, calculated for the random distribution of
positively-charged impurities shown in frame (c). In the simulation, the tip potential has a Lorentzian
shape with 10 nm range and amplitude EF/50. Adapted from [5]

Now, modifying the magnetic field strength, another phase term contributes
through the magnetic AB effect, i.e. the capture of the magnetic flux threading the
QR area. The flux periodicity of such oscillations correspond to the flux quantum
φ0 �h/e. This displaces the whole fringe pattern with respect to the QR. This dis-
placement is periodic in magnetic field strength with the same periodicity (here
13 mT, in nice agreement with the average area of the QR) than the AB oscillations
seen in the magneto-conductance [1, 39], which gives further support to the interpre-
tation in terms of AB effects. This interpretation was confirmed by density functional
theory [40].

In Fig. 5.3a–c, it is clear that the conductance images also exhibit a complex pat-
tern when the tip scans directly over the QR region. These inner fringes are linked to
the local electron-probability density in theQR [2, 3, 5], provided that the tip potential
is weak enough not to distort the QR electron density (see also [40]). A detailed anal-
ysis based on quantum mechanical simulations of the electron probability density,
including a model tip potential, the magnetic field, and randomly distributed impu-
rities, reproduces the main experimental features and demonstrates the relationship
between SGM conductance maps and electron probability density, i.e. LDOS, at the
Fermi energy. An example of such a relationship is shown in Fig. 5.4 in the case
of a realistic QR perturbed by positively charged impurities (in the experiments on
Ga0.3In0.7As heterojunction devices, the electrostatic potential experienced by elec-
trons is influenced by ionized dopants located a few nm above the conducting 2D
electron system). Although impurities distort the LDOS, this distortion is reflected
back in the conductance image in such a way that the conductance map can still be
seen as a mirror of the electronic LDOS. As shown in Fig. 5.4, both the LDOS and
conductance images tend to develop radial fringes, which are mostly, but not entirely,
anchored to the impurity locations.

The discussion above suggests that SGM can be viewed as the analog of STM
[4] for imaging the electronic LDOS in open mesoscopic systems buried under an
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insulating layer. It can also be seen as the counterpart of the near-field scanning optical
microscope that can image photonic [41, 42] LDOS in confined nanostructures,
provided that the excitation light source can be considered as point-like such as in
active tips based on fluorescent nano-objects [43].

5.4 Recurrent Quantum Scars in Graphene Quantum
Rings

In a semiclassical framework, the inner radial fringes observed in the arms of QRs
(discussed in previous section) can be viewed as “privileged paths” along which
charge carrierwavefunctions are concentrating, also named “scarredwavefunctions”,
or “scars”. Such scars have been introduced in the framework of quantum chaos
theories [44]; in the latter case, they were associated with unstable semiclassical
periodic orbits in quantumbilliards. A specific aspect of semiclassical periodic orbits,
useful for probing their existence in the experiment, is their recurrence originating
from their finite orbit length: scar patterns associatedwith such semiclassical periodic
orbits were predicted to reappear periodically with the Fermi energy EF in relativistic
systems like graphene while the recurrence should occur with the square root of EF

in the case of a conventional semiconductor system [9].
This prediction was investigated using SGM, through experiments realized on

two different graphene QRs, fabricated from exfoliated graphene, transferred either
directly on top of a degenerately doped oxidized silicon substrate acting as a back-
gate [7], or on hexagonal boron nitride (h-BN) deposited on top of a similar silicon
substrate [8]. In the first case, the measured low temperature mobility of charge
carriers was relatively modest (around 1000 cm2/Vs). In the low density regime
(close to the Dirac point), SGM reveals Coulomb blockade oscillations, associated
with disorder-induced localized states. Such localized states are ubiquitous in low-
mobility graphene devices at low charge carrier density since the disorder landscape
induces randomly located electron and hole puddles which can constitute and act
like isolated quantum dots, tunnel-coupled with the transmitted channels. They have
already been imaged indirectly using tip-induced tuning of Coulomb blockade in
various SGM experiments, in particular in small constrictions [31–33]. In contrast, at
higher charge carrier densities, disorder is at least partially screened and electron/hole
puddles disappear. In these conditions, SGM imaging on the graphene QR revealed
radial fringes (scars) [7] very similar to those found in heterostructure-basedQRs [2].
Simulations realized on graphene QR with similar degree of disorder confirmed that
radial patterns naturally emerge at various locations along QR’s arms in the LDOS.

The recurrence of the radial pattern of scars with energywas studied using SGM in
another grapheneQRwith higher charge carriermobility (~10000 cm2/Vs), deposited
on top of an h-BN flake [8]. A large number of radial scars was observed in this case,
and sequences of SGM images obtained at various back-gate voltage were thor-
oughly examined, in order to find evidence of recurring patterns. Cross-correlations
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between successive images were calculated, both for full SGM images and for spe-
cific areas on SGM images where radial patterns were observed. Local maxima in the
correlation parameters were found when varying the Fermi energy, clearly indicating
the energy recurrence, with an average distance between maxima varying slightly
depending on the examined portion of the SGM image. This distance in energy can
be directly converted in semiclassical orbit lengths corresponding to twice the QR
arm width, which allowed to associate the sequence of maxima in SGM image cor-
relation parameters with radial scars. Note that similar energy recurrence was also
found for patterns of radial scars obtained in simulated QR LDOS.

5.5 Imaging Quantum Rings in the Quantum Hall Regime

In the two previous sections we focused on transport at zero or low-magnetic field
(B) through a QR. The wave-like nature of electrons could be revealed by periodic
AB oscillations in the magneto-resistance of the device. They originate from the
different phases that electrons acquire along both arms of a QR when B is applied
perpendicular to the 2D electron system. In this section, we will discuss another type
of periodic magneto-resistance oscillations, which show up at high B in QRs.

At high magnetic field the electron transport picture changes drastically as the
cyclotron radius shrinks, highly degenerate Landau levels (LLs) form and the 2DEG
enters in the “QH regime”. When the Fermi energy lies between two Landau levels
(i.e. around integer LL filling factor ν), the bulk of the 2DEG becomes insulating and
current flows through counter-propagating one-dimensional channels, the so-called
ESs, confined along the borders of the device, where the Fermi energy crosses LLs.
In macroscopic devices, scattering between opposite ESs vanishes and the electron
mean free path becomes of the order of several millimeters. Moreover, QH islands
(QHIs), i.e. electrons trapped in closed ESs pinned around potential inhomogeneities,
remain electrically isolated and do not contribute to electron transport. This gives rise,
as shown in Fig. 5.5a, to plateaus in the transverse resistance Rxy, and to a vanishing
longitudinal resistance Rxx measured in a macroscopic Hall bar (for review see e.g.
[45]).

However, when the size of the device is reduced and becomes comparable with the
size of QHIs, this picture is no longer valid. In such conditions, several experiments
have reported “sub-periodic” and “super-periodic” magnetoresistance oscillations,
i.e. with a flux period corresponding to a fraction, or amultiple of the usual AB period
observed at low-magnetic field (see sections above) [10, 46–51]. Driven by these
intriguing results, theoretical efforts have explained these oscillations within a model
whereCoulomb interactions dominate [11]. In small devices, the counter-propagating
ESs are indeed brought close to each other so that electronsmay tunnel between them,
either directly, and/or through a QHI that mediates electron transmission [52, 53].
Rather than coherent effects, the discrete nature of electrons has naturally been put
forward.
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Fig. 5.5 QuantumHall effect on amesoscopicQR. In a the black and red curves are the longitudinal
(Rxx) and the transverse (Rxy) resistances of a Hall bar, respectively, as function of the magnetic
field (B). At high B, Rxy is quantized in e2/(N.h), where N is the number of fully occupied Landau
levels, while Rxx becomes zero. The AFM micrograph of the QR is shown in c where the black
bar represents 1 μm. In b we display the magnetoresistance measured across the QR in the same
range of B and at a temperature T=100 mK. Close-ups of b are shown in (d–f). At low-B (d),
the periodicity of the oscillations is �BAB �9 mT which, given the geometry presented in (c), is
consistent with AB interferences. At high magnetic field, for N=8, shown in (e) the periodicity
is �B=1.1 mT while, for N=6, displayed in (f), we find �B=1.5 mT. The latter oscillations are
explained, as sketched in (g), as tunneling between edge states through a Coulomb island located
around the central anti-dot of the QR. This gives rise to periodic oscillations with �B.N��BAB

The experiments discussed in this section [12] are performed at a temperature
T �100mK, inside a 3He/4He dilution refrigerator, equippedwith a superconducting
coil that can provide a magnetic field up to 15/17 T. The 2DEG in which the QR
is patterned is located 25 nm below the surface and, at low-T , the electron density
and mobility are 1.4×1016 m−2 and 4 m2/Vs, respectively. Figure 5.5c shows the
device topography. The QR has an average outer diameter of 1 μm, two apertures
and a central antidot diameter of approx. 300 nm. The magneto-resistance of the
quantum ring (R versus B), measured simultaneously with Rxx and Rxy in the bulk,
is shown in Fig. 5.5b, d–f. Figure 5.5b shows R versus B over the full magnetic field
range, from 0 to 10 T. At low magnetic field, Fig. 5.5d, periodic AB oscillations with
�BAB �9 mT are observed. This is consistent with an average radius of 380 nm for
the QR. In Fig. 5.5e, f, two B-ranges are zoomed, around ν�8 and 6, respectively.
In these ranges the magnetoresistance of the device displays oscillations with two
different “sub-periods”: �B=1.1 mT around ν�8 and, around ν�6, �B=1.5 mT.
As sketched in Fig. 5.5g, one can understand these oscillations within a Coulomb-
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(a) (f)

(b) (c) (d) (e)

Fig. 5.6 Identification of the centre of a Coulomb island inside a QR using SGM. Frame a shows
R versus B in the range B � [9.67 T, 9.74 T]. The periodicity of the fringes is �B � 17 mT, which
corresponds to a QHI with a surface equivalent to a disc of radius ~65 nm located, as sketched
in (b), somewhere in the arms of the 300-nm-wide QR. c–e are SGM resistance maps obtained at
B� 9.65, 9.70 and 9.75 T, respectively, withVtip � −1V. The white lines correspond to the position
of the QR and the scale bar represents 1 μm. This sequence of images reveals the position of the
center of the QHI [marked with a green arrow in (c)], inside the QR. f depicts B-dependence of
the R(x, y) profile measured along the green line in c, Vtip � −1 V. The fringes share the same
periodicity �B � 17 mT as in (a)

dominated model where electrons tunnel between propagating ESs through a QHI
with discrete energy levels, located around the central anti-dot of the QR [11]. The
basis of this model is that a change in magnetic field induces a periodic change in
the QHI energy with respect to the ES energy. For each flux quantum added to the
QHI, one electron has to be added to each populated ES in the QHI, which means
that, in this case, Coulomb blockade oscillations are observed, with a period:

�B � (ϕ0/A)/N ;

where N is the number of filled ESs around the QHI of area A. Indeed, the periods
measured in Fig. 5.5e, f are consistent with this relation. Nevertheless, shifting the
magnetic field range toB=[9.67T, 9.74T] (still around ν�6), themagnetoresistance,
as displayed in Fig. 5.6a, reveals “super-period” oscillations with�B=17mT. Using
the previous model, we conclude that they correspond to ES loops with a radius of
~65 nm,whichwould not fit around theQRantidot. However, it couldwell be located,
as drawn in Fig. 5.6b, somewhere in the 300-nm-wide arms of the QR, or near its
openings, and be connected to the propagating ES through tunnel junctions.

In order to precisely locate such a QHI, we now use SGM since this technique
is particularly well adapted to image electronic transport through buried 2DEG in
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the quantum Hall regime [12, 18, 36, 39, 54–59]. Here, we measure the resistance
of the device as the electrically polarized AFM tip scans over the surface. Within
the Coulomb-dominated model, as the negatively biased tip approaches a QHI, it
progressively changes the electrostatic potential experienced by electrons trapped in
the QHI and modify the QHI surface which, in turn, induces an energy imbalance
between theQHI and the ESs [11, 12]. Aswith themagnetic field, this imbalance then
allows electrons to tunnel betweenESs and theQHI in theCoulomb blockade regime,
whenever a QHI energy level lies in the energy window defined by the propagating
ES potential. In a SGM map, one therefore expects to observe sets of concentric
resistance fringes, each one corresponding to a Coulomb blockade peak, encircling
each active QHI.

Three consecutive SGM maps for B � 9.65, 9.70 and 9.75 T are shown in
Fig. 5.6c–e, respectively, where the position of the QR is drawn, superimposed on the
SGM data. Concentric fringes are observed, centered close to one of the openings of
the QR. As B increases the position of resistance fringes evolves. This is clearly illus-
trated in Fig. 5.6f, where B is swept while scanning with a negatively polarized tip
(Vtip � −1 V) along the same line, highlighted in green and denoted δx in Fig. 5.6c.
As B increases the concentric fringes shift away from their center, indicated by the
green arrow in Fig. 5.6c. Importantly, we also note that the periodicity �B � 17 mT
found in Fig. 5.6f is the same as the one extracted from the magnetoresistance curve
in Fig. 5.6a. This allows concluding that the QHI, which is at the origin of these
“super-period” oscillations, has its center indicated by the green arrow in Fig. 5.6c.

Remarkably, the slope direction in the plane B versus δx can be used to discrim-
inate between ESs surrounding a potential hill or looping around a potential well.
If we assume that a QHI is created around a potential hill, approaching a negatively
biased tip will raise the potential and increase the QHI area. On the other hand, in
the case of a QHI formed around a potential well, the effect of a negatively biased tip
would be to reduce the QHI surface. In Fig. 5.6f, isoresistance lines, that correspond
to isoflux states through the QHI, move away from their center as B is raised, which
unambiguously indicates that the QHI surrounds a potential hill. Such a potential
hill could be caused by the presence of one or several ionized dopants located a few
nm above the 2D electron system.

In addition to pinpointing the location of QHIs and understanding their contribu-
tion in the high-Bmagnetoresistance oscillations, SGM can also yield spectroscopic
information on QHIs. This is achieved by positioning the tip close to a QHI, and
varying the microscope tip bias as well as current bias across the device. This way,
we uncovered the QHI discrete energy spectrum arising from electronic confinement
and extracted estimates of the gradient of the confining potential, as well as the edge
state velocity [58]. Moreover, we also used the SGM tip to modify the configuration
ofQHedge states in the vicinity of a constriction in order to formaQH interferometer,
i.e. a small quantum ring formed by tunnel-coupled QH edge states [59].
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5.6 Revealing an Analog of the Braess Paradox
in Branched-Out Rectangular Rings

In the above sections, SGM has been used to image the electron transport in annular
shaped QRs. In this section, we demonstrate that SGM can also be used to tune the
electron transport by depleting, by gate effect, a conduction channel in a branched-
out mesoscopic network, whose primary shape is a rectangular ring. This leads to
the discovery of a mesoscopic analog [13] of the Braess paradox [14].

Adding a new road to a congested network can paradoxically lead to a deterioration
of the overall traffic situation, i.e. longer trip times for road users. Or, in reverse,
blocking certain streets in a complex road network can surprisingly reduce average
trip time [60]. This counter-intuitive behavior has been known as the Braess paradox
[14]. Later extended to other networks in classical physics, such as mechanical or
electrical networks [61, 62], this paradox lies in the fact that adding extra capacity to a
congested network can counter-intuitively degrade its overall performance. Initially
known for classical networks only, we have extended the concept of the Braess
paradox to the quantum world [13]. By combining quantum simulations of a model
network and SGM, we have discovered that an analog of the Braess paradox can
occur in mesoscopic semiconductor networks, where electron transport is ballistic
and coherent.

We consider a simple two-path network in the formof a rectangular ring connected
to source and drain via two openings (see Fig. 5.7a for the network geometry).
In practice, this ring is patterned from a GaInAs heterojunction as for the QRs
discussed in the previous sections. The dimensions are chosen to ensure that the
embedded 2DEG is in the ballistic and coherent regimes of transport at 4.2 K. The
short wires in the ring are chosen to be narrower than the source/drain openings to
behave as congested constrictions for propagating electrons. Branching out this ring
by patterning a central wire (see Fig. 5.7a) opens a third path to the electrons that
bypasses the antidot in the initial rectangular ring. Then, we use SGM to partially
block by gate effects the transport through the additional branch. Doing so should
intuitively result in a decreased current transmitted through the device, but this is just
the opposite behavior that is found in certain conditions, both experimentally and in
quantum simulations [13]. Therefore, in a naive picture, electrons in such networks
turn out to behave like drivers in congested cities: blocking one path favors “traffic”
efficiency.

The above finding is summarized in the simulations of Fig. 5.7a, d, which show the
network geometry and a calculated conductance crosscut as a function of tip position,
respectively. Here, the outer width and length of the initial corral are 0.75 and 1.6μm,
respectively, whereas the widths of the lateral, upper/lower, and central (additional)
arms are W�140 nm, L�180 nm, and W3�160 nm, respectively. The width of
the source and drain openings are W0�320 nm. This ensures that electron flow in
the lateral arms (in the absence of the central arm) is congested because 2 W<W0.
In other words, all injected conduction channels (about 10) into the network cannot
be admitted in these arms [13].
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Fig. 5.7 Evidence for a Braess-like paradox in a mesoscopic rectangular network. Frames a–c
depict the network geometries with parameters given in the text. Frames d–f are the corresponding
calculated conductance crosscuts in the presence of a depleting SGM tip scanning along the median
lines of (a–c), respectively. The horizontal dotted lines give the unperturbed conductance without
tip. The Fermi wavelength is 47 nm. Fluctuations in the conductance profiles are UCFs due to the
tip-induced change in the potential felt by electrons propagating through the device

The crosscut in Fig. 5.7d is obtained by computing the network conductance
(source-drain voltage�1 mV) as function of the tip position scanned along the
median line of Fig. 5.7a. This line crosses the lateral and central arms. The tip
potential is mimicked by a point-like potential of −1 V placed at 100 nm above the
2DEG [13], which corresponds to a lateral extension of≈400 nm for the tip-induced
potential perturbation at the 2DEG level. This model potential entirely depletes the
2DEG in one arm when the tip passes above it.

It is clear from Fig. 5.7d that depleting the central arm produces a distinctive
conductance peak that goes well beyond the unperturbed value. This peak has amuch
larger amplitude as the universal conductance fluctuations (UCFs) that are seen as
small oscillations for any tip position along the median lines, as a consequence of the
tip-induced change in the potential felt by electrons propagating through the device
[63]. This strong central peak is the signature of the counter-intuitive Braess-like
behavior mentioned above. Noteworthy, closing one of the lateral arms reduces the
conductance, in agreement with the intuitive expectation: the paradox is seen only
when the central branch is closed, not the lateral ones, which stresses the particular
role played by this central branch.

Congestion plays a key role in the occurrence of the classical Braess paradox
[14, 60, 61]. In order to probe a similar role in the mesoscopic counterpart paradox,
we have simulated two additional networks with enlarged lateral arms (Fig. 5.7b, e:
W�560 nm, L unchanged) and with both enlarged lateral and upper-lower arms
(Fig. 5.7c, f: W�560 nm, L�500 nm) [63]. This releases congestion in the lateral
arms. It is clear from Fig. 5.7e, f that releasing congestion smoothens the counter-
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intuitive conductance peak seen in the congested network when the central arm is
blocked. Nevertheless, there is still a slight conductance (current) increase when
the tip scans just above the central arms in networks e and f, but it no longer goes
beyond the unperturbed conductance for the largest network f. This finding entails
the particular roles played by the additional branch and by network congestion in
the occurrence of a distinctive Braess-like paradox. Yet, more experimental and
theoretical work is needed to put forward a conclusive explanation at themicroscopic
level for the paradoxical behavior reported here.

5.7 Conclusion

The few examples presented in this chapter show how powerful is SGM in imag-
ing, and possibly tuning, the electronic transport in ring-shaped semiconductor and
graphene devices and to reveal how electrons behave down there. It gives valuable
complementary view on phenomena that are usually considered within a macro-
scopic experimental scheme. The imaging of AB interferences and quantum scars,
the ability of locating precisely compressible Coulomb islands in a quantum Hall
interferometer, and the closing of a selected branch in a mesoscopic rectangular ring
to induce a Braess-like phenomenon, all are illustrative of this claim.
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Chapter 6
Functionalization of Droplet Etching
for Quantum Rings

Christian Heyn, Michael Zocher and Wolfgang Hansen

Abstract We give an overview on various types of strain-free semiconductor quan-
tum ring (QR) structures created in a self-assembled fashion with the local droplet
etching (LDE) method. LDE is fully compatible with conventional molecular beam
epitaxy (MBE) and utilizes liquid Ga or Al droplets which drill nanoholes into semi-
conductor surfaces. The nanohole openings are surrounded by walls composed of
Arsenides of the droplet material. Here the nanohole and wall formationmechanisms
and the tunability of their structural properties are discussed. Three different concepts
for QR generation by LDE are addressed. In the first concept, GaAs recrystallized
during LDE with Ga droplets on AlGaAs substrates forms directly GaAs quantum
rings. The second concept is based on the wave-function tuning of V-shaped GaAs
QDs by an applied gate-voltage. Here, either the electron or the hole wave function
can be transformed into a ring-shape, whereas the respective other charge carrier
type remains in a zero-dimensional QD state. The third concept considers the partial
depletion of a near surface GaAs quantum well (QW) due to tunneling. The LDE-
related wall increases locally the distance to the surface which reduces tunneling and
generates a ring-shaped charge-carrier concentration in the QW below the wall. The
fabrication and structural properties of these three types of QRs, simulations of the
quantized electronic levels and wave functions, and first optical data are discussed.

6.1 Introduction

Semiconductor quantum rings (QRs) represent a fascinating class of quantum struc-
tures with intriguing properties highlighted, e.g., in the introduction part of this book.
As a prominent example, quantum-interference phenomena in the rings, the so-called
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Aharonov-Bohm effect [1], have attracted a lot of interest. Recently, the oscillatory
persistent current carried by a single electron in self-assembled InAs/GaAs QRs was
directly measured by means of ultrasensitive magnetization experiments [2].

The fabrication of large ensembles of QRs is possible by utilizing self-assembly
schemes during epitaxial growth. A prominent mechanism for QR self-assembly
has been established by Garcia et al. [3, 4]. Here, strain-induced InAs quantum
dots (QDs) formed in Stranski-Krastanov mode were overgrown with a thin GaAs
layer. This causes the transformation of the initial QDs into InAs QRs. Spectro-
scopic investigations reveal the quantum ring nature of these systems [5]. However,
due to unintentional intermixing with GaAs from the substrate [6], the composition
of the QRs is hardly controlled. Furthermore, such InAs QRs in GaAs matrix are
substantially strained and, thus, the electronic states are modified by piezoelectric
fields.

Strain-free GaAs QRs have been fabricated in a self-assembled fashion by uti-
lizing liquid metal droplets during semiconductor epitaxy, i.e., with droplet epitaxy
[7–10] or local droplet etching (LDE) [11, 12]. A droplet epitaxy process [13–20]
starts with the deposition of metallic droplets in Volmer-Weber growth mode [21].
During this step, the arsenic flux to the substrate surface is switched-off. After droplet
generation, the liquid droplets are crystallized under an arsenic atmosphere. Depen-
dent on the arsenic pressure during crystallization, the self-assembled generation of
semiconductor quantum dots (QDs) [15–19], lateral QD pairs [20], and quantum ring
complexes [7–10] has been demonstrated.

Droplet epitaxy with crystallization of the liquid droplets is performed at an As
flux of F � 10−5 Torr. In contrast to that, at a minimized As flux of F < 10−6 Torr,
the droplets can act as an etchant performing a self-organized local drilling of deep
and spatially well separated nanoholes into semiconductor surfaces. Examples of
nanoholes drilled into an AlGaAs surface are shown in Fig. 6.1. This local droplet
etchingmethod was introduced byWang et al. [22] for etching of nanholes into GaAs
surfaces with Ga droplets. Later, we have demonstrated the high flexibility of droplet
etching and used Ga [23], Al [24–26], In [12], InGa, GaAl, and InGaAl droplets for
etching of GaAs, AlGaAs, and AlAs substrates.

First functionalizations of the droplet etched nanoholes include the controlled
nucleation of strain-induced InAs QDs in such holes [27], the creation of strain-free
GaAs QDs of adjustable size [24–26, 28] by hole filling in a post-LDE deposition
step, and self-aligned quantumdotmoleculeswith strong coupling [29]. Furthermore,
ultra-short nanopillars in so-called air-gap heterostructures [30] were realized, which
are interesting, e.g., for thermoelectric applications [31].

The nanohole openings are surrounded by ring-like walls (Fig. 6.1) consisting of
a crystallized As compound of the droplet material [32]. That means, LDE with Ga
or Al droplets results in formation of GaAs [12] or AlAs [24] walls, respectively.
If the structures are embedded in AlGaAs, the GaAs wall will form a quantum-ring
like structure while the AlAs wall remains optically inactive. Thus, nanoholes with
GaAs walls represent a first example for self-assembled QRs fabricated using LDE.

In this chapter, we start with an overview of the general mechanism and structural
properties of nanoholes createdwith the self-assembled local droplet etchingmethod.



6 Functionalization of Droplet Etching for Quantum Rings 141

-200 0 200
-60

-40

-20

0

20

 z
 [n

m
]

 x [nm]
-200 0 200

 [110]
 [1-10]

 x [nm]
-200 0 200

-60

-40

-20

0

20 660°C630°C600°C

 x [nm]

 z
 [n

m
]

1 µm

(a)

(b)

Fig. 6.1 a AlGaAs surface with low-density nanoholes after local droplet etching (LDE) with Al
droplets at T = 660 ◦C. b AFM depth profiles of nanoholes etched at varied temperatures T as
indicated

This is followed by a description of three different concepts for GaAs quantum ring
generation by LDE. First, recrystallized GaAs forms QRs around LDE nanoholes.
Second, an applied electric field induces QRs in wave-function tunable V-shaped
GaAsQDs. Third, QRs are localized in partially depleted near surfaceGaAs quantum
wells (QW). In addition to the structural properties, simulations of the quantized
electronic states in the QRs and first optical data are discussed.

6.2 Local Droplet Etching of Nanoholes

The samples discussed here are fabricated using a conventional solid-source molec-
ular beam epitaxy (MBE) system equipped with a valved cracker source for As4
evaporation. After MBE growth of an AlGaAs buffer layer, the As cell shutter and
valve are closed yielding a reduction of the As4 flux by a factor of at least 100 in
comparison to typical MBE growth of GaAs. Now, droplet etching is performed in
two steps. In the first step, step, the droplet material e.g. Ga or Al is deposited and
droplets are nucleated in Volmer-Weber mode (Fig. 6.2a) [17, 21]. The coverage with
droplet material is usually in the range of 1–3 monolayers (ML). During a subse-
quent post-growth annealing step of 180 s, the initial droplets are transformed into
nanoholes surrounded by walls (Fig. 6.2b, c, d) [23, 33].
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Fig. 6.2 Cross-sectional schematics of the processes during the self-assembled formation of
nanoholes in AlGaAs surfaces by local droplet etching (LDE) with Al droplets. a Droplet material
deposition and droplet formation in Volmer-Weber growth mode. b Post-growth thermal annealing
with droplet to hole transformation. c Final nanohole with opening surrounded by a crystalline wall.
The central structural properties are the hole depth dH between the top of the wall and the hole
bottom and the angle α between the hole side-facet and the plane surface. d Perspective AFM image
of a nanohole

The central process for nanohole formation is diffusion of As from the crystalline
AlGaAs substrate into the liquid droplet driven by the concentration gradient. As
a consequence, the substrate liquefies at the interface to the droplet. As a further
consequence, the As concentration in the liquid droplet material increases. This As
concentration crystallizes togetherwith dropletmaterial thewall around the nanohole
opening [33]. The next important process is the removal of the liquidmaterial from the
initial droplet position. Previous studies indicated that a small arsenic background of
F � 1× 10−7 Torr is essential for this [33, 34]. Without As background, the initial
droplets are conserved and no holes are formed. We assume that droplet material
detaches from the droplets during annealing and spread over the substrate surface.
Without As background, the droplet material re-attaches and conserves the droplets.
On the other hand, a small As background crystallizes the detached droplet material
on the planar surface, thus, the liquid material is permanently removed, and the
nanoholes are open [33]. Interestingly, the As background can be supplied by both a
small As flux to the surface as well as by the topmost As layer in an As-terminated
surface reconstruction acting as a reservoir [35].

The density, shape, and size of LDE nanoholes can be tuned over a wide range by
the process conditions. Central parameters are the coverage θ of deposited droplet
material, the process temperature T , the arsenic flux FAs, as well as the droplet
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and substrate materials. The influence of θ and T is systematically investigated and
modeled in terms of scaling laws [36]. Examples for etching with Al droplets, the
hole density can be varied from 106 to 108 cm−2 by the process temperature resulting
in hole depths of up to 125 nm. Typical AFMprofiles of nanoholes etched at different
temperatures are plotted in Fig. 6.1b. A simple model of the droplet etching process
including recrystallization of the droplet material is discussed in Sect. 6.4.2.

6.3 Simulation of Electronic States

LDE nanoholes are used as a template for the creation of versatile nanostructures like
quantum dots or quantum rings. A simple single-particle simulation model based on
effective mass approximation in cylindrical symmetry [37] is used for the calculation
of the electron and hole wave functions Ψ and the quantized energy levels of such
nanostructures. Starting point is the one-band Schrödinger equation in the effective
mass approximation:

− �
2

2
� ·

(
1

m∗ �Ψ

)
+ VΨ = EΨ (6.1)

where � is Planck’s constant divided by 2π , m∗ is the charge carrier effective mass,
V is the band-edge potential energy, E is the energy of the quantized charge carrier,
and Ψ is the envelope of the charge carrier wave function. In cylindrical symmetry
we have the coordinates (z, r, ϕ), where z is the axial coordinate, r is the radial
coordinate, and ϕ is the azimuthal angle.

As an extension to the basic model in [37], a vertical electrical field F along
z-direction is considered in the potential via V = V0 + F(z − z0) for electrons and
V = V0 − F(z − z0) for holes, with the potential V0 at zero field and the neutral point
z0 of the field. The model distinguishes two regions, the GaAs QR (or QD) and the
AlxGa1−xAs barrier (x = 0.35). The respective potentials and effective masses are for
theGaAsQRs: V0 = 0 (electrons and holes),m∗/m0 = 0.067 (electrons),m∗/m0 = 0.51
(holes) and for the AlGaAs barrier: V0 = 0.3 eV (electrons), V0 = 0.177 eV (holes),
m∗/m0 = 0.092 (electrons), m∗/m0 = 0.6 (holes), with the free electron mass m0.

According to [37], (6.1) rewritten in cylindrical coordinates and supplemented by
corresponding boundary conditions becomes a partial differential equation (PDE)
eigenvalue problem. The computation is performed with the finite element method
(FEM) using the software package COMSOL Multiphysics. First, the QD shape is
defined and discretized and, second, the PDE is solved site-specific for the calculation
of the energies of the first 20 eigenstates as well as of the corresponding wave
functions. For the discretization, we use a triangular mesh with irregular element
size ranging from 0.0016 to 0.8 nm. Independent model calculations for electrons
and holes yield the nth state single-particle energies Ee,n, Eh,n and the corresponding
wave functions Ψe,n, Ψh,n, respectively.
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From the simulated wave functions, we calculate the Coulomb interaction energy
between the electron and hole with the Coulomb integral:

Ceh,n = − e2

4πεs

∫∫ ∣∣Ψe,n(
−→re )

∣∣2 ∣∣Ψh,n(
−→rh )

∣∣2∣∣−→re − −→rh
∣∣ d−→re d−→rh (6.2)

where e is the elementary charge and εs the semiconductor dielectric constant.
Now, the energy of an optical transition between an electron and hole of the nth

state is given by:
En = Eg + Ee,n + Eh,n + Ceh,n (6.3)

with the GaAs band-gap energy Eg . An additional influence of correlation effects
[38] is not considered.

6.4 Quantum Rings by Local Droplet Etching

The common feature of the different types of QRs discussed here is the LDE-based
fabrication method and, thus, the nanohole related geometry. We will start with
GaAs QDs (Fig. 6.3a) filled into nanoholes as a reference system. In the first type
of QR structures, a ring-like confinement is located in recrystallized GaAs formed
around the nanohole openings during LDE with Ga droplets on AlGaAs substrates
(Fig. 6.3b). The second type is based on the wave-function tuning of V-shaped GaAs
QDs by a vertical electric field (Fig. 6.3c) and the third type uses the partial depletion
of a near surface GaAs quantum well (Fig. 6.3d).

AlAs

AlGaAs GaAs

F AlAs

AlGaAs GaAs

GaAs

AlGaAsAlGaAs GaAs

(a) (b)

(c) (d)

AlAs

Fig. 6.3 Schematics of the various types of LDE nanostructures that are discussed in this chapter.
a Reference cone-shaped GaAs QDs fabricated by filling of Al-etched nanoholes with GaAs.
b Recrystallized GaAs forms QRs during LDE with Ga droplets. c Field-induced QRs in wave-
function tunable V-shaped GaAs QDs filled into Al-etched nanoholes. d Non-confined QRs in a
partially tunnel-depleted GaAsQW. The respective localized electronwave-functions are illustrated
by red/yellow ellipsoids
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6.4.1 QDs as a Reference System

This section addresses LDE GaAs quantum dots as a reference system. For QD
fabrication, nanoholes drilled with Al droplets into AlGaAs or AlAs/AlGaAs sur-
faces are filled by deposition of a planar GaAs layer with a thickness dF [23, 39].
Subsequently, a 80nm thick AlGaAs cap layer is grown.

Two types of nanoholes are used for QD creation where the hole shape is mainly
determined by the temperature T during droplet etching and the choice of the sub-
strate material. The central structural properties are the hole depth dH defined as the
distance between the average top of the wall and the hole bottom and the angle α

between the hole side-facet and the plane surface (Fig. 6.4a). Here we discuss QDs
where the nanoholes are prepared by etching at T = 650 ◦C on an AlAs layer. AFM
measurements of such holes under air are not reliable due to the very fast oxidation
of open AlAs surfaces. Therefore, we analyze the hole shape using cross sectional
transmission electron microscopy (TEM) [40]. An example for a TEM image of a
GaAs QD formed in an AlAs/AlGaAs hole is shown in Fig. 6.4b. From the TEM
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Fig. 6.4 a Schematic of an Al droplet etched nanohole with AlAs wall drilled either into an
AlAs/AlGaAs substrate or into AlGaAs. The relevant structural features are the hole depth d and
the hole side-facet angle α. b Cross-sectional TEM image of a GaAs QD fabricated by filling of a
hole in AlAs/AlGaAs [40]. The dashed lines indicate the assumed hole side-facets with α � 50◦
and dH � 17 nm. c Left: ensemble PL spectra from GaAs QDs in AlAs/AlGaAs with filling
layer thickness dF = 0.57 nm at varied excitation power PE as indicated. Right: single-dot PL
measurement of the sample with PE varied from 0.06 to 0.26µW in equidistant steps. Exciton (X)
and biexciton (XX) peaks are indicated. The PL spectra are vertically shifted for clarity
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data we extract an average d = 17 nm and α = 50◦. GaAs QDs filled into holes in
AlGaAs surfaces are discussed in Sect. 4.3. There, oxidation does not alter the hole
shape and the structural properties are obtained from AFM images.

GaAsQDs in AlAs/AlGaAs (Fig. 6.4b) have a density of about 4×108 cm−2. The
optical properties of the QD samples are studied using photoluminescence (PL) spec-
troscopy atT =8K. Ensemble and single-dot PLmeasurements are performed,where
for single-dot PL individual QDs are selected using a focused laser for excitation. A
typical ensemble PLmeasurement at varied excitation powerPE is shown in Fig. 6.4c.
The data establish a clear shell structure with four quantized states E0, . . . ,E3. At
low PE , a narrow ensemble PL linewidth of about 10 meV indicates a highly uniform
QD ensemble. The peaks are nearly equidistant with ΔE = Ei+1 − Ei = 55.6 meV
as indicated by the dotted vertical lines in Fig. 6.4c. A single-dot measurement of a
GaAs QD is shown in Fig. 6.4c. The spectra show clear excitonic peaks with exciton
labeled as X and red-shifted biexciton as XX, respectively. The X and XX peaks are
identified by their excitation power dependence [41].

Measurements of the excitonic ground-state energy yield a systematic decrease
with increasing dF in the range from Ex = 1.69 down to 1.55 eV (Fig. 6.5a). Values of
the level separation ΔE = E1 − E0 show a decrease from 90 meV down to 40 meV
with increasing hole filling level dF and, thus, increasing QD size (Fig. 6.5b).

We interpret the PL data of GaAs QDs in AlAs/AlGaAs substrate using simu-
lations where an inverted cone shape is assumed for the dots (Fig. 6.5c). Since the
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Fig. 6.5 a Measured exciton ground-state energies EX of GaAs QDs in AlAs/AlGaAs at var-
ied hole filling level dF . b Measured quantization energies ΔE = E1 − E0. c Schematics of the
rotational-symmetric cone-shape used for the QD simulations. d Cross-sectional simulated proba-
bility densities Ψ 2

e,0, Ψ
2
h,0 of the electron and hole ground-states in a cone-shaped QD with α = 50◦

and hQD = 11.2 nm. The color code used for the probability densities is valid also for the follow-
ing figures. e Height hQD of cone-shaped quantum dots with best agreement between simulated
ground-state emission energy and measured Ex at varied hole filling level dF
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side angle of the cone is given by the side-facet angle α of the initial nanoholes, the
quantum dot height hQD is the only free parameter. Figure6.5d shows as an exam-
ple the simulated electron and hole probability densities Ψ 2

e,0 and Ψ 2
h,0 inside the

cone-shaped QD.
Operationally, hQD is adjusted for best agreement between the simulated ground-

state emission energy E0 and the measured exciton peak energy Ex (Fig. 6.5a). In
the next step, the simulated quantization energy ΔE = E1 − E0 is compared to the
experimental value. We find that the simulated ΔE overestimates the experimental
data by a factor of about 1.5. Despite this deviation, we consider a cone shape as a
reasonable approximation for dots in AlAs/AlGaAs. A better approximation basing
on a polynomial shape is discussed in [41]. Figure6.5e shows for dots in cone-shape
approximation the values of hQD that yield best agreement with the experimental Ex

as function of the hole filling level dF .
Droplet etched GaAs QDs in AlAs/AlGaAs or in AlGaAs are suggested for appli-

cations in quantum information technology since they demonstrate an optical emis-
sion wavelength tunable by the hole filling-level from 700 to 800nm, small exciton
peak linewidths down to 25 µeV, low neutral exciton fine-structure splittings down
to 4 µeV, and clear single-photon emission [39].

6.4.2 QRs in Recrystallized GaAs

As is discussed in Sect. 6.2, the openings of droplet etched nanoholes are surrounded
by recrystallized walls that are composed of Arsenides of the droplet material. To
formGaAsQRs, GaAswalls formed after LDEwith Ga droplets onAlGaAs surfaces
are overgrown with 80 nm AlGaAs as barrier material (Fig. 6.3b). The structural
properties of the QRs before overgrowth are studied with AFM. Figure6.6a, b show
examples of AlGaAs surfaces with GaAs QRs. The QRs are spatially well separated
and the AlGaAs surface between the individual rings is nearly atomically flat.

The density N of the QRs is plotted in Fig. 6.6c as function of the temperature
T during LDE for two sample series. The data shows the expected decrease of N
with increasing T which is related to the droplet nucleation kinetics [17]. In addition,
there is a very strong difference between the two sample series which is attributed to
an unintentional variation of the background As pressure during the LDE process.
In detail, the main shutter in front of the sample surface is closed during LDE of
sample series 1, whereas series 2 is processed with open main shutter. The reason
is a maintenance of the MBE chamber after fabrication of sample series 1, during
which the distance between main shutter and sample surface was reduced. Now,
due to heat reflection at the shorter distance, with closed main shutter the sample
temperature is only poorly controlled. Therefore, the series 2 samples are grownwith
open main shutter. An open main shutter causes a higher As background flux FAs

which substantially reduces the nanohole density for series 2 samples [35].
In addition, Fig. 6.6d shows the inner rI and outer rO radius of the GaAs walls

around the nanohole as function of LDE temperature. The inner wall radius rI is
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Fig. 6.6 a AFM image of an AlGaAs surface with sample series 1 GaAs quantum rings created
using droplet etching at T = 600 ◦C. The inset shows a perspective view of a single ring. b AFM
image of an AlGaAs surface with sample series 2 GaAs QRs fabricated at T = 655 ◦C. The inset
shows a perspective view of a ring. c Density N of GaAs QRs as function of process temperature
T for two sample series. d Average inner rI and outer rO radius of the GaAs walls around the hole
opening. e Average depth dH of LDE nanoholes in the center of the QRs. f Average wall height hW

equal to the radius of the nanohole opening. We observe an increase of the radii with
T in agreement with earlier results [36] and larger walls for series 2 samples. The
temperature dependent depth dH of the nanoholes is depicted in Fig. 6.6e and the
average height of the walls hW in Fig. 6.6f.

The optical properties of samples with Ga-LDE QRs are studied using PL at T =
8 K. An ensemble PL measurement of a series 1 QR sample etched at T = 540 ◦C
is plotted in Fig. 6.7a together with a measurement from a reference sample with the
same layer sequence but without LDE step. Obviously, the reference sample shows
no PL signals which clearly proves that the peaks in the QR sample are related to
the LDE step. The ensemble QR optical emission is rather broad with several peaks
in the range between 1.69 eV up to 1.87 eV. Figure6.7b shows an example for a
single-ring measurement from a QR sample etched at T = 580 ◦C in sample series
1. The higher process temperature yields a reduced QR density (Fig. 6.6c) which is
advantageous for an easy selection of a single ring by a focused laser. The single-
ring spectra show a peak at about 1.625 eV and a bunch of peaks in the range from
1.66 up to 1.7 eV. Excitation power dependent measurements show that the peak at
1.625 eV arises first at low excitation power and the higher energy peaks become
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visible with increasing excitation. This behavior is in agreement with the typical
excitation power dependence of the shell-structure of the electronic states in QD
samples (Fig. 6.4c). Assuming a shell structure, we attribute the peak at 1.625 eV to
the ground state E0 (s-shell) and the peak at 1.668 eV to the first excited state E1

(p-shell). This yields a quantization energy of E1 − E0 = 43 meV. The substructure
of the p-shell emission might be related to a slightly asymmetric shape of the QRs.

The inset of Fig. 6.7b shows high-resolution spectra from the QR ground-state
emission at very low excitation powers. There are several peaks that we identify
according to the PL emission of single GaAs LDEQDs [41] (Fig. 6.4c), i.e., the peak
with highest energy is an exciton (X) and the red-shifted peak a biexciton (XX). The
excitation-power dependence supports this identification, with a stronger increase of
the XX peak intensity at increasing excitation power. The exciton-biexciton splitting
is 1.42 meV, which is in agreement with typical values of GaAs LDE QDs [41]. The
additional further red-shifted peaks are attributed to multi-excitonic complexes.

We have performed simulations of the electronic states (see Sect. 6.3) for the
further interpretation of the PL data. In a first approach, we consider the crystallized
GaAs wall around the nanohole opening as QR and approximate the circular ring
shape using a isosceles triangle as cross-section (Fig. 6.4b). The sizes rO = 52 nm,
rI = rO/2, and hW = 2 nm are taken from the AFM data (Fig. 6.6b, d) with respect
to the fabrication conditions of the PL sample in Fig. 6.7b. Figure6.8a shows for
illustration a corresponding QR cross-section together with the simulated electron
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Fig. 6.8 a Cross-sectional simulated probability densities Ψ 2
e,0, Ψ 2

h,0 of the electron and hole
ground-states in a crystallized GaAs wall with rO = 52 nm, rI = rO/2, and hW = 2 nm. The
dashed lines indicate the shape of the QR with cylindrical symmetry. b Simulated PL ground-state
emission energy E0 of a GaAs QR with rO = 52 nm, rI = rO/2, and varied hW . c Simulated PL
quantization energy E1 − E0 at varied hW . d Cross-sectional simulated electron and hole probabil-
ity densities in a crystallized GaAs wall with recrystallization also inside the nanohole with rO =
52 nm, rI = rO/2, hW = 2 nm, and dH = 11 nm. e Simulated PL ground-state emission energy of
a GaAs QR with recrystallization inside the hole, where rO = 52 nm, rI = rO/2, hW is varied, and
dH = hW + 9 nm. f Simulated PL quantization energy at varied hW

and hole probability densities Ψ 2
e,0, Ψ 2

h,0. The simulated PL ground state emission
energy E0 at varied wall height hW is plotted in Fig. 6.8b and the quantization energy
E1 − E0 in Fig. 6.8c. For the measured hW = 2.0 nm the simulation yields a value of
E0 = 1.795 eV which is substantially higher than the experimental value of 1.625 eV.
Furthermore, the simulated quantization energy E1 − E0 = 70 meV is also higher
than the measured one of 43 meV. We assume that this discrepancy between PL
results and simulations is caused by a QR shape that differs from a simple triangular
cross-section. Or, in other words, the quantum ring morphology is not identical with
the shape of the wall as imaged via AFM on the surface. A possible explanation is
recrystallization of GaAs not only on the planar surface in form of the wall but also
inside the nanohole.
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Since no further structural data are available, we discuss now possible QR geome-
tries on basis of a simple model of the droplet etching process. The model is a sim-
plification of a previous model [32] without consideration of the As concentration in
the droplets and the temperature dependence. Stating point is a liquid Ga droplet with
volume V = θ/N , with the deposited droplet material coverage θ and the droplet
density N . The droplet volume shrinks during post growth annealing due to detach-
ment of Ga atoms with a rate Rd . The detached Ga atoms spread over the substrate
surface and form a planar GaAs film with the background As flux [33]. Two approx-
imations are applied to describe the detachment process. First, the detachment takes
place locally at the border line between the droplet surface and the substrate surface.
In this case, the time evolution of the droplet volume would be dV/dt = −RdV 1/3,
where the details of the droplet geometry are neglected for simplicity. Alternatively,
the Ga atom detachment can take place from the whole droplet surface which yields
dV/dt = −RdV 2/3. Figure6.9a shows the time evolution of the droplet volume V
and Fig. 6.9b that of the droplet radius rD for both approximations.

For the calculation of the evolution of the crystalline surface morphology we use
a one-dimensional finite element approach with a cell size of 1 nm. We start with
a flat surface at z = 0. Etching removes crystalline material at the interface to the
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Fig. 6.9 a Calculated time evolution of the droplet volume V during post growth annealing. Two
approximations for the Ga atom detachment are considered with dV/dt ∝ V 1/3 and dV/dt ∝ V 2/3

as indicated. b Calculated time evolution of the droplet radius rD. c Calculated profile of the GaAs
quantum ring (red) in the approximation dV/dt ∝ V 1/3. The AlGaAs substrate is in green color.
d Calculated profile of the QR for dV/dt ∝ V 2/3
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liquid droplet for surface cells at radii <rD. Here, the surface level is decreased by
dz/dt = −Re, with the etching rate Re. Recrystallization of GaAs is assumed at the
borderline between the droplet surface and the surface of the crystalline substrate.
This is modeled by an increase of the surface level for the cell at radius rD by
dz/dt = Rr , with the recrystallized rate Rr . Operationally, the value of Rd is adjusted
for a time up to droplet removal of 150 s according to [32], the value of Re for a hole
depth of 9nm according to the AFM data, and the value of Rr for a wall height of
2 nm. Figure6.9c shows calculated profiles of the etched AlGaAs substrate surface
and the surface of the recrystallized GaAs in the approximation dV/dt ∝ V 1/3.
The recrystallized GaAs in the approximation dV/dt ∝ V 2/3 is shown in Fig. 6.9d.
Interestingly, the thickness of the recrystallized GaAs decreases with decreasing
r in Fig. 6.9c, whereas Fig. 6.9d shows a constant thickness. This is related to the
time evolution of the droplet radius (Fig. 6.9b) with a constant time interval per radius
and, thus, a constant recrystallization rate for Fig. 6.9d and a reduced recrystallization
for small radii in Fig. 6.9c. A comparison with AFM linescans (Fig. 6.1b) indicates a
better agreementswith the approximation dV/dt ∝ V 2/3 and, thus, suggestsGa atom
detachment from the whole droplet surface. A more elaborated model assuming a
core-shell geometry for the droplets [32] provides also agreementswithAFMprofiles
of the wall around the hole opening. In summary, the model calculations illustrate
that recrystallization of GaAs inside the nanohole is a possible process and that
the shape of an LDE GaAs QR can substantially deviate from that of the surface
wall. Nevertheless, additional structural investigations are required to obtain a more
realistic shape of the QRs.

We consider now the recrystallization of GaAs also inside the nanoholes and
simulate theQRoptical properties using an approximated ring shapewhich combines
Fig. 6.9c, d. Figure6.8d illustrates this QR shape together with examples of simulated
electron and hole probability densities. The simulated PL ground-state emission
energy E0 for a crystallized GaAs wall with recrystallization inside the nanohole at
varied hW is plotted in Fig. 6.8e and the quantization energy E1 − E0 in Fig. 6.8f.
The value of E0 = 1.630 eV simulated for hW = 2.0 nm is now close to the PL
result, whereas the simulated quantization energy of 26.5 meV underestimates the
experimental value. Nevertheless, due to the missing structural data, the aim of the
simulations at this stage is not a quantitative reproduction of the PL results. As a
more general outcome, we have clarified that the shape of the quantum rings is not
identical with the walls crystallized on the surface. Redeposited GaAs inside the
holes must be considered as an additional contribution.

6.4.3 Field-Induced QRs in V-Shaped Nanostructures

The next concept for QR creation by using droplet etching is fundamentally dif-
ferent from the previous approach. Here, we use Al droplets for drilling of about
30nm deep nanoholes surrounded by an optically inactive AlAs wall [39]. The holes
are filled with GaAs similar to the procedure described in Sect. 6.4.1 for QD fab-
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Fig. 6.10 a AFM linescans
equally scaled in x- and
z-axis of the center part of a
nanohole in AlGaAs and a
hole filled with a V-shaped
GaAs QD (dF = 0.45 nm).
The baselines of the
individual AFM scans are
offset by the respective
deposited layer thickness.
The dashed white lines
indicate the approximated
dot shape used for the
simulations. The inset shows
an overview of the dot.
b Single-dot PL
measurements of a V-shaped
QD with filling level dF =
0.45 nm at varied excitation
power and without applied
electric field. The spectra are
vertically shifted for clarity
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rication. In contrast to the QDs of Sect. 6.4.1, here an AlGaAs substrate is used
for etching. This results in a strongly different shape of the nanoholes and, thus,
also of the GaAs nanostructures inside the hole template. Figure6.10a shows AFM
linescans of a sample series where the fabrication process has been stopped at the
different interfaces. The data indicate for the hole morphology a depth of dH = 32 nm
and a side-facet angle α = 30◦. GaAs is filled into the nanohole template by depo-
sition of a planar GaAs layer with thickness dF . In contrast to the approximately
cone-shaped QDs in AlAs/AlGaAs surfaces (Sect. 6.4.1) the QDs in AlGaAs have a
V-shape (Fig. 6.10a).We note that, without electric field, the ground-state probability
densities are disk-like (see below).

Due to their low density of about 2 × 107 cm−2, single V-shaped QDs are selected
for PL measurements using a focused laser for excitation. An example of a single-
dot measurements at varied excitation power PE is shown in Fig. 6.10b. At low
PE = 0.02 µW, a sharp exciton peak (X) is visible. At increased PE = 0.15 µW,
a biexciton (XX) and additional red-shifted peaks indicate the formation of multi-
excitonic complexes. The situation changes qualitatively at high PE = 5 µW. Now
the single-dot peaks are very broad, which we attribute to strong spectral diffusion
caused by charge carriers generated by the intense laser irradiation. Furthermore,
the maximum of the peak E0 with lowest energy is red-shifted by about 5 meV in
comparison to the exciton peak (X). This red-shift is caused by the contribution of
multi-excitonic complexes to the line shape. Furthermore, the PL data at high PE

establish a clear shell structure with four visible quantized states E0, . . . ,E3.
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Fig. 6.11 a Measured exciton ground-state energies EX of V-shaped GaAs QDs at varied hole
filling level dF .bMeasured quantization energiesΔE = E1 − E0. c Schematics of the approximated
rotational-symmetric QD V-shape used in the simulations. d Cross-sectional simulated probability
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2
h,0 of the electron and hole ground-states in a V-shaped QD in AlGaAs. The dashed

lines indicate the QD cross-section. Without electric field, the ground-state probability densities are
disk-like. e Approximated QD shapes with best agreement between simulations and PL data for
varied dF

The excitonic ground-state energy decreases with increasing dF and demonstrates
a very wide range of tunability from Ex = 1.81 down to 1.55 eV (Fig. 6.11a). The
higher Ex of the V-shaped dots compared to cone-like QDs is caused by their smaller
height (Fig. 6.5a). The level separationΔE = E1 − E0 shows a decrease from23meV
down to 14 meV with increasing dF (Fig. 6.11b). In comparison to cone-like dots
(Fig. 6.5b), the V-shaped QDs have a smaller quantization energy which is related to
their larger lateral extension.

As is described before for the cone-like QDs (Sect. 6.4.1), the PL data are inter-
preted with the help of simulations. We start with an inverted cone-shape also for the
dots in AlGaAs. After adjusting the QD height for agreement with the ground-state
emission, the simulated ΔE overestimates the experimental values by a factor of at
least 5. This very strong disagreement indicates that a cone shape is not a reasonable
approximation for the dots in AlGaAs. For a better agreement with the experiments
we model the dots on AlGaAs now by a V-shape. Figure6.10a shows a compari-
son between AFM linescans of a dot and the corresponding V-shape approximation
used for the simulation. The approximated V-shape geometry is characterized by 4
parameters as is sketched in Fig. 6.11c. We assume in addition that the side angle of
the QD equals the hole side-facet angle α = 28◦ and that the wall of the nanohole is
completely covered with QD material which yields dH = 30 nm (Fig. 6.10a). Now,
two parameter remain for fitting: hQD and rI (Fig. 6.11c). An example of the sim-
ulated electron and hole ground-state probability densities is shown in Fig. 6.11d.
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Adjustment of the two dot-shape related fitting parameters (hQD, rI ) allows an exact
reproduction of both the experimental Ex and ΔE. A summary of the approximated
dot geometries with best agreement between simulations and measured optical data
is shown in Fig. 6.11e for a varied hole filling level dF .

In the next step, the influence of a vertical electric field F on the exciton recombi-
nation energy is discussed, the so-called Stark shift [42] in analogy to spectroscopy
on atoms. Simulation results for a cone-shapedQD (not shownhere) show a parabola-
like dependence of the exciton peak energy on F which is also observed for many
other QD systems [43–45].

For field-dependent PLmeasurements the QDs are embedded in a Schottky-diode
with an 18nm thick evaporated Ti-layer as top gate. A gate-voltage Vg is applied
between top and back gate (distance dg = 200 nm) to adjust a vertical electric field
F . An example for the measured field-dependent optical emission from a V-shaped
QD is show in Fig. 6.12a. The data show a complex behavior with several lines and
prominent intensity variations. Additional measurements (not shown here) identify a
zero photo-current between top and back-gate at a gate-voltage Vg = V0 � 0.8 V.We
assume that this gate voltage compensates the Schottky barrier and yields flat-band
conditions with F(V0) = 0. This corresponds to the situation without metalization.
The gate-voltage controlled field is F(Vg) = (Vg − V0)/dg . We identify the exciton
(X) and biexciton (XX) transitions from excitation-power dependent measurements
[41] at F = 0. The additional lines occurring at higher |F | are attributed to charged
excitons. Most importantly here, the exciton line deviates from the usual parabolic
behavior and shows an only weak field dependence in the regime−0.4< Vg < 1.1 V
corresponding to fields of −20 < F < 15 keV.

Simulations of the PL emission from V-shaped QDs are performed for an under-
standing of their unexpected field-dependence. In detail, in Fig. 6.12b the single-
particle energies of the electron Ee,0 and hole Eh,0 ground-states as function of F are
plotted. The variation of Ee,0 and Eh,0 is controlled by the influence of the electric
field on the band-edge potential V ∝ zF and the shift of the z-positions of the wave-
function centers. The z-positions ze, zh of the center of mass of the electron and hole
wave functions are plotted in Fig. 6.12c with respect to the center of the positions
at F = 0. The very strong and highly asymmetric shift of ze and zh is caused by the
V-shape of the QD. Dependent on the sign of the electric field, either the electron or
the hole is pushed into the wing of the V. Figure6.13 illustrates the corresponding
probability densities. The shift is stronger for holes compared to electrons due to their
smaller size. In addition to the shift along z-direction there is also a strong radial
shift of the wave-function center of mass. This huge displacement of the electron and
hole at high |F | yields a strong variation of the Coulomb energy (Fig. 6.12d) with
Ceh � 15 meV at F = 0 and Ceh < 2 meV for F < −20 kV/cm or F > 10 kV/cm.
The simulated exciton recombination energy Ex is shown in Fig. 6.12e together with
the single-particle recombination energy Esingle = Eg + Ee,0 + Eh,0 without consid-
eration of Ceh. In the field range of −20 kV/cm < F < 10 kV/cm the simulations
predict an approximately constant Ex. A comparison with Esingle indicates that this
non-parabolic Stark shift is caused by the strong variation ofCeh. The simulated field
range with approximately constant Ex agrees quantitatively with the experimental
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Fig. 6.12 Vertical electric
field F dependent results of a
GaAs QD with V-shape.
a Grey-scale plot of the PL
emission intensity at T = 8 K
from a V-shaped QD with dF
= 0.45 nm as function of F
varied by a gate-voltage Vg .
Exciton (X) and biexciton
(XX) lines are marked.
b Simulated single-particle
energies of electron (e) and
hole (h) ground-states.
c Simulated z-positions ze, zh
of the center of mass of the
electron and hole wave
functions. d Simulated
Coulomb energy Ceh.
e Simulated exciton energy
Ex together with the
single-particle
recombination energy Esingle
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finding (Fig. 6.12a). This good agreement supports the interpretation of a huge elec-
tron or hole displacement and a corresponding very strong variation of the Coulomb
energy, which compensates the single particle Stark shift.

As the key outcomehere, the simulations demonstrate that the shape of the electron
or hole wave-function can be substantially transformed by an electric field. This
wave-function tuning is visualized in Fig. 6.13, where a disk-like wave function at
F = 0 is transformed with increasing absolute field into a wave function on a conical
surface (electron at F = −20 kV/cm) and finally into a ring-like wave function.
Importantly, either the electron or the hole wave-function is transformed whereas
the respective other charge carrier type is pushed into the QD apex with only minor
changes of its wave function. These simulation results suggest the V-shaped GaAs
QDs as promising candidates for the realization of field-tunable quantum rings.
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Fig. 6.13 Wave-function tuning in V-shaped GaAs QDs probability densities Ψ 2
e,0, Ψ 2

h,0 of the
electron and hole ground-states in a V-shaped GaAs QD at varied vertical electric field F . The
dashed lines indicate the QD shape

6.4.4 QRs in Partially Depleted QWs

The third concept for LDE based QR creation starts with a shallow GaAs quantum
well embedded in AlGaAs barrier material. The cap layer is very thin allowing a fast
tunneling of charge carriers from the well into the closely neighbored surface [46].
Thus, the QW ismostly depleted. Nanoholes drilled with Al droplets into the QW are
surrounded by AlAs walls which locally increase the tunnel barrier thickness. Below
the wall, tunneling is reduced due to the thicker tunnel barrier and a ring-shaped
charge carrier concentration can be formed (Fig. 6.3d).

Figure6.14a shows a room temperature PL measurement from a 6nm wide GaAs
QW with 100nm thick AlGaAs cap layer. The QW emission around 1.525 eV is
clearly visible. The additional weaker peak at 1.426 eV is attributed to the GaAs
substrate. PL data from another QW sample now with only 5nm cap layer thickness
are plotted in Fig. 6.14b. Now, the QW emission is about 100 weaker compared to
the QWwith thicker cap and even weaker than the GaAs substrate peak. Figure6.14c
shows a summary of the normalized QW intensity from several samples with varied
dcap. The data indicate no significant intensity reduction for dcap ≥ 20 nm, followed
by a very strong decrease of the QW emission with thinner cap layer.

The influence of the cap layer thickness on the QW emission is interpreted using
a simple rate model. The PL intensity IQW from a QW in units of the number of
radiatively emitted photons per time can be estimated from IQW = N/τr , with the
exciton population N and the recombination lifetime τr . The exciton population
follows dN/dt = Re − N/τr − N/τt , with the excitation rate Re and the tunnel-
ing lifetime τt . In equilibrium (t → ∞) dN/dt = 0 and, thus, Re = N/τr + N/τt =
N (1/τr + 1/τt), N = Re/(1/τr + 1/τt). The intensity becomes
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Fig. 6.14 Room temperature
photoluminescence (PL)
measurements of a 6 nm
GaAs quantum well
embedded in AlGaAs. a PL
spectrum of a GaAs QW
with cap layer thickness dcap
= 100 nm. The QW emission
and the emission from the
GaAs substrate is indicated.
b PL spectrum of a GaAs
QW with dcap = 5 nm.
c Symbols: intensity IQW of
the measured QW emission
normalized with respect to
the GaAs substrate emission
IGaAs at varied dcap. Line:
calculated QW emission
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IQW = N/τr = Re/(1 + τr/τt) (6.4)

To estimate the tunneling lifetime τt we assume for the QW a rectangular potential
of width w confined by a rectangular barrier of height Vb and width b. For areas
between nanoholes without wall we use b = dcap. A particle moving inside the dot
with average velocity v performs collisions with the barrier with frequency v/(2w).
The tunneling rate (1/τt) is given by the frequency of wall collisions multiplied
with the transmission coefficient [44]. For tunneling through a rectangular barrier
the well known transmission coefficient is T � e−2γ b, with γ = √

2m∗(Vb − E)/�2,
the effective mass m∗, and the energy E of the particle. The average velocity of the
particle is estimated via the uncertainty principle as v � �/(2m∗w) [44]. This yields
for the tunneling lifetime

τt � 4m∗w2

�
exp

[
2b

√
2m∗(Vb − E)/�2

]
(6.5)

For the calculations of the PL intensity of QWs with planar cap layers of varied
thickness b = dcap we assume a QW width of w = 6 nm, a radiative lifetime of τr �
10 ns [47], tunneling of electrons due to their lower effective mass, a barrier height of
Vb = 220meV, and a particle energy ofE = 5meV (ground-state energy). Figure6.14c
demonstrates that the calculated IQW reproduces the experimental behavior with a
significant PL intensity reduction for dcap < 10 nm. This result is in agreement with
the literature [46].
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Fig. 6.15 a Example of an approximated profile of a tunnel barrier composed of cap layer plus
wall. b Calculated local variation of the PL intensity I(r) normalized to the minimum intensity Imin
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c Calculated maximum PL intensity Imax in the center of the wall normalized to the PL intensity
I∞ from a QW with infinitely thick cab layer. d Calculated intensity ratio Imax/Imin

In the next step we have calculated the local PL intensity from a QW below an
AlAs wall, where the cap layer thickness b > dcap depends on the position. The
example in Fig. 6.15a, b reflects etching with Al droplets at T = 620 ◦C with a wall
inner radius rI = 80 nm, outer radius rO = 150 nm, and maximum height of hW =
3 nm. Figure6.15a illustrates an approximated surface morphology with wall. The
PL intensity I(r) for a cap layer with thickness b(r) = dcap + hW (r) locally varied by
the wall is calculated using (6.4) and (6.5) (Fig. 6.15b). The exponential dependence
of I on the local b(r) (6.5) yields a localization of the PL emission at the center of the
wall. This is accompanied by a localization also of the charge carrier density N ∝ I
(6.4).

The design of such a QR sample and in particular the choice of the planar cap-
layer thickness dcap requires a compromise between a high absolute PL intensity and
a high signal ratio induced by the wall. This is illustrated in Fig. 6.15c, d. Up to dcap
of 5nm the ratio between the maximum PL intensity Imax at the center of the wall
and the minimum intensity Imin from areas beside the wall is high. On the other hand,
the absolute intensity Imax is only very weak and probably hard to measure. In the
range 5 nm < dcap < 10 nm, Imax increases and the ratio Imax/Imin becomes smaller.
And for dcap > 10 nm, the ratio Imax/Imin is negligible small. This suggests a choice
of dcap = 7…8 nm as a reasonable regime with absolute intensities Imax of 30…55%
of the intensity from a QW with infinitely thick cap and and a signal ratio Imax/Imin
of 11…18.

Wenote that these simple calculations are only a starting point formodeling and do
neither consider surface effects nor a possible lateral diffusion of the charge carriers.
Furthermore, no optical measurements on such QRs in partially depleted QWs are
have been performed, so far. Nevertheless, we feel that this concept forQRgeneration
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should be discussed here, since it is based on a fundamentally different approach in
comparison to other types of self-assembled QRs. Usually, the charge carriers in
QRs are localized by a confining potential that allows an energy minimization. This
is usually realized by combining semiconductor materials with different band-gap
energies. In contrast to that, the present concept does not apply a lateral confining
potential. The localization of the charge carriers is achieved by adding a loss channel
for charge carriers around the rings via tunneling through a thin cap-layer.

As a further important point, the QRs in partially depleted QWs are not overgrown
after the droplet etching step and the etched nanoholes are still open. This allows an
interesting functionalization which is not possible with refilled nanoholes. In detail,
an MBE heterostructure with AlAs sacrificial layer, an AlGaAs bottom barrier, a
GaAs quantum Well, and an AlGaAs top barrier can be grown. A subsequent Al
LDE step at T = 630 ◦C drills about 30nm deep nanoholes. After selective removal
of the AlAs sacrificial layer by wet chemical etching, a thin membrane with embed-
ded GaAs QW remains. Importantly, the depth of the LDE holes must exceed the
thickness of the membrane. Then, the LDE holes represent nanopores surrounded
by quantum rings in a thin membrane and might be used, e.g., for the detection of
charged molecules [48].

6.5 Summary and Conclusions

Local droplet etching allows the self-assembled drilling of nanoholes into semicon-
ductor surfaces where the hole openings are surrounded by a mostly circular wall of
recrystallized material. Thus, it is intuitive to utilize the LDE method for the fabri-
cation of semiconductor quantum rings. We describe here three different concepts
for QR fabrication by LDE. The first concept considers QRs inside the GaAs walls
which are recrystallized during LDE with Ga droplets. Simulations of the optical
properties and a simple growth model indicate that the shape of these QRs deviates
from the surface-visible wall as imaged with AFM. We assume that GaAs recrystal-
lization takes place also inside the nanoholes and contributes the QR confinement.
In a second concept, LDE with Al droplets forms AlAs walls that are optically inac-
tive. Here, the nanoholes are filled with GaAs to form V-shaped GaAs QDs’. By
applying a vertical electric field, wave functions in V-shaped dots can be tunned to
form quantum rings. This wave-function tuning provides the unique possibility to
switch from zero-dimensional quantum dots to one-dimensional quantum rings by a
gate voltage. We note that here the electrons and holes are separated and only one
charge-carrier type forms the ring. Both types of QRs, recrystallized GaAs during
Ga LDE and filled holes after Al LDE, show a somewhat similar shape. However, as
a central difference, recrystallized GaAs forms a QR already at zero field, whereas a
V-shaped QD requires a vertical electric field for the transformation into a QR. For
both types, the charge carriers are localized using a confinement which is achieved
by the embedding of GaAs into AlGaAs as a barrier material. In the third concept,
non-confined QRs are proposed. Here, the rings are located in a GaAs QWwith thin
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cap layer. On the planar surface beside the rings, the QW is depleted due to charge
carrier tunneling into surface states. Below the AlAs wall, the thicker local tunnel
barrier is expected to yield a ring like charge-carrier localization.

In summary, the various discussed concepts demonstrate the flexibility of the
LDE method for QR generation. First optical measurements of single LDE QRs
show already excitonic features similar to those of QDs. The quantum-ring nature
of these structures can be proved and studied e.g. using capacitance-voltage (CV)
spectroscopy under a magnetic field [5].
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Chapter 7
Fabrication of Ordered Quantum Rings
by Molecular Beam Epitaxy

Jiang Wu and Zhiming M. Wang

Abstract Quantum rings have attracted a lot of attention due to their unique
properties and have been under extensive theoretical and experimental investiga-
tions. For example, Aharonov-Bohm effect has been observed in quantum rings
which shows potential to realize quantum computational devices. In addition, quan-
tum rings have found application in optoelectronics. Due to the ring-shaped mor-
phology altered from dots, the vertical confinement in nanorings is stronger than in
quantum dots. Laser and infrared photodetectors have recently been demonstrated by
using quantum rings. To meet the urgent demands for quantum rings, various effects
have been devoted to quantum ring fabrication techniques. There are two of the
most used bottom-up fabrication methods of self-assembled rings using molecular
beam epitaxy (MBE). Semiconductor quantum rings can be created by conventional
molecular beam epitaxy andDroplet Epitaxy technique. Despite great efforts devoted
to quantum ring fabrication using these techniques, alignment of quantum rings is
not well documented. Fabrication of ordered quantum rings is of high priority for
theoretical as well as practical investigations, such as persistent current and pho-
todetectors. Recently, both vertically and laterally ordered quantum rings have been
demonstrated. In this chapter, the growth mechanisms and fabrication techniques for
aligned quantum rings grown are reviewed.
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7.1 Introduction

Unique properties of nanomaterials have attracted considerable interest over the
last two decades in various fields in physics, engineering, chemistry, and biology,
which present the promise of realizing next generation electronic and optoelectronic
devices.

Among various nanomaterials, quantum rings show interesting electronic, mag-
netic and optical properties and attracted considerable attention [1–8]. For example,
quantumphase coherence effects, such as theAharonov-BohmandAharonov-Casher
effects, have been observed in quantum rings [4]. The optical Aharonov-Bohm effect
has also been predicted and demonstrated, which can be potentially used for applica-
tions in quantum information processing systems [9–11]. In addition, research efforts
on quantum rings have also led to various practical applications in the last few years.
Quantum ring infrared photodetectors have been reported in the mid-infrared and
THz spectral range [12, 13]. Nanorings have shown promise in high density mag-
netic memory applications [14]. Quantum ring lasers have also been reported [15].

The increasing interest in quantum rings gives rise to a variety of fabrication tech-
niques [16–19]. Currently, quantum rings aremainly fabricated by twomajor fabrica-
tion methods, conventional molecular beam epitaxy and Droplet Epitaxy technique.
Generally, nanostructures fabricated by these two methods are randomly distributed.
However, formany applications, it is advantageous to achieve ordered nanostructures
in order to provide optimum performance. For example, ordered quantum dot arrays
can result in a higher absorption and higher responsivity for quantum dot infrared
photodetectors [20]. Three-dimensionally aligned quantum dot array can provide a
strong electron wave function overlap, which is considered to be beneficial for inter-
mediate band solar cells [21]. A lot of ordered nanostructures, such as nanowires,
quantum dots and nanoparticles are fabricated by different methods, [22–27] includ-
ing template growth and drying mediated self-assembly [28–30]. However, there are
only a few reports on ordered quantum rings.

In this chapter, we present different growth techniques to fabricate ordered quan-
tum rings. We first review fabrication of quantum ring chains on GaAs (100) surface.
After that, in Sect. 7.2.2, fabrication of two-dimensionally aligned quantum rings
grown on a high index surface is presented. In Sect. 7.3, fabrication of vertically
aligned quantum rings by Droplet Epitaxy is introduced. In Sect. 7.4, fabrication
of GeSi quantum rings on pre-patterned substrate is overviewed. Finally, future
prospects of the ordered quantum rings are presented in Sect. 7.5.
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7.2 Fabrication of Laterally Ordered Quantum Rings
on Quantum Dot Superlattice Template

7.2.1 Fabrication of Ordered Quantum Ring Chains on
GaAs (100) Surface

Generally, quantum rings can be fabricated from S-K quantum dots and by Droplet
Epitaxy technique. By using S-K growthmode, strained quantumdots, which are par-
tially capped by a thin layer of a substratematerial, undergo amorphological transfor-
mation from quantum dots to ring-shaped nanostructures. Alternatively, ring-shaped
nanostructure can be formed by Droplet Epitaxy through control over the crystalliza-
tion process of nano-droplets. The morphology of crystallized nanostructures can be
well controlled from quantum dots to quantum rings. However, both processes in
general result in randomly distributed quantum rings.

Nevertheless, growth of ordered quantum dots has been demonstrated [31]. One
approach to obtain ordered quantum dots is based on multiple quantum dot stacking.
The strain field introduced into the system by quantum dots results in increasing size
and spacing uniformity in successive quantum dot layers because the nucleation rate
is strongly dependent on the strain field. For example, Wang et al. have produced
laterally ordered quantum dot chains on GaAs(100) by stacking multiple quantum
dot layers. Similarly, multiple quantum dot layers can be adopted for quantum ring
growth and used to form a template for laterally ordered quantum rings. Currently,
the formation of laterally ordered quantum dots by strain field engineering has been
well studied [32]. In this section, lateral ordering of self-assembled quantum rings
is presented.

A molecular Beam Epitaxy (MBE) system has been used for fabricating ordered
quantum ring chain samples on semi-insulating GaAs (100) substrates. First, the
native oxide is removed at 610 °C under an As4 flux for ten minutes. The deoxi-
dized GaAs substrate temperature is then changed to 590 °C. A GaAs buffer layer
(200 nm) is grown, after which the substrate temperature is changed again to 540 °C.
The formation of ordered quantum ring chains is divided into two major steps, (i)
formation of ordered quantum dot chain template and (ii) quantum ring conversion.
Formation of quantum dot chains has been investigated by growth of multilayers
of InGaAs/GaAs quantum dots. Quantum dot chains with length over five microns
have been demonstrated. The growth procedure for quantum ring chains consists of
formation of quantum dot chains as a template. For the quantum ring chain template
growth, In0.4Ga0.6As (8.4 ML) is deposited first and then growth interruption (10 s)
is introduced. The In0.4Ga0.6As quantum dots are sequentially capped by 20 ML
GaAs. Another 60 ML thick GaAs spacer is deposited after raising the substrate
temperature back to 580 °C. The In0.4Ga0.6As (8.4 ML)/GaAs (80 ML) quantum
dot structure is repeated eight times in order to improve the vertical correlation and
to obtain uniform quantum dot chains. Deposition of multi-layer InGaAs quantum
dots creates a uniform strain field. The quantum dot superlattice strain field in turn,
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Fig. 7.1 AFM images of quantum dot chains and quantum ring chains. After [36]

can lead to the ordered arrangement of the last layer of quantum rings [33]. After
completion of the eight periods of multiple In0.4Ga0.6As/GaAs quantum dots, the
substrate temperature is reduced to 540 °C again. At the same time, the As cracker
is operated at a temperature about 900 °C to produce As2. When the growth condi-
tions are ready, the RHEED screen shows the c(4 × 4) surface reconstruction [34]
In order to create quantum rings, InAs quantum dots are grown using the S-K mode
by depositing 2.1 ML InAs. After formation of InAs quantum dots, the growth is
interrupted and the sample is annealed for a few tens of seconds. The growth inter-
ruption has been found to be helpful in alignment of quantum dots along the [01-1]
direction. In addition, the interruption also promotes nucleation of quantum dots
more uniformly. After formation of well-aligned quantum dot chains, those chains
are immediately covered by 4 nm GaAs. The as-grown InAs quantum dots are about
6–8 nm in height. The deposition of 4 nm GaAs only partially covers the quantum
dots, which results in unbalanced surface forces. These forces convert nanodots into
ring-shaped nanostructures [35].

Figure 7.1a shows an example of the Atomic Force Microscopy (AFM) image
of InAs quantum dot and quantum rings chains. The growth of multiple quantum
dot layers increases the uniformity of the quantum dot arrangement. Stacking of
multiple quantum dot layers promotes the vertical correlation of quantum dots due
to the nucleation of quantum dots at the strain minima [31]. The resulted ordering
pattern is related to the morphology of the quantum dots and the elastic medium
in which the quantum dots are included. The anisotropy of GaAs matrix and InAs
quantum dots introduces a strain field along the [01-1] direction. Therefore, the
multiple stacking of the quantum dots led to formation of quantum dot chains along
the [01-1] direction.
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Fig. 7.2 Tapping mode
5.0×5.0 µm AFM image of
quantum ring chains grown
on an
In0.4Ga0.6As/GaAs(100)
multi-layered quantum-dot
superlattice. The scale bar is
1 µm. After [36]

According to the “dewetting model” proposed by Blossey and Lorke [35], it is the
instability of quantum dots introduced by the unbalanced surface forces that causes
the conversion of quantum dots into quantum rings during capping. The process
of quantum ring formation based on the “dewetting model” is briefly reviewed in
Chaps. 2 and 3.AnAFM image of the ordered quantum rings converted frompartially
capped quantum dots is shown in Fig. 7.2. The lateral ordering of quantum rings is
well preserved. Figure 7.2 shows that the quantum ring chain is formed along the
[01-1] direction and the average chain length is about 1.0 µm. The quantum ring
chains share similar surface morphology to the quantum dot chains because the
rings are directly converted from the quantum dots. The length and regularity of
the quantum ring chain may be further improved by improving the regularity of the
quantum dot chain template. In addition, the process of dot-to-ring transformation
can be also improved by using different growth conditions, such as thickness of the
GaAs capping layer.

To obtain a better characterization of the quantum ring chains, Fig. 7.3 compares
two typical AFM images of quantum ring chains and quantum dot chains as well as
AFM line profiles of a typical quantum ring and quantum dot. The partial capping
truncates the quantum dots and, thus, quantum rings become lower than quantum
dots. However, the outward reconfiguration of the nanostructure makes rings slightly
larger than the quantum dots. Quantum rings also show an oval morphology along
the [01-1] direction, which is likely because of an isotropic redistribution ofmaterials
during the ring-to-dot transformation process [37]. The insets in Fig. 7.3a, b show
corresponding Fourier transforms of quantum ring and quantum dot chains. The
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Fig. 7.3 a Tapping mode AFM image of quantum ring chains. b Tapping mode AFM image of
quantum dot chains. The insets are Fourier transforms from the AFM image of quantum-ring chains
and quantum-dot chains. c Cross-sectional line profile of a quantum ring. d Cross-sectional line
profile of a quantum dot. The scale bar is 500 nm. After [36]

Fourier transforms confirm the long-range one-dimensional ordering of quantum
rings and quantum dots.

The photoluminescence measurement of a capped quantum ring sample (50 nm
GaAs cap layer) suggests a strong emission from ordered quantum ring chains, as
shown in Fig. 7.4. Two photoluminescence peaks, at 1060 and 1163 nm, of Gaussian
profiles are observed. The photoluminescence peak at 1060 nm is due to the multiple
In0.4Ga0.6As quantum dot layers. The peak at 1163 nm is assigned to the quantum
rings based on a narrower bandgap of the InAs. The difference in the strain and
quantum confinement between the multiple quantum dots and quantum rings are
also accounted for the shift of photoluminescence emission peak. The emission from
the quantum rings also shows a broader line-width than the emission spectrum from
In0.4Ga0.6As quantum dots. This can be explained by the reduced quantum ring
uniformity. As shown in the AFM images, after the partial capping process, there are
imperfect rings formed which broadens the photoluminescence spectrum. In order
to improve the quantum ring chain quality, a number of factors require a further
improvement. First, improvement of ordering and uniformity of the initial quantum
dot chains would be helpful to obtain better quantum ring chains.

Second, optimization the capping layer thickness and post-growth annealing also
plays a critical role in improving quantum ring chain quality.
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Fig. 7.4 PL spectrum of the
ordered quantum ring chains
on the quantum dot
superlattice template
measured at 77 K. After [36]

7.2.2 Fabrication of Laterally Ordered Quantum Ring Arrays
on GaAs High Index Surfaces

To investigate control over the lateral quantum ring ordering by the “self-organized
anisotropic strain engineering” technique [38], fabrication of quantum rings on high
index surfaces is performed. Compared with one-dimensional quantum ring chains
observed on GaAs (100) surface, a periodic two dimensional quantum ring array
has been demonstrated on high index surfaces. Likewise, the semi-insulating GaAs
substrates are used for sample preparation by molecular beam epitaxy [39]. The
growth conditions are the same as those for quantum ring chain growth. In this study,
GaAs (311)B and (511)B high index surfaces are used in addition to GaAs (100)
surface. Figure 7.5 shows the AFM images of the laterally alignment of quantum
rings formed on different GaAs surfaces. Interestingly, quantum ring chains are
formed on the (100) surface while different patterns are formed on the high index
surfaces, (311)B and (511)B.

Even though the quantum rings are grown under the same conditions, the multiple
quantum dots and then, the over-grown quantum rings show quite different surface
morphology on different surfaces. The distinct morphological differences embrace
the shape of quantum rings and lateral alignment pattern of quantum rings. Typical
AFM images and cross-sectional pro files of quantum rings grown on different sur-
faces are shown in Fig. 7.6. The quantum rings grown on (100), (311)B and (511)B
surfaces show similarity in size and density as listed in Table 7.1. However, slightly
elongated quantum rings are observed on GaAs (100) surfaces. On the other hand,
quantum rings formed on high index surfaces appear more spherical but with a more
asymmetrical height distribution. This difference results mainly from two factors.
First, the surface diffusion of In adatoms, surface energy, and step bunches vary on
surfaces with different Miller indices, which results in different shape and size of
InAs quantum dots [41–44]. On high index surfaces, the diffusion along the [01-1]
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Fig. 7.5 AFM images of quantum rings grown on GaAs (100), (311)B, and (511)B surfaces. The
bottom illustration shows a transition from a one-dimensional ordering on the (100) surface to a
two-dimensional array on high index surfaces. After [40]

Table 7.1 Average radii and density of quantum rings on GaAs (100), (311)B, and (511)B surfaces

Surface (100) (311)B (511)B

Average radius (nm) 26.3±8.2 37.6±10.7 35.2±7.5

Density (cm−2) 7.9×109 5.0×109 5.6×109

direction can be tuned tomatch with diffusion along the [011] direction [45]. Second,
as mentioned in the previous section, the surface energy is orientation-dependent and
facet-dependent. The net force acting upon the quantum dot during the ring trans-
formation differs on different surfaces [35]. As shown in Fig. 7.6b, c, the AFM line
profiles of quantum rings show different heights along the [23-3] and [25-5] direc-
tions. The height distribution of quantum rings on high index surface is attributed to
the process of dot-to-ring conversion because the initial shape of quantum dots on
high index surfaces is rather spherical. Since the initial quantum dots are expected
to be a round dome shape, the anisotropic rings may be attributable to the process
of dot-to-ring transformation. As mentioned earlier, the anisotropic ring morphol-
ogy can be affected by different facets, orientation-dependent free energy, and strain
effects, which may be the main factors leading to direction-dependent forces and
thus, uneven material distribution of quantum rings on high index surfaces.

More importantly, quantum rings formed on the (100) surface align in a chain-
shaped pattern, while a two-dimensional periodical alignment of rings is observed
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Fig. 7.6 Cross-sectional
line-profiles of quantum
rings grown on a GaAs (100)
surface; b GaAs (311)B
surface; c GaAs (511)B
surface. The line-profiles are
taken along the [01-1],
[23-3], and [25-5] for the
(100), (311)B, and (511)B,
respectively. The right side of
the line-profiles are the AFM
images of quantum rings
grown on the (100), (311)B,
and (511)B surfaces. The
insets are AFM images of a
single quantum ring grown
on each surface. After [40]

on high index surfaces when a strain quantum dot superlattice template is present.
Generally, it is considered that the elastic interactions of multiple layers of quantum
dots result in the lateral ordering of quantum dots or quantum rings [31, 46]. OnGaAs
(100) surface, the adatoms mainly diffuse along the [01-1] direction and quantum
dots aremore relaxed along the [01-1] direction. Therefore, the strain field transferred
to the subsequent quantum dot layer is elliptical. The elliptical field tends to align
the subsequent quantum dots along the [01-1] direction. Similarly, there are surface
steps with variable separations perpendicular to the [2n–n] directions on high index
(n11)B surfaces. The nominal step separation for a GaAs (n11) surface consisting
of the (001) terraces, denoted as S, is equal to 0.2 × n nm, Therefore, the nominal
step separation can be adjusted from 0.6 nm [(311)B surface] to 1.8 nm [(911)B
surface]. The change in surface steps affects the adatom surface diffusion as well as
strain field correlation between adjacent quantum dot layers. On high index surfaces,
the diffusion along the [01-1] and [011] directions can be adjusted to closely match
[45]. Consequently, control over S creates the opportunity to manipulate the surface
adatommigration pattern, which, therefore, is promising for tuning the nanostructure
ordering pattern.

Figure 7.7 shows AFM images (2.5 µm×2.5 µm) and the corresponding fast
Fourier transforms of quantum ring arrays grown on the (100), (311)B, and (511)B
surfaces. The Fourier transform from quantum rings on the (100) surface confirms
long range one-dimensional ordering while the Fourier transforms from quantum



172 J. Wu and Z.M. Wang

Fig. 7.7 AFM images of ordered quantum rings on the top of multilayered In0.4Ga0.6As quantum
dot templates grown on a GaAs (100), b (311)B, and c (511)B surfaces. The second row images are
fast Fourier transforms taken from the corresponding AFM images: d GaAs (100), e (311)B, and
f (511)B surfaces. The insets are magnified AFM images showing different quantum ring lattice
structures. After [40]

rings on the (311)B and (511)B surfaces confirm two-dimensional ordering due to
more isotropic strain field of quantum dot superlattices. The Fourier transforms of
AFM images show quantum ring array patterns with two symmetry axes for (311)B
surface and with four symmetry axes for (511)B surface. These Fourier transform
patterns and the magnified AFM images indicate that the quantum rings on the
(311)B and (511)B surfaces align in rhombic and hexagonal symmetry, respectively.
By adjusting the nominal surface step separation, the strain is most relaxed along an
in-plane direction which is deflected by about 40 degrees to the [23-3] (or [25-5])
direction. From the AFM images, the measured angles between the strain relaxation
direction and the [2n-n] direction are 41.6 [(311)B surface] and 36.2 [(511)B surface]
degrees. To sumup, lateral alignment of quantum ring arrays can be achieved by strain
engineering and quantum ring conversion through partial capping. The order pattern
can also be tuned by choosing substrates with different Miller Indices.
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7.3 Fabrication of Vertically Aligned Quantum Rings
by Droplet Epitaxy

Although spatial alignment has beenwell achieved, the growth aligned quantum rings
in the vertical direction is less explored. As shown in previous section, the strain field
of the S-Kquantumdots can lead to vertical correlation of quantumdot self-assembly.
Fabrication of vertically aligned quantum rings is feasible via such an approach along
with conversion of dots into rings by partial capping, but it has not been reported,
probably due to the complexity in growth and/or lack of applications. On the other
hand, Droplet Epitaxy has emerged as a facile and versatile method to fabricate
quantum rings and many other quantum structures, that are not easily obtainable
by S-K growth mode [17, 47, 48]. Droplet Epitaxy that is based crystallization of
metal lacks a mechanism to couple neighboring layers like the S-K method, even
though a vertical growth protocol of Droplet Epitaxy can add another dimension
of control in fabricating nanostructures. It has been found that nanodroplets tend
to nucleate at the location of existing nanocrystals formed by Droplet Epitaxy [49,
50]. The existing nanostructures serve as preferred nucleation sites for both homo-
and hetero-epitaxy and thus, vertically aligned nanostructures can be fabricated to
sequential deposition using Droplet Epitaxy. In this section, a method to fabricate
vertically aligned quantum rings using Droplet Epitaxy is presented.

Samples were grown by Droplet Epitaxy using aMolecular Beam Epitaxy (MBE)
system.Dropletswere depositedwithout anyAs flux at a low substrate temperature of
280 °C. Both a single element, e.g. Ga, or alloy, e.g. AlGa, can be deposited for form
nanodroplets. Instead of one crystallization step, sequential multiple deposition can
be carried out to form vertically aligned structures, as summarized in Table 7.2. The
RHEED patterns were recorded during each deposition. Prior droplet deposition, the
surface reconstruction was (2×4) according to RHEED. The surface reconstruction
changed from (2×4) to (2×1) immediately aftermetal droplet deposition, indicating
transformation of As-rich surface to Ga-rich surface. At the same time, the RHEED
intensity decreased and changed to spotty features after supplying As flux. The
crystallizationwas carried out at the same substrate temperature for 60 swithAs beam
equivalent pressure (BEP) of 1.2×10−5 Torr. The evolutions of RHEED patterns
were similar for subsequent droplet deposition and crystallization steps, suggesting
same growth dynamics.

Figure 7.8 illustrates the fabrication of vertically aligned nanostructures by
sequential Droplet Epitaxy and AFM measurements of samples A, B, and C.
Although conventional growth of nanostructures by single step Droplet Epitaxy
has been well documented, it is interesting to observe that the sequential deposi-
tion of group III elements or alloys tend to nucleate nanodroplets right over the
existing nanostructures, as shown in Fig. 7.8. Droplet localization in holes has also
been realized by groups [51, 52]. The direct nucleation of nanodroplets on the pre-
existing nanostructures provides a way to fabricate vertically aligned nanostructures
by Droplet Epitaxy.
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Table 7.2 Summary of the growth procedures of all samples

Sample # Growth procedures

A Ga 3 ML deposition

B Ga 3 ML deposition→As crystallization 60 s

C Ga 3 ML deposition→As crystallization
60 s→Ga 3 ML deposition

D (Ga 3 ML deposition→As crystallization
60 s)×2 cycles

E (Ga 3 ML deposition→As crystallization
60 s)×3 cycles

F (Ga 3 ML deposition→As crystallization
60 s)×4 cycles

G (Ga 3 ML deposition→As crystallization
60 s)×5 cycles

H (Ga 3 ML deposition→As crystallization
60 s→Al0.3Ga0.7 3 ML→As crystallization
60 s)×10 cycles

Fig. 7.8 a Schematics of forming nanodroplets, nanorings, and nanodroplet/nanoring hybrids by
sequential Droplet Epitaxy. b AFM line profiles of samples A, B, and C: a single Ga nanodroplet,
GaAs nanoring, and nanodroplet/nanoring hybrid. The profiles taken along the lines indicated in
insets. After [49]

The nucleation of nanodroplets on existing nanorings can be understood by the
nucleation thermodynamics of droplets. Based the nucleation thermodynamics, the
dependence of �G∗, the energy barrier for the formation of a critical nucleus, on θ ,
the angle between the nanostructure and substrate surface, can be expressed as

�G∗ � −32γ 3
lv f

3
1 (θ, α)

27g2v f
2
2 (θ, α)

(1)
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Fig. 7.9 Geometric factor
ratio f 31 (θ, α)/ f 22 (θ, α) as a
function of angle θ . The
contact angle α is set at
different values: 50°, 60°,
70°, and 80°, respectively.
The insets illustrate that
nanodroplets form on convex
and concave surfaces [49]

where γlv is the surface energy density of a droplet, α is the contact angle of droplet
with substrate surface, gv is the Gibbs free energy per unit volume, and f1(θ, α)

and f2(θ, α) are geometric factors. As shown in the inset of Fig. 7.9, the surface
represents a concave surface when θ > 0 or convex when θ < 0. �G∗ is only
determined by the geometric factor ratio f 31 (θ, α)/ f 22 (θ, α), because γlv and gv are
constants determined by material properties. Therefore, the geometric factor ratio
represents the droplet nucleation energy barrier. Figure 7.9 shows the geometric
factor ratio for different droplet contact angles as a function of angle θ .

Regardless of the droplet contact angle, the geometric factor ratio and hence
the nucleation energy barrier decreases with increasing θ . As a results, the critical
nucleus on a concave surface has a smaller energy barrier than that on the convex
or flat surfaces. Therefore, sequential deposition of Ga nanodroplets favors nucle-
ation of droplets in the center of nanorings where angle θ is the largest. In experi-
ment, nanoholes are not symmetric and are elongated in the [01-1] direction due to
anisotropic diffusion. As shown in Fig. 7.8, The asymmetry of the nanoholes caused
the nanodroplets slightly off-center on the rings along the [01-1] direction.

Figure 7.10a shows the AFM images of samples B, D, E, F, and G. With increas-
ing of deposition cycles, the surface morphology of the stacked rings doesn’t change
significantly, which confirms the vertical correlation in nanoring growth by Droplet
Epitaxy. In order to provide further insight into the formation of vertically stacked
nanorings, the final shapes of GaAs after different deposition cycles are simulated
based on a kinetic growth mode [53]. Figure 7.10a, b shows the simulation and
experimental AFM results of final shapes of GaAs rings after one to five deposition
cycles. Figure 7.10c, d also shows the simulated and measured of cross-sectional
height profiles. In the simulation, the anisotropic surface diffusion is ignored. Both
the experimental results and simulation show that the height of nanorings increases
with deposition cycles while the radius of rings remain nearly unchanged for all
five samples. However, there are some distinct differences in surface morphologies
between the simulations and AFM measurements. For example, in experiment, the
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Fig. 7.10 a and b are AFM images and the simulated three dimension surface morphologies of
GaAs nanorings after multiple deposition cycles. c and d are the cross-sectional height profiles
obtained from simulated results and AFM images. The initial radius of Ga droplet 40 nm. The AFM
line profiles are taken along the [011] direction [49]. e and f are the cross sectional transmission
electron microscopy images of stacked quantum rings

nanoring edge becomes beveled with increasing deposition cycles. This deviation
from simulation is caused by the out-diffusion of the ring material during the growth
pauses which was not taken into account in the simulation [10]. Nonetheless, from
the simulated and measured cross-sectional line profiles of the nanorings, the pro-
posed kinetic growth simulation agrees well with the experiment. The simulated and
measured nanorings match well in terms of lateral dimension as well as heights of
both inner and outer rings.

The vertical stacking of quantum rings also applies to metal alloys. The alloyed
metal droplets also nucleate at the exact location of existing nanorings, similar to sin-
gle element droplets. In addition, alternating epitaxy of different materials byDroplet
Epitaxy also follows the same growth mechanism. Figure 7.10e, f shows cross-
sectional transmission electron microscopy (TEM) images of sample H, stacked
nanorings fabricated by ten sequential cycles of GaAs/Al0.3Ga0.7As droplet hetero-
epitaxy. Figure 7.10e clearly shows a nanoring with two regions, A and B. Multiple
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layers are present in the B region while absent in the A region. The A region is the
hole observed from the AFM images located at the center of the rings and the layered
structures in the B region are the stacked GaAs/Al0.3Ga0.7Asmultiple quantum rings.
The high resolution TEM image of the layered structures in B region is shown in
Fig. 7.10f. The bright and gray layers are the GaAs and Al0.3Ga0.7As rings, respec-
tively. It should be noted that only eight periods of GaAs and Al0.3Ga0.7As layers can
be identified although 10 cycles of deposited were carried out. This may be due to
missing stacking of nanodroplets during growth. Similar to droplet homo-epitaxy of
GaAs nanorings, the vertically stacked GaAs/Al0.3Ga0.7As quantum rings also have
beveled edges due to diffusion. It is also expected that the vertical correlation of
Droplet Epitaxy may also apply to other material systems, e.g. strained InAs/GaAs,
because the vertical correlation is originated from the nucleation thermodynamics of
the droplets.

7.4 Fabrication of Quantum Rings on Pre-patterned
Substrates

7.4.1 Simulations of Formation of Ordered Quantum Dots
and Quantum Rings Through Pre-patterning

Alternative approach to self-assembly of aligned nanostructures is to create ordered
artificial template by pre-patterning. A few methods have been proposed to fabricate
ordered nanostructures on pre-patterned substrates, which consist of ordered pits, or
ordered humps, or regularly distributed strain energy profiles [54, 55]. The idea is
to form nanostructures on the patterned pit or hump with one-to-one correlation in
the subsequent growth. However, it faces great challenges to achieve well-aligned
nanostructure arrays through surface pre-patterning. For example, it is challenging
to obtain one-to-one correlation between pattern and nanostructures, Phase diagrams
for heteroepitaxy of quantum structures on patterns are theoretically simulated by a
model [56]. The phase diagrams for fabrication of ordered quantum dots and rings
provide insight in obtaining the one-to-one correlation between patterns and the
subsequently grown quantum structures. The model assumes a fixed pre-patterned
substrate surface and a thin transition layer with a linearly varied mismatch strain
atop. The surface morphology evolves with deposition and the surface diffusion,
which is governed by surface chemical potential. A small random noise to the depo-
sition is added to the simulation of growth with random fluctuation. Cosine-shaped
pits or humps are considered on the pre-patterned substrate. The simulation also
assumes that the radius of the pits (or humps) is comparable with the surface rough-
ness wavelength.

The simulated phase diagrams for pit and hump pre-patterning with the variation
of the normalized deposition rate R* and diagonal edge-to-edge distance P* are
shown in Fig. 7.11. The phase diagrams for pit and hump pre-patterning show three



178 J. Wu and Z.M. Wang

Fig. 7.11 Calculated phase diagram for a pit and b hump pre-patterning. Points on the diagrams
denote the calculated cases. After [56]

and five phase zones, respectively. On the phase diagram for pit pre-patterning, as
shown in Fig. 7.11a, the one-to-one relation between the pits and quantum dots is
maintained in zone 1. The formed dots are stable against growth noise during the
growth process. However, no one-to-one correlation is observed between pits and
formed dots. In zone 2, additional dots or structures with different morphologies
are formed between the patterned pits. However, one-to-one correlation can be still
obtained because the additional dots disappear with further growth. In the zone 1 of
the phase diagram for hump pre-patterning, one-to-one correlation is also achieved
but with shape transition during the growth process. First, quantum rings are formed
on the humps. Sequentially, the rings gradually shrink and eventually change into
dots when the growth proceeds. In zones 2 and 3, only dots form between humps
during growth. However, the nucleation positions vary for zones 2 and 3. Incomplete
rings form at the early stage and further break up into dotswithout order arrangements
for zone 4. Both dots and rings form in zone 5. There is no one-to-one correlation
for zones 4 and 5.

Two examples of nanostructures formed on pits and humps are shown in Fig. 7.12.
Figure 7.12a1, a2 show the cases in zone 1 and zone 3 of the phase diagram for
pit pre-patterning, respectively. Quantum dot arrays are formed with one-to-one
correlation in zone 1. However, surface morphology conversion between dots to
ripples is observed for zone 3 without one-to-one correlation. Figure 7.12b shows an
example of nanostructures formed on humps.Clearly, shape transitions have occurred
during the growth. The surface chemical potential profiles play an important role in
the formation of the one-to-one correlation between patterns and nanostructures. The
simulated phase diagrams can serve as guideline for optimized fabrication of ordered
quantum dot or quantum ring arrays.
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Fig. 7.12 a Snapshots of surface evolution for pit pre-patterning: (a1) a case in zone 1 and (a2) a
case in zone 3. b Snapshots of surface evolution for hump pre-patterning: a case in zone 1. From
[56]. Reprinted with the permission of the American Institute of Physics

7.4.2 Fabrication of GeSi Nanorings on Patterned Si (100)
Substrate

Laterally aligned nanostructures can be obtained on a pre-patterned substrate with
ordered nanopatterns. A number of methods have been developed to create nanopat-
terns, including nanoimprint lithography, holographic lithography, anodic oxidation
nanolithography, and nanosphere lithography. Nanosphere lithography is a cost-
effective and high throughput nanofabrication technique. Nanosphere lithography
has been used to create ordered GeSi QDs. The GeSi nanorings are formed by cap-
ping the GeSi QDs with a thin Si capping layer [57].

Figure 7.13 shows a schematic illustration for nanopatterning using nanosphere
lithography. Nanopatterning consists of four major steps.

1. The polystyrene sphere (diameter of 430 nm) suspension is mixed with methanol
(1:1). Weekes’ method is used to assemble polystyrene nanospheres on the sur-
face of deionized water in a close-packed monolayer, which is then transferred
onto a clean p-type Si (001) substrate with hydrogen-terminated surface by drain-
ing the de-ionized water.

2. The diameter of polystyrene spheres is shrunk down to about 80 nm by the
reactive ion etching.

3. Au–Si alloy and SiO2 mask are formed via Au-catalyzed oxidation after deposi-
tion of a thin Au film (1 nm) on a surface covered with polystyrene spheres. The
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Fig. 7.13 Schematic illustration for the fabrication of ordered pit-pattern. a Closed-packed PS
single ML pattern. b PS pattern after O2 RIE. c Au film deposition. d Removing PS pattern in THF.
e KOH selective etching. f Inverted pyramid-like pits pattern with {111} facets after Au has been
removed. The panels at the right side show the AFM images at corresponding stages [57]

polystyrene spheres are removed from the substrate by immersing in tetrahydro-
furan under ultrasonic treatment.

4. After formation of themask, ordered inverted pyramid-like pits with {111} facets
are created by etching the substrate in KOH solution. The substrate is immersed
in KI: I2: H2O (4:1:40) solution for 10 h to remove the Au and Au–Si alloy mask
and then cleaned and passivated.

The sample structure of ordered quantum rings is illustrated in Fig. 7.14. The
growth recipe for GeSi quantum rings is as follows. First, the substrate is thermally
treated at 860 °C for 3 min. Buffer layer of 130 nm thick Si is deposited while
the substrate temperature is increasing from 400 to 500 °C. A quantum dot layer
is grown by a two-step deposition of Ge; the first 5 ML Ge are deposited when
growth temperature increases from 500 to 640 °C while the subsequent 7 ML Ge are
deposited at 640 °C. After the formation of the first quantum dot layer, the substrate
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Fig. 7.14 a Schematic sample structure. AFM images of b ordered GeSi QDs and c ordered GeSi
nanorings. After [57]

temperature is ramped down to 500 °C again and then the substrate temperature
is immediately ramped back to 640 °C while a 20 nm thick Si spacer is grown. A
second layer of GeSi quantum dots is formed by depositing 8 ML Ge at 640 °C.
Sequentially, a thin Si capping layer is deposited over the GeSi quantum dots to
transform the ordered GeSi quantum dots into ordered GeSi nanorings. Figure 7.14
also shows the quantum dots formed in the first layer and quantum rings formed in
the second layer.

As discussed in the previous section, the distance between adjacent nanopatterns
plays a critical role in fabrication of an ordered nanostructure array.

When the distance is small, e.g. 200 nm, the Ge adatoms also accumulate between
adjacent pits in addition to assembling in the pits. In such a case, dot-to-ring trans-
formation is hardly attainable. Using polystyrene spheres as large as 430 nm, the
quantum dots are mainly formed in the pits. However, reactive ion etching is required
to shrink the size of the nanospheres in order to reduce the size of the nanopits. If
the size of the pits is much larger than that of the quantum dots, multiple quantum
dots tend to nucleate in a single pit.

The AFM images of the GeSi nanostructure samples capped with Si thin films of
different thickness are shown in Fig. 7.14.A thin Si capping layer (<2 nm) only results
in dots with shallow dips in the center or a small portion of converted rings. When
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the Si capping layer thickness is over 3 nm, most quantum dots can be converted into
quantum rings.

The surface morphology of nanostructures after the capping process also varies at
different capping temperature.When a thinSi capping layer is deposited at 610 °C, the
mean lateral size of transformed nanorings is 175 nm. The value decreases to 165 nm
when the capping layer is deposited at 640 °C. The standard deviation of lateral size
also decreases from 24.3 (capping at 610 °C) to 21.8 nm (capping at 640 °C). After
annealing the sample with 2 nm Si capping layer at 610 °C for 30 min, it has been
shown that a part of the quantum dots is converted into quantum rings. However,
other quantum dots disappear due to mass migration at long-term annealing. Under a
further increase of the annealing time to 60 min, the effects involving mass migration
and intermixing cause formation of superdomes and no quantum rings remain visible
anymore. High growth temperature and long-term annealing can significantlymodify
the surface morphology.

7.5 Perspectives and Future Work

For optoelectronic and electronic devices, both the well control in the quantum ring
shape and uniformity and the precise positing of quantum rings play a critical role in
optimizing the device performance. In addition, investigation of the physical prop-
erties has been focused on a single quantum ring. New collective behavior may be
revealed from coupled quantum ring arrays. Therefore, fabrication of laterally and
vertically ordered quantum ring arrays opens the opportunities for investigations of
new physics and device applications. The major research efforts on quantum rings
can be directed towards developing large scale well-ordered quantum ring arrays and
their applications.

First, additional fabrication techniques, such as “interference lithography”, can be
explored for fabricating of ordered quantum ring arrays in addition to self-assembly
and pre-patterning overgrowth. For example, wafer-scale metallic nanoring array
has been obtained by using “interference lithography” [58, 59]. Ordered arrays of
Au, Ni, and Si nanorings have also demonstrated by using a porous alumina mask.
Improvements in the array periodicity, the control over quantum ring size and shape,
and the control over arraypatternwill be the key factors in future efforts for fabrication
of ordered arrays of quantum rings.

Second, it is interesting to study the collective effects of ordered quantum ring
arrays. The ordered nanostructure array is considered to show an interesting “atomic
states” analogy to atoms in a periodic lattice. Moreover, quantum rings show distinct
properties, such as persistent currents, which cannot be found in other systems. The
experimental investigation in ordered quantum ring arrays may reveal further new
phenomena.

Finally, ordered quantum ring arrays also open wide possibilities for functional
devices, such as quantum computing and optoelectronic devices. Quantum rings
possess unique optical properties which can be employed for novel photodetectors
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and lasers. For example, the shallow bound-state energy levels of the quantum rings
can be employed to detect photons in the terahertz regime [60]. Polarization sensitive
photoconductivity could be realized in quantum ring based photodetectors as a result
of the unique morphology of quantum rings. Moreover, Aharonov-Bohm and unique
magnetic-optical effects have been found in nano-rings [61, 62]. Quantum rings
also have high stability of spin states and spin-dependent transport properties [63,
64]. One-qubit spintronic quantum gates has been fabricated using quantum rings,
and thus, being assisted by resonant tunneling transport and spin-orbit interaction,
quantum information processing can be achieved [65]. The development of ordered
quantum ring arraysmay assist in realizing semiconductor-based quantumcomputing
devices.
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Chapter 8
Self-assembled Semiconductor Quantum
Ring Complexes by Droplet Epitaxy:
Growth and Physical Properties

Stefano Sanguinetti, Takaaki Mano and Takashi Kuroda

Abstract Extremely complex semiconductor quantum ring based structures, as
single ring, multiple concentric quantum rings and coupled ring-disk, dot-ring and
dot-disk structures, can be easily designed and grown by Droplet Epitaxy. In this
paper, the fabrication and the characterization of such complex quantum nanostruc-
tures are reviewed. Electronic structure, single photon emission, carrier dynamics
and magnetic properties in ring structures will be discussed.

8.1 Introduction

Ring geometries have fascinated the physics community, as electron confinement in
nanometric rings induces a topological quantummechanical coherence, theAhronov-
Bohm effect [1]. Since the exciton has a non zero orbital magnetic moment, exciton
Ahronov-Bohm effect has been predicted as well [2]. It is also possible to fabricate
semiconductor quantum ring molecules, made by concentric quantum ring struc-
tures: these structures could permit to explore the magneto-optical excitations due
to the Rashba spin orbit interaction [3]. Magnetic field level dispersion in quan-
tum ring is different from quantum dots and useful: the ground state total angular
momentum changes from zero to non zero by applying a magnetic field [4, 5].
This also produces a different energy dispersion of the excitons depending on ring
radius. Moreover, charge tunneling between states of different angular momentum
is strongly suppressed in concentric quantum ring by selection rules. Therefore,
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concentric quantum ring are very relevant in the research on semiconductor-based
quantum computational devices because they offer the control of effective coupling
of direct–indirect excitons [6]: this could be a promising way to fabricate multiple
two level states devices with switchable interaction. The possibility to fill the ring
with few electrons allowed to detect the Ahronov-Bohm effect through the magnetic
oscillation in the persistent current carried by the single electron states [7].

Recently, the possibility to investigate nanostructures with cylindrical symme-
try (quantum disks or quantum ring) by twisted light has opened novel scenarios.
Twisted light is light carrying orbital angular momentum and it has attracted a lot of
attention from researchers in the last two decades because of its interesting funda-
mental properties and applications. Since the pioneering work of Allen et al. in 1992
on twisted light [8], the proposed applications of twisted light covered different areas
such as the interaction with mesoscopic particles (optical tweezers) [9], the interac-
tion with atoms and molecules [10], the interaction with Bose-Einstein condensates
[11], observational astronomy [12] and finally, since the discrete nature of the orbital
angular momentum, encoding of information for quantum communications [13, 14].
In semiconductor nanostructures the use of twisted light would allow to select pre-
cisely the electronic level one wishes to populate using the appropriate combination
of light-beam parameters.

Two different Molecular Beam Epitaxy (MBE) growth methods can be used to
self-assemble compound semiconductor quantum rings. The first one is based on
the Stranki-Krastanov (SK) growth of InAs/GaAs, InAs/InP or GaSb/GaAs(001)
nano-islands; a partial GaAs capping and a subsequent high temperature annealing
produce a significant mass transfer between the center and the edge of the island
[15–18] thus producing a ring shaped nanostructure. Due to the high complexity of
the phenomena, this method offers only a limited degree of freedom for the design
of the nanostructure. This rules out a precise on demand control of size and shape
of the quantum ring, and thus of their electronic properties. Moreover, strain in the
ring structures possibly brake the rotational symmetry of the electronic structures in
these lattice-mismatched systems.

An alternative fabrication method is based on Droplet Epitaxy (DE) [19]. DE is a
flexible growth technique which allows for the fabrication of quantum dots with gov-
ernable size and density in strain free materials [20–22]. Furthermore, a designable
wetting layer [23] avoids well know issues in SK dots [24–29], and the method
has been demonstrated on many growth surface, including (311)A [30] and (111)A
[31]. In addition, DE allows to obtain a large variety of three dimensional nanostruc-
tures with different geometries, ranging from rings to complex dot configurations
[32–38]. This intrinsic design flexibility is due mainly to the splitting, in time, of the
III-column andV-column element supply, with an independent choice, for each of the
two elements, of the best growth conditions. DE allows the fabrication of rings from
strained [39–45] or unstrained heterostructure, with single and multiple concentric
quantum ring geometries [32, 33, 46] as well as more exotic dot/ring structures [47].

In this review we will summarize the main results about growth design of DE ring
shaped nanostructures, theoretical study of their electronic properties and experi-
mental characterization of DE-quantum rings.
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The review is organized as follows. Section 8.2 describes the fabrication of quan-
tum rings with different shapes by DE, Sect. 8.3 is dedicated to the electronic struc-
ture of the DE-quantum rings. The photoluminescence properties of the DE rings
are shown in Sect. 8.4 while in Sect. 8.5 carrier dynamics experimental results in
DE-quantum rings are reported.

8.2 The Droplet Epitaxy

Droplet Epitaxy (DE), an MBE based growth technique for the fabrication of three-
dimensional quantum nanostructures [19], has demonstrated an unmatched ability
to assemble quantum ring semiconductor nanostructures with complex geometries.
Nanostructures morphologies range from single rings (single ring) [33], concen-
tric double (double ring) [32], concentric triple rings [46], ring-disks [48] dot-rings
[47] and dot-disks [49]. DE exploits the sequential supply of group-III and group-
V elements, unlike standard MBE growth, where the elements are simultaneously
supplied to the substrate. In DE growth of GaAs, first Ga irradiation in absence of
As leads to the formation of nanometric droplets with homogeneous size then an As
flux is supplied for the crystallization of the metallic Ga droplets into GaAs quantum
nanostructures. A proper choice of the growth conditions allows to obtain different
morphologies of the GaAs quantum nanostructures. Figure 8.1 clarifies, in a qual-
itative way, the effect of the growth conditions on the obtained nanostructures and
shows how DE gives a large freedom in the shape design.

The authors present a systematic study on the formation of GaAs/AlGaAs quan-
tum nanostructures: starting from an identical set of Ga droplets, crystallization is
performed at different substrate temperatures and As fluxes. As clearly shown, the
conditions for the crystallization are crucial for the shape control of the GaAs quan-
tumnanostructures. Indeed, in the case of lowerAs flux or higher temperatures, it was
not possible to obtain 3D island growth, because of the annihilation of droplets. The
position occupied by the droplets before As crystallization is marked by a shallow
holes surrounded by a tiny ring. The presence of avoided growth below theGa droplet
has been attributed to the preferential As crystallization in the droplet at the triple
point [46]. Additional effects related to Ga etching may be possible [50], although
strongly quenched by the low growth temperature. By irradiation with a higher As
flux, 3D dimensional growth occurs, as a result of incorporation of arsenic atoms
inside the Ga droplet, thus giving rise to GaAs nanocrystals with dome (Fig. 8.1d)
and ring (Fig. 8.1c) shapes.

DE therefore enables the fabrication of 3D nanostructures with shapes ranging
from dots to rings. Mano et al. [32] reported a wide sampling of the growth condi-
tions space and demonstrated, for the first time, the self-assembly of GaAs/AlGaAs
double rings. No other techniques are available for the fabrication of such complex
semiconductor ring structures. Recent advances in DE permit an even larger degree
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Fig. 8.1 (1) and (2) are the RHEED patterns and surface morphologies (Scanning Electron
Microscopy) of the samples at each stage of the growth process, respectively. In (1), upper col-
umn: the electron beam along [110]; lower column: the electron beam along [110]. a is after the Ga
deposition at 200 ◦C. b–e are after subsequent As4 molecular-beam irradiation with 4 × 10−7 Torr
at 200 ◦C, 4 × 10−5 Torr at 200 ◦C, 4 × 10−5 Torr at 150 ◦C and 4 × 10−7 Torr at 150 ◦C, respec-
tively. Reprinted from [20], Copyright (2000), with permission from Japanese Applied Physical
Society)

of freedom in the design of the nanostructures, allowing the assembly of multi-ring
and ring structures coupled with dot and disks [46–49].

A conventional MBE apparatus is used for the fabrication by DE of all the
GaAs/AlGaAs ring structures. For the precise and abrupt control of As flux intensi-
ties, a valved cell is highly required for the supply of As flux. After the growth an
Al0.3Ga0.7As barrier layer, the substrate temperature is reduced to a range between
200 and 350 ◦C, depending on requirements of the size and density of the nanos-
tructures [20, 22], the As valve is closed and the As pressure in the growth chamber
depleted. When pressure is low enough, only cation (Ga) atoms are supplied. In the
experiment here reported, As4 was used. In absence of As, Ga atoms are incorpo-
rated into the As terminated surface, resulting in the transition to a Ga stabilized
reconstruction [51]. Subsequent Ga deposition gives rise to the formation of tiny
Ga droplets on the surface. Density and size of the Ga droplets depends on substrate
temperature and total amount of Ga supplied. Since Ga diffusion on the Ga terminate
substrate is a temperature activated process, the higher the temperature the smaller
droplets density. Note that the size and density of the droplets can be controlledwithin
wide range independently, which is highly advantageous. This step sets the initial
condition from which the DE-rings will be fabricated. During As supply, metallic
Ga droplets act as nanometer scale local reservoirs of group III material.
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8.2.1 Fabrication of Ring Structures

In order to get single ring and double ring structures, after the deposition of the
droplets, the substrate temperature was set around 200 ◦C. Rings formation can be
obtain by the irradiation of an As4 molecular beam with a fluxes of ≈0.8−1 × 10−5

Torr beam equivalent pressure (BEP) for single ring [52] and ≈0.5−2 × 10−6 Torr
BEP for double ring [32]. In this growth step, Ga contained in the droplets fully
crystallizes in form of GaAs rings. Real-time process observation is possible through
reflection high-energy electron diffraction (RHEED): the complete change of the
pattern from halo to spots corresponds to the crystallization of the Ga contained in
the droplets. After crystallization, an annealing of 10min at 350 ◦Cat constantAs flux
was performed. While the annealing step does not cause significant morphological
change of the ring structures, this last step ensured the complete crystallization of
the metallic Ga reservoirs on the surface and enable to grow capping layer at more
than 300 ◦C, which is essentially important to obtain optically active quantum rings.
[53, 54]

Figure 8.2 shows AFM images of a single nanostructure of the uncapped single
ring and double ring samples. Well defined, not topologically connected, rings are
clearly visible. The latter characteristic is peculiar only of DE-quantum rings.

Coupled structures, as a nanometer-high holed flat disk with a diameter of hun-
dreds of nanometers on which a ring structure lays down, can also be grown by DE.
These coupled ring/disk nanostructures show how it is possible to obtain localized
states with different dimensionality and tunable coupling in a designable structure
[48, 55].

Ring/disks growth was performed in close resemblance of the single ring and
double ring procedure. After supplying 10MLs of Ga on the substrate, the formation
of nearly hemispherical Ga droplets occurred. Straight afterward, an As flux in the
range 8 × 10−7 to 8 × 10−6 Torr was irradiated on the substrate at the constant
temperature of 350 ◦C for 20min.

An AFM image of an uncapped sample is shown in Fig. 8.3. A well defined
ring/disk is visible, made up of a disk with height of ≈6 nm and diameter of around
300 nm and an inner ring marked by a 10 nm high ridge and a diameter of around 80

Fig. 8.2 Left panel: AFM
image of a single ring. Right
panel: AFM image of a
single concentric ring (From
Kuroda et al. [33])
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Fig. 8.3 AFM image of
GaAs ring/disk crystallized
under an As flux of 8 × 10−6

Torr (Reprinted from [48],
Copyright (2010), with
permission from Institute of
Physics)

Fig. 8.4 AFM images of a
typical triple ring. The
crystallographic axis are
parallel to the image border:
[110] (horizontal on image)
and [110] (vertical on image)
(Reprinted from [46],
Copyright (2009), with
permission from American
Chemical Society)

nm. A decrease of the As flux leads to the expansion of the disk and to its thinning,
whereas the central hole diameter remains unaltered [48].

DE method can be extended to produce triple rings and multiple quantum rings.
The key process for realize these complex nanostructures is the use of multiple short
time As pulses at different substrate temperatures in order to partially crystallize the
metallic Ga in the droplet [46]. The process to obtain GaAs/AlGaAs triple ring is as
follows. After the growth of the AlGaAs barrier, substrate temperature was lowered
to 350 ◦C and As valve was closed. At this temperature, the surface had an As-rich
c(4× 4)β surface reconstruction [56]. A subsequent three-step growth procedurewas
performed. Step 1 requires the supply of 10 MLs of Gallium at 350 ◦C in absence
of As, step 2 corresponds to an As flux supply equal to 8 × 10−7 Torr at 250 ◦C for
20s and step 3 consists of the supply of an As flux of the same intensity at 300 ◦C
for 20min (thus on until complete crystallization of the deposited Ga).

Figure 8.4 is the AFM image of the nanostructure fabricated by such three-steps
growth DE procedure. Ga droplets evolved in well-defined GaAs triple rings struc-
tures with good rotational symmetry. Inner, middle and outer ring have diameters
of around 80, 140 and 210nm respectively and heights around 7 nm for the inner
rings, 4 nm for middle rings and 3 nm for the outer rings. A slight elongation of
≈11% along the [011] direction can be observed, probably due to the anisotropic
surface migration of Ga on the (100) GaAs surface [57]. As in the ring/disks, the
inner ring diameter is nearly equal to that of the original Ga droplet. triple rings
density matches that of the original droplets, confirming that also in this case all Ga
droplets transforms into GaAs triple rings. More complex ring structures, obtained
through a four step DE procedure, are reported in Fig. 8.5 [46].
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Fig. 8.5 Left panel: AFM images of a typical five-ring structures. Right panel: Line profile along
the [011] direction of aGaAs five-ring structure. Starting from the inner andmoving to the outermost
ring, the ring radii of the structures are around 50, 90, 130, 170, and 210 nm, while the heights
are around 13, 8, 7, 5.5, and 4.5 nm, respectively (Reprinted from [46], Copyright (2009), with
permission from American Chemical Society)

8.2.2 Growth Model

Growth dynamics of triple rings was investigated by stopping the process at different
steps and morphological characterizing the samples via ex-situ AFMmeasurements.
The quenching was just after: (i) droplet formation, (ii) the short time As supply;
iii) the full crystallization of the droplet. Selective wet etching was used to remove
metallic Ga on the surface [46]. AFM images and typical line profiles of the six
samples are reported in Fig. 8.6. 10 MLs Ga were supplied at 350 ◦C (sample S1,
Fig. 8.6a) and numerous nearly hemispherical Gallium droplets were formed. Aver-
age diameter was around 80 nm, height around 35 nm and density around 8 × 108

cm−2.
At first step,Ga etching allows to observe the presence of aGaAs ring structure just

under the original droplet, due to the crystallization at the droplet’s edge (Fig. 8.6b).
The partial crystallization step, when the initial Ga droplets are irradiated with an
Arsenic flux of 250 ◦C for 20s, led to a structure formed by a central dome of
unreacted Ga, with the same radius of the initial Ga droplet, surrounded by a shallow
ring of ≈140 nm diameter (Fig. 8.6c). Ga etching shows the formation of a GaAs
double ring structure, whose inner ring is lying just under the edge of the metallic
Ga droplet (Fig. 8.6d). The third step, the final As supply at 300 ◦C for 20min,
completely crystallizes Ga atoms, forming the outermost third ring structure with a
diameter of around 210 nm. Therefore, a complete GaAs triple ring structure was
obtained (Fig. 8.6e–f).

A discussion of the phenomenology is now presented. The semiconductor quan-
tum ring which were characterized exhibit three concentric rings. However, the rings
do not share the same origin. The two crystallization steps in presence of an As
flux form the two external rings, whereas the inner ring is formed during the Ga
droplet formation, when no intentional As flux is supplied to the sample. The ring
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Fig. 8.6 AFM images of As-grown samples S1, S2, and S3 (left panels), etched samples S1–E,
S2–E and S3–E (center panels) and corresponding line profiles taken along [0-11] direction (right
panels), after 10 MLs Ga supply at 350 ◦C (top panels), after 8 × 10−7 Torr As supply at 250 ◦C
for 20s (middle panels) and after 8 × 10−7 Torr As supply at 300 ◦C for 20min (bottom panels)
(Reprinted from [46], Copyright (2009), with permission from American Chemical Society)

lies underneath the Ga droplet, at its edge, and is not altered by the subsequent steps
of the fabrication process. The formation of the inner ring can be accounted for by
an internal transport of As atoms incorporated at the droplet edge. Therefore, the
inner ring might be due to the low solubility of As in the metallic Ga and of its
accumulation on the GaAs tiny ring, found just after the droplet deposition, because
of internal convection flux. The same diameter is thus preserved for all the growth
conditions. It is worth noting that the inner ring shares the same origin of the inner
ring in double rings, because its formation does not depend on the specific conditions
used during the arsenization step [32]. Mano et al. [32] already showed clearly this
behavior and pointed out that radius of single ring, inner ring in double ring and Ga
metallic droplet are identical (see Fig. 8.7).

To the outer rings, which are formed during the arsenization steps, can be asso-
ciated a different formation mechanism. In DE a reservoir of the III-column species
(the droplet) resides permanently on the surface and the V-column species is sup-
plied in form of distributed flux. Therefore the balance between the Ga migration
from the droplet and As flux determines the growth of the GaAs nanostructure. Then,
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Fig. 8.7 AFM images of the As-grown droplet (upper panel), single ring (center panel) and double
ring (bottom panel) nanostructures obtained from the same initial droplet configuration (Reprinted
from [32], Copyright (2005), with permission from American Chemical Society)

following the changes in average surface reconstruction during the growth process
is the utmost importance in order to understand such mechanism. These changes
have been determined by [46], through the analysis of the RHEED pattern and of the
RHEED specular beam intensity. During the deposition step, after 1.7 MLs supply
of Ga molecular-beam Ga-rich (4× 6) surface reconstruction [58] appeared, while
during As supply the surface changed from the Ga-rich limit (4× 6) to As-stabilized
(2 × 4) and finally to As-rich c(4 × 4).

The interplay between the As adsorption on the Ga-rich (4× 6) surface and the Ga
migration on theAs-stabilized (2×4) is supposed to be the keypoint for the formation
of quantum ring structures. Figure 8.8 shows a schematic diagram of the proposed
mechanism. 10 MLs Ga are supplied: just after 1.7 MLs the c(4×4) reconstruction
changes to aGa-rich (4× 6) surface and subsequently droplets are formed (Fig. 8.8a).
As soon as Arsenic molecular beam is supplied, the substrate starts to change to an
As-stabilized (2 × 4) surface reconstruction and nearly simultaneously some Ga
atoms migrate and form a monolayer of GaAs around the droplet [59] (Fig. 8.8b).
Because of the cylindrical symmetry of the diffusion dynamics, Ga atoms can cover
a mean displacement area ≈Dτ where D is the surface diffusion coefficient of Ga
atoms and τ the average time interval between arrival and adsorption of As atoms at a
specific site [60]. At the same time, far from the Ga droplets, the Arsenic adsorption
on the surface not affected by Ga diffusion makes the reconstruction to change to
c(4 × 4). The detailed model of ring formation by droplet epitaxy can be found in
[61] where the role of As diffusion in the formation of the outer ring is highlighted.

It’s worth noting that step 2 and step 3 starts from similar configurations, char-
acterized by a reservoir of metallic Ga in the position of the droplet and a Ga-rich
(4 × 6) surface reconstruction. The change in surface reconstruction from As-rich
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Fig. 8.8 Schematic explanation of the proposed growth mechanism for the formation of outer rings
structures. Ga droplets are formed on a Ga-rich (4× 6) surface reconstruction (a). During As supply
a (2 × 4) surface reconstruction appears all over the substrate on the top of which the Ga atoms,
coming from the droplets, can migrate covering a mean displacement area of ≈Dτ (b). Far away
from the droplet the surface turns to the As-rich c(4×4). The border of this area act as a pinning site
for the migration of the Ga atoms (c). The detailed atomic arrangements for the different surface
reconstructions are ignored for simplicity (Reprinted from [46], Copyright (2009), with permission
from American Chemical Society)

to Ga-rich between step 2 and 3 might be due to a diffusion of Ga from the droplets
on the As-rich surface, forming a 2D GaAs thin layer, in absence of an intentional
As flux.

Also the formation dynamics of the double rings and ring/disks can be easily
explained [32, 48] by this model. The double ring and ring/disk are realized via a
two-step growth process: first a deposition of Ga into droplets in absence of As flux
and then a step where As with moderate flux (≈1 × 10−7 Torr BEP) is irradiated on
the sample at 250 ◦C until full crystallization is achieved. The inner ring has, like in
our triple ring structure, the same radius of the initial droplet and therefore should
be formed just after the droplet deposition [32]. The subsequent arsenization step is
responsible of the formation of the outer ring.

It is important to point out that there is a significant difference, in the case of
multi-step growth, between the amount of Ga atoms initially supplied (typically 10
ML in the case of triple rings) and the corresponding to the equivalent amount of Ga
contained inside the final structure. This difference suggests that only a fraction of
the initially supplied Ga atoms effectively concur to the formation of the 3D nanos-
tructure, while the other part, estimated to be around 6–7 MLs, might be consumed
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Fig. 8.9 Pholuminescence
spectra of triple rings (TQR)
recorded at 15 K. GaAs and
Al0.3Ga0.7As peaks appeared
at 1.52 and 1.90 eV,
respectively. Between them
additional two features,
attributed to triple rings
(1.55 eV) and to a 7MLs QW
(1.76 eV). Data from [62]

in another process. The reason of this discrepancy might be found considering the
fabrication procedure for the formation of triple rings. As mentioned before, the
three main steps of the growth are performed at different temperatures: 350 ◦C for
the droplets formation, 250 ◦C for the first As supply and 300 ◦C for the second As
supply. The change in substrate temperature requires growth interruption times of
about one hour for each change. During this waiting time a portion of the Ga atoms
stored in the droplets might be consumed to form a 2D GaAs thin layer all over the
substrate. We believe this phenomenon to be caused by a slow 2D crystallization of
Ga atoms diffusing from the droplets, even in absence of an intentional As supply.
Indeed, an As background pressure of around 1 × 10−9 Torr is present during the
whole procedure, thus providing an unintentional As pressure which promotes the
partial crystallization of Ga atoms contained in the droplet during the growth inter-
ruptions. A slow GaAs crystallization all over the substrate might take place also in
case of very lowAs pressure [48]. In these conditions of very lowAs flux, the surface
mobility of Ga atoms is so large that an uniform layer of GaAs might be formed all
over the substrate surface. In a capped sample, embedded in an Al0.3Ga0.7As bar-
rier, this layer can act as a quantum well, confining carriers and eventually being
optically active. Photoluminescence investigation on capped triple ring substrates
confirm this assumption (see Fig. 8.9) showing that in the region where the emission
from quantum confined GaAs structures is expected, two peaks, corresponding to
emission from the triple ring ensemble (Etriplering = 1.55 eV) and from the expected
6–7MLs-thick GaAs QW (EQW = 1.76 eV), originating from the GaAs layer formed
during growth interruptions, are present.



198 S. Sanguinetti et al.

8.2.3 Coupled Topologically Distinct Nanostructures

It possible to extend the concept of pulsed deposition of III and V column elements
at controlled temperatures and fluxes, used in multiple rings fabrication, in order to
combine ringswith structures showing different topologies. In particular it is possible
to combine quantum dots, rings and disks in a single nanostructure. Some examples
of complex GaAs nanostructures grown on Al0.3Ga0.7As buffer layers are reported
in Fig. 8.10. The nanostructures are made by a dot or a ring at the center and an
outer region made by a ring or a disk. The fabrication procedure is detailed in [32,
46–48]. When droplets with the required density and size are formed, the fabrication
of nanostructures proceeds via the pulsed supply of predetermined As quantities at
controlled fluxes and substrate temperatures. This allows for the fine control of the
three phenomena, described in Sect. 8.2.2, that are occurring during the As supply:
(i) the thermodynamically driven diffusion of Ga atoms from the droplets to form a
two dimensional (2D) layer on the substrate; (ii) The incorporation of As in the liquid
Ga at the droplet original position, thus developing a 3D nanocrystal; and (iii) the
kinetic of the change in the surface reconstruction around the droplets from Ga-rich
to As-rich, caused by the adsorption of As on the flat surface. The interplay between
these phenomena sets the final configuration of the GaAs nanostructure, between
the limit cases of a total lateral growth of GaAs around the droplet edges (strong Ga
diffusion) and of a complete crystallization of Ga within the original droplets (very
efficient As incorporation).
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Fig. 8.10 Atomic force microscope (AFM) images of dot-ring (a), dot-disk (b), double ring (c)
and ring-disk (d) GaAs/AlGaAs nanostructures. Data from [63]

Dots are indeed formed, from metallic Ga droplets, at low substrate temperature
and high As flux, due to the incorporation of As in the liquid Ga, thus developing
a three-dimensional crystal at the droplets original position [64, 65]. This is caused
by the very low mobility of Ga in these conditions which freezes the atoms close
to their initial positions. On the contrary GaAs rings could be fabricated outside
of the original droplet exploiting the Ga diffusion during As supply at intermedi-
ate temperatures, around 300 ◦C [32]. Both the As flux intensity and the substrate
temperature can be used to finely tune the diameter of outer portion of the struc-
ture [46, 48] due to the effects of Ga diffusion on the final morphology [66, 67]. In
particular, higher substrate temperatures during the As irradiation, as well as lower
As flux were found to increase the diameter of the nanostructure outer portion [46].
The quantum dot dimensions are instead determined by the original droplets ones,
thus being fully controllable over a wide range. Therefore the shape and the size
of the single nanostructures, which constitute the final complex nanostructure, are
completely designable by governing the transformation kinetics of the Ga contained
in the single droplet. With the large design flexibility intrinsic in the DE process,
we can thus fabricate, by the pure self-assembly, nanostructures where is possible
to couple, within a single structure, systems with different dimensionality (dot and
rings), brought together in close spatial proximity.

The typical growth procedure for the fabrication of the dot-ring sample was fol-
lowed step-by-step via ex-situ AFM characterization by Somaschini et al. [47] (see
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Fig. 8.11). Just after the Ga deposition, nearly hemispherical droplets were formed
(Fig. 8.11a). After the first pulse of As at 275 ◦C, a ring with a radius of 60 nm was
clearly developed around the droplet (Fig. 8.11b) by transforming part of the Ga
stored in the droplet. This step not only resulted in the formation of a well defined
GaAs ring, but also left a certain amount of Ga in the original droplet, which still
resided in its initial position, as shown by selective chemical etching [46]. Finally, the
second, high intensityAs supply at 150 ◦C formed the central quantumdot (Fig. 8.2c).
Similarly, in the case of the dot-ring-ring sample the first and the second As pulses
caused the formation of the two concentric rings, while the final As irradiation pro-
moted the crystallization of the remaining Ga atoms into the central dot. Large area
AFM scan of the samples (Fig. 8.12) clearly shows the stability of such growth pro-
cedure based on the control of the growth kinetics. In general, less than 10% of the
fabricated structures showed morphological defects.

8.2.4 Ring Anisotropy

At high growth temperatures, where a (2×4) As rich surface reconstruction is
expected to dominate [51], the well known anisotropy in the diffusion coefficient
of Ga between the two [110] and [110] directions [57] leads to GaAs nanostructures

Fig. 8.11 Evolution of the dot-ring formation, followed step-by-step by AFM analysis of dedicated
samples. Ga droplets just after the Ga deposition (a), formation of the GaAs outer ring after the first
As supply, with unreacted Ga at the center (b), dot-ring formed after the second irradiation with
As, Data from [47]

Fig. 8.12 Large area (2 µm × 2 µm) AFM image of a dot-ring sample. Data from [47]
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with a shape anisotropy. In order to quantify this effect on the droplet ring shape,
Somaschini et al. [68] realized a five-ring sample with As crystallization tempera-
tures between 380 and 320 ◦C. The AFM image of the five-ring is shown in Fig. 8.13.
As expected the anisotropy is clearly visible in the image. The Ga atoms migration
from the original droplet perimeter during As adsorption as a function of tempera-
ture was characterized via the diffusion equivalent areaDτ . The results are shown in
Fig. 8.13 for both [110] and [110] directions. The exponential dependence of Dτ on
the temperature is confirmed in both cases. By the Arrhenius plot the values of 1.28
and 0.85eV for the activation energy for the Ga migration along [110] and [110]
respectively were obtained. These values should not be considered as universal val-
ues since the Gamigration happens on a non perfectly flat GaAs (001) surface. In fact
the surface of the outer ring shows a sub-nanometer surface roughness. Although the
detailed mechanism is not yet clear, the roughness of the actual surface over which
gallium atoms can migrate might in general affect their diffusion length.

8.3 Electronic Properties

8.3.1 Theoretical Predictions

The energy levels of the ring can be evaluated in the framework of a single-band
effective-mass envelope model approximation (EMA) [69, 70]. Although being a
simplemethod, compared tomore complex pseudopotential andmultiband k·pmeth-

Fig. 8.13 a AFM image of a single GaAs five-ring structure fabricated in [62]. bArrhenius plot of
the diffusion area covered by Ga atoms during their migration from the Ga droplets as a function of
the reverse temperature. In the insets: scheme of the procedure to calculate the diffusion area (blue
zone delimited by the dashed line) for both [110] (top panel) and [110] (bottom panel). Solid lines
represent the inner ring and an outer ring with a marked anisotropy. Data from [68]
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ods [71, 72], the model catches the relevant electronic characteristics of the droplet
epitaxy quantum nanostructures. The actual shape measured by AFM is adopted as
the potential of quantum confinement; for simplicity, the ring is assumed to hold a
cylindrical symmetry, although, inmost of the cases, a slight (within 15%) asymmetry
is present. In DE lattice-matched GaAs/AlGaAs rings, strain effects are negligible.
Thus the simple EMA is expected to provide accurate energy levels. In the case of SK
grown dots, instead, the electronic structure is strongly modified by complex strain
effects [73]. The reliability of the present method is seen in [22, 74], where good
agreement is shown between the asymmetric photoluminescence (PL) lineshape in a
GaAs/AlGaAs quantum dot ensemble and the calculation, which takes into account
the morphological distribution of dots. Since DE rings are sufficiently small, con-
finement effects are dominant and Coulomb interaction can be treated as a constant
shift in the transition energies, independent of the choice of an electron state and the
hole state.

The expected eigenfunctions, taking into account the rotational symmetry of the
Hamiltonian, are of form ΦL, where L(= 0,±1, . . .) is the azimuthal quantum num-
ber, is expanded in terms of a complete set of the base functions, ξL

i,j, formed by
products of Bessel functions of integer order L and sine functions of z,

ΦL(z, r, θ) =
∑

i,j>0

AL
i,jξ

L
i,j(z, r, θ), (8.1)

ξL
i,j(z, r, θ) = βL

i JL(k
L
i r)e

iLθ sin(Kjz), (8.2)

Fig. 8.14 Single-carrier energy levels in a quantum ring and b double ring. Quantization energies
for an electron (a heavy hole) with the three lowest z-radial quantum numbers, Ne(h) and various
angular momenta (up to 10) are presented. c Cross-sectional imaging of electronic probability den-
sity in double ring for Ne = 1, 2, and 3 with L = 0. The line represents the potential of confinement
used for calculation (Reprinted from [33])
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where kLi Rc is the i the zero of the Bessel function of integer order JL(x),Kj = π j/Zc,
and βL

i is appropriate normalization factors [69].
Figure 8.14a shows a series of single carrier levels of single ring. Because the sys-

tem has cylindrical symmetry, each carrier level is specified by the z-radial quantum
number, N (= 1, 2, . . .), and an azimuthal quantum number L, corresponding to the
angular momentum. The L-dependent sequence of quantized levels shows a typical
signature of ring-type confinement. For an ideal ring with infinitesimal width, being
treated as a one-dimensional system with translational periodicity, the level series is
expressed as

EL = �
2

2m∗R2
L2, (8.3)

where R andm∗ respectively represent the radius of the ring and the carrier mass. The
line sequence in Fig. 8.14a reflects clearly the bilinear dependence of the level series,
shown in (8.3). In addition, the L-dependent sequence is less crowded for larger N .
According to (8.3), the situation corresponds to an increase in the effective value of
R, implying a stretched orbital trajectory caused by in-plane centrifugal force.

Figure 8.14b shows the energy levels in double ring. Due to the smaller height, the
quantization energies are larger than those of quantum ring. The level sequence of
N = 1 is more densely populated than that of N = 2, suggesting a large difference
in carrier trajectories between the two levels. This difference is confirmed by the
wavefunctions shown in Fig. 8.14c, which illustrates the envelope wavefunction of
an electron with various values of N . They are of zero angular momentum. The
electron of N = 1 is confined mainly in the outer ring. That of N = 2 is in the
inner ring, and that of N = 3 is situated in both rings. That differential confinement
engenders remarkable changes in their trajectory. The amount of penetration for the
electron of N = 1 to the inner ring is found to be ∼0.1, whereas that of N = 2 to the
outer ring is ∼0.05.

In the case of triple ring, predicted ground state wavefunction is completely local-
ized within the inner ring, while for more excited states wavefunctions localized
within the two external rings can be found [46]. The expected electronic proper-
ties of a ring/disk are more complex. These structures constitute the good example
of nanostructures with coupled localized-extended states with cylindrical symmetry
(the protrusion at the inner ring edge acts, in fact, as three-dimensional electronic
carrier confinement potential, thus being like a ring laid down on top of quantum
disk). Ring/disks thus offer additional degrees of freedom for the control of effective
coupling between excitons entrapped in quantum nanostructures [6]. The calculated
ring/disk ground electronic and hole states appear to be confined in the ring structure
at the edge of the inner ring/disk hole. The ring/disk excited state is, on the other
side, a quantum well like state extended along the disk [75].
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8.3.2 Beyond Effective Mass Approximation

Electronic properties of complex quantum nanostructured systems were also studied
at the atomistic level using the empirical tight-binding method [76], confirming the
EMA results.

In the EMA approach mentioned above, Coulomb interactions between carriers
has been ignored. Coulomb effects can be included using the configuration mixing
(CM) method, where the interaction Hamiltonian is expanded by the single-carrier
wavefunction configurations, then diagonalized [73]. With the CM method it is pos-
sible to correctly describe the binding energies of excitons in strongly-confined quan-
tum dots, such as the (In,Ga)As/GaAs systems, where the Coulomb terms is treated
as weak perturbation on the single-carrier states. For weakly-confined quantum dot
systems, on the other hand, the CM method often fails, thus it is hard to reach suffi-
cient convergence even with large CMmatrices available by practical computational
capacity. The quantum ring systems would belong to the latter category, since the
single-particle levels are densely packed in spectra compared to the typical energy
range of Coulomb binding (a few tens of meV).

Analternativemethod toovercome this conversionproblem is the quantumMonte-
Carlo (QMC)method, which enables to determine the exact many-body ground-state
energies under the condition of EMA. The details of this method are given by [77].
In this approach single-particle energies were calculated as well as multi-particle
energies on an equal footing, including all correlation effects. The multiple exciton
spectra of DE grown GaAs quantum dots calculated by means of QMC show a size
dependence which quantitatively agrees with the experimental results. [78]

8.4 Photoluminescence Emission

8.4.1 Broad Area Photoluminescence

In Fig. 8.15 typical broad area PL spectra of the ring samples capped with an
Al0.3Ga0.7As barrier are reported. It is worth mentioning that the capping procedure
does not induce strong changes in the droplet epitaxy made nanostructure shape,
as demonstrated in [79]. Thermal annealing processes, required to recover the crys-
talline quality of the barrier, induces some limited intermixing at the barrier with less
than 0.5 nm diffusion length even at the higher annealing temperatures [80].

In all samples PL is characterized by a broad emission band located between the
GaAs and the Al0.3Ga0.3As energy gaps.

The experiment reported by [81] shows samples ranging from quantum dots to
double ring obtained from an identical droplet configuration. In this way it is possible
to observe the effect of structure evolution at constant volume, determined by the Ga
content of the initial droplets.
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The nanostructure emission blue-shifts as the structure evolves from quantum dot
to double ring. The structural evolution [81] is accompanied both by an increase of
the nanostructure radius, by a strong reduction of the nanostructure height and by the
presence of an additional lateral confinement in ring structures. The anti-correlation
of Eemi and height in the DE-nanostructures (see Fig. 8.16) shows that height reduc-
tion is the main factor affecting the emission energy, whereas additional lateral con-
finement given by the ring width in quantum ring structures plays a minor role. A
correlation between the nanostructure shape and its PL full width at half maximum
(FWHM) can be observed. Being the initial droplet configuration the same, such PL
broadening cannot be related to shape dependent nanostructure volume fluctuations.
Bietti et al. [81] thus attributes such dependence of PL FWHM to shape fluctuation.
In single ring and double ring fabrication, the presence of a slower crystallization
step reduces shape disorder.

Figure 8.17a shows the ensemble optical emission of triple ring structures embed-
ded. A clear emission peak is visible at EA = 1.56 eV (band A) with a full width at
half maximum 30 meV, above the excitonic GaAs signature at 1.519 eV. As excita-
tion power density (Pexc) is increased (Fig. 8.17a) a second band (band B) appears
on the high energy side of the fundamental band (EB = 1.58 eV). The intensity of

Fig. 8.15 Far-field emission
spectra of the sample with a
single rings and b double
rings at 5 K plotted on a
logarithmic scale. The
excitation density is
50mW/cm2 (Reprinted from
[33])
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this band increases super-linearly with the laser excitation power. The theoretically
predicted triple ring ground state transition energy is EGS = 1.58 eV. The ground state
wavefunction is completely localized in the inner ring. The first radial excited state is
located 20 meV above the ground state (EES = 1.60). Also in this case, the wavefunc-
tion is localized within the inner ring volume. The predicted transition energy EGS

lies well within the A line bandwidth. Band A thus belongs to the ensemble emission
from the triple ring ground states. Moreover, the energy difference between A and
B bands matches the energy difference EES − EGS = 20 meV. In addition, the Pexc
behavior of band A and B is very similar to that shown by quantum dot ensembles
where the additional band appearing at high Pexc is attributed to excited states emis-
sion. The excited state population in quantum dots is linked to the ground state by
a waterfall-like chain, thus being visible only when the ground state of the quantum
dot is occupied. On this basis, we attribute band B to first excited transition. It is
worth noting that the linked dynamics between the ground state and the first excited
state arises from the fact that the two are localized within the same ring, therefore
showing an agreement with what has been found in single ring structures [33].

Ring/disks constitute a good example of nanostructures with coupled localized-
extended states with cylindrical symmetry (the protrusion at the inner ring edge acts,

Fig. 8.16 Top panel: PL of
quantum dot, single ring and
double ring samples. The
vertical line indicates the
laser excitation energy for
RPL measurements. Bottom
panels: PL peak energy
(open squares) and height
(black circles) of the three
nanostructure (Reprinted
from [81], Copyright
Wiley-VCH Verlag GmbH
and Co. KGaA (2009),
reproduced with permission)
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Fig. 8.17 a PL spectra of the triple ring sample measured at T = 15 K and Pexc= 10 W/cm2. The
arrow indicates the theoretical prediction based on a typical triple ring AFM image. b PL spectra
of the triple ring sample measured at T=15 K as a function of Pexc in the range 5–1500 W/cm2.
Here P0 = 5W/cm2. A and B labels indicate triple ring ground state and excited state emission,
respectively (Reprinted from [82], Copyright (2009), with permission from Institute of Physics)

Fig. 8.18 PL spectrum of
the ring/disk sample at low
temperature (T = 14 K).
Upper right corner: AFM
image of a single ring/disk.
The emission at 1.55 eV is
attributed to carriers
confined in the ring
protrusion of the ring/disk,
while the shoulder at 160 eV
to states belonging to the
disk (Reprinted from [75])

in fact, as three-dimensional electronic carrier confinement potential, thus being like
a ring laid down on top of quantum disk). In Fig. 8.18 the PL spectra at T = 14 K of
the sample is reported. An intense and broad band is clearly visible at 1.55 eV, with a
full width at half maximum of ≈30 meV. The band shows a shoulder at 1.60 eV. The
observed PL peak value is in good agreement with the calculated emission energy
(Eth

GS = 1.56 eV). The theoretically calculated ring/disk ground electronic and hole
states appear to be confined in the ring structure which is formed at the edge of the
inner ring/disk hole. The ring/disk excited state is, on the other side, a quantum well
like state extended along the disk (Eth

EX = 1.59 eV).
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Fig. 8.19 Left panel: RPL spectra of quantum dot (open diamonds), single ring (full circles) and
double ring(open squares) samples. Experimental conditions were: Eexc = 1.78eV and T =10K.
All the spectra are normalized to their maximum. Right panel: Experimental RPL peak energy (full
squares) and theoretical calculations of the energy difference between the ground and the excited
state of the DE-nanostructure (circles). The error bars indicate the experimental band FWHM
(Reprinted from [81], Copyright Wiley-VCH Verlag GmbH and Co. KGaA (2009), reproduced
with permission)

8.4.2 Resonant Photoluminescence

From the RPL spectra some information on the carrier dynamics in the DE-
nanostructure can be deduced. In Fig. 8.19 the resonant PL spectra (RPL) of the
single ring and double ring samples are illustrated in comparison with that of a quan-
tum dot. All the spectra are characterized by large, unstructured bands located at
decreasingΔE ≡ Eexc − Eemi energies. The PL emission from the samples shows its
maximum intensity at ΔE = 84 meV, ΔE = 38 meV and ΔE = 29 meV for quan-
tum dot, single ring and double ring, respectively. The ΔE values strongly depends
on the actual DE-nanostructure. Such dependence allows us to safely attribute the
RPL peak, according to [83], to the emission of the ground state of DE-nanostructure,
whose excited state energy corresponds to the laser excitation energyEexc. Moreover,
the absence, in the spectra, of anymodulationwith a spacing corresponding theGaAs
LO-phonon energy (36 meV) implies that carrier relaxation in DE-nanostructure is
not affected by polaronic [84, 85] or phonon-bottleneck effects [86, 87]. The reduc-
tion of the FWHM of the RPL spectra as the shape evolves from quantum dot to
double ring should be related to the narrower density of states, owing to the smaller
size dispersion, of the latter DE-nanostructure, as shown by the PL spectra.

In Fig. 8.19 the calculated energy separation between the DE-nanostructure
ground and excited states is reported, together with the experimental ΔE values.
There is a rather good agreement between the theoretical predictions and the experi-
mental results. The maxima of the RPL spectra always correspond to the ΔE values
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determined by absorption of photons on the first excited state. The energy separation
between the ground and the excited state decreases as the nanostructure evolves from
quantum dot to double ring (see Fig. 8.19). Theoretical calculations state that ΔE
is determined by the radius of the DE-nanostructure. In fact, in all the three DE-
nanostructure, the first excited state corresponds to a change in the radial quantum
number. In quantum dot the ground and excited state corresponds to a s- and p-type
modulations of both electronic and hole radial wavefunction 3D confined in the dot.
In single ring structures, the wavefunction is naturally confined in the ring. The first
excited state shows a p-type modulation of the radial part of the wavefunction [33].
In the double ring the ground state is localized in the outer ring, while the first excited
state lies in the inner ring, around 4 meV above the outer ring state [32]. However,
the RPL resonance is located at 29 ± 6 meV, thus much higher than the inner ring
resonance. Such energy corresponds, for both rings, to the energy difference between
the ground state and the first excited state whose wavefunction lies in the same ring.
In double ring, this excited state corresponds, in analogy to the single ring case,
to a p-type modulation of the radial part of the ring wavefunction. This means a
suppression, in double ring, of the two ring coupling.

8.4.3 Single Nanostructure Photoluminescence

Spectroscopy of a single quantum ring
In Fig. 8.20a, typical single ring PL spectra (and their dependence on excita-

tion intensity) are reported. Quantum ring density is of the order of 6 × 108/cm2

(DE allows to control density on four order of magnitude) and is thus possible to
measure single nanostructure emission with standard micro-PL apparatus [33]. In
single ring at low excitation, we find a single emission line appearing at 1.569 eV,
due to recombination of an electron and a hole both occupying the ground state of
the ring. Increasing excitation intensity, a new emission line, indicated by an arrow,
emerges at 1.582 eV. Further increase in excitation density causes saturation in the
intensity of the original line along with a nonlinear increase in the new line. Superlin-
ear dependence of the emission intensity suggests that the satellite line comes from
the electron-hole recombination from an excited level of the ring. Thus, the energy
difference between the the ground and the excited state in the single ring is 13 meV.

In addition to the state-filling feature associated with photo-injection, the ground-
state emission is shifted to lower energies. This is a signature of multi-carrier effects.
If multiple carriers are present inside a ring, their energy levels are modified by the
Coulomb interaction among them. Because the energies are renormalized according
to exchange corrections for parallel-spin carriers, this results in spectral red shift
of the emission, depending on the number of carriers. Similar features have been
reported in GaAs quantum dots [21] and InAs quantum rings [88]. At high excitation,
we also find spectral broadening, which is attributed to carrier collision processes.

Single ring emission is considerably large compared with those observed in quan-
tum dots [21]. Line broadening can be ascribed to spectral diffusion, i.e., an effect of
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Fig. 8.20 Emission spectra
for a single GaAs single ring
(a) and double ring (b).
Their respective excitation
densities were, from bottom
to top, 1, 10, and 30 W/cm2.
Spectra are normalized to
their maxima and offset for
clarity (From [33])

the local environment that surrounds each quantum ring. Our samples are expected
to contain a relatively large density of imperfections and excess dopants, associated
with low-temperature growth. This causes local-field fluctuation, leading to efficient
broadening of the PL spectra. Detailed discussion on the origin of line broadening
in quantum nanostructure is presented in [89]

Figure 8.20b shows PL spectrum of a single double ring. As in the case of single
ring, the spectra consist of discrete lines, i.e., a main peak and a satellite one, which is
on the high energy side of themain peak. The former is associatedwith recombination
of carriers in the ground state, whereas the latter comes from the excited states.
The energy difference between ground-state and excited-state lines is 7.2 meV. In
contrast to the single ring case, we observe the satellite peak even at the lowest
excitation, where the estimated carrier population inside a ring should be less than
0.1, according to [33]. Observation of the excited state emission suggests a reduction
of carrier relaxation from the excited level to the ground level. This feature will be
discussed later. At high excitation, we find several additional lines superimposed on
the spectra, as shown by the broken arrows. These contributions imply the presence
of fine energy structures in double ring.

Figure 8.21a shows a series of transition energies for single ring. For comparison,
the emission spectra of quantum ring are plotted. The main peak and the high-energy
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Fig. 8.21 a A series of
optical transition energies in
quantum ring, obtained by
the calculation. The PL
spectrum of a quantum ring
at 15 W/cm2 is shown in the
inset. b The energies of
optical transitions in double
ring, together with the PL
spectrum of a double ring at
10 W/cm2 for comparison
(Reprinted from [33])

satellite in the observed spectra are assigned respectively to the recombination of the
e-h pair in the lowest state, (N ,L) = (1, 0), and to that of the first excited z-radial
state, (2, 0). The split between the two transitions is estimated in 13.1 meV, in agree-
ment with the energy shift obtained by experiments. The emissions associated with
high angular momenta are not present, which suggests rapid relaxation of angular
momentum, whose process is quite faster than transition between z-radial quanti-
zation levels or recombination between an electron and a hole. A possible origin
for fast angular momentum relaxation is structural asymmetry of the ring, due to
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elongation, impurity and surface roughness. In this case, angular momentum is not a
good quantum number, and scattering between different L levels efficiently occurs.

Comparison between the experimental spectra of double ring and calculation is
reported in Fig. 8.21b. As in the case of quantum ring, the main PL peak and the
satellite one are attributed respectively to the transition of (N ,L) = (1, 0) and that
of (2, 0). The energy split deduced from calculation is 8.8 meV, which agrees with
the experimental value. It is worth noting that, in double ring, the wavefunction of
N = 1 is localized mainly in the outer ring, while that of N = 2 is localized in the
inner ring. Thus, the two peaks in the observed spectra come from the two rings,
which consist of a double ring. In this connection, the excited-state emission in our
experiment appears evenwhen the carrier population is less than one. This constitutes
direct evidence for the carrier confinement into the two rings. Tunneling probability
between inner and outer ring is not very large, engendering the observation of the
excited-state emission.

8.5 Carrier Dynamics in Ring Structures

Double ring emission consists of a doublet emission, attributed to the inner ring (IR),
the higher energy line, and to the outer ring (OR), the lower energy line. The relative
intensity, at low temperature, of the two lines does not depend on laser excitation
power density Pexc. This behavior is the fingerprint of a decoupled dynamics of the
two rings, although a strong phonon bottleneck effect between the ground and excited
state of the double ring could give rise to similar CW spectra. Fundamental insights
on possible couplingmechanisms between double ring excited statesmay be obtained
by time resolved state filling experiments on single double rings. Sanguinetti et al.
[90] reports the time resolved emission, at low Pexc, of the two lines of different
double ring doublets. The rise-time of the IR and OR lines is τR = 120 ± 40 ps,
thus being about four times larger than the commonly measured τR for quantum
dot structures, even in the case of GaAs/AlGaAs quantum dots [28]. Despite small
differences (within 30%) between IR and OR decay times (τD), the two lifetimes
are quite similar for each pairs of rings, although the overall lifetime varies by more
than a factor four in different double rings (200 ps < τD < 900 ps), possibly due to
different defectivity of the environment [89]. Time resolved PL measurements as a
function of Pexc, reported in Fig. 8.22, can give more information on the nature of the
mutiplets origin. Increasing power density, strong increases of the rise PL times of
the fundamental optical transition are found, as due to state filling condition. At high
Pexc, correlated dynamics between two lines is observed, which originates from the
multiexcitonic states in the OR (lines L1 and L2 in Fig. 8.22), in close resemblance to
the quantum dot case [21, 91, 92]. Risetime of the line L1 corresponds to decaytime
of line L2, thus demonstrating a link between the carrier population in the two states.
Such correlation between decay and rise times arises from states which are bound in
a cascade-like behavior. As far as the carrier dynamics is concerned, IR fundamental
line shows a similar behavior, indicating an independent state filling mechanism



8 Self-assembled Semiconductor Quantum Ring Complexes by Droplet Epitaxy … 213

with respect to the OR case, although the cascade-like dynamics in the IR multiplet
is partially hidden by OR recombination present on the low energy side of the IR
line.

The overall phenomenology clearly excludes a carrier transfer between IRandOR.
Recombination kinetics of carriers in the inner and outer rings are then decoupled.
In fact, if the carrier dynamics in the two structures were in some way correlated,
a hierarchical order in the PL decay, with the shorter decay time belonging to the
higher state, should be observed, denoting a cascade mechanism associated to the
carrier relaxation paths. On the contrary, the IR recombination lifetimes is always
larger than the risetime of the OR time resolved emission.Moreover, almost the same
decay-times are observed in IR and OR recombination for each double ring, even
if large variations are observed for different double rings. The analysis of carrier
dynamics under large optical injection suggests similar conclusions. For both IR and
OR emission we observe the increase of rise times when increasing Pexc, a clear
evidence of saturation effects associated to state filling conditions. This dynamics
is illustrated by the lines L1 and L2 present at high Pexc in the emission of the
OR of double ring. In this case, the τD of L2 corresponds to the rise time of L1
implying that the two emissions come from energy states connected in a cascade
type dynamics, where the higher states in the ladder act as feeders of the ground
state. As reported before, the L1 and L2 lines of the OR multiplet are ascribed to
single and multi exciton recombination and the difference in their emission energy
stems from a different occupation of the ring, which changes the number of spectator
excitons from several (line L2) to zero (line L1), thus making the dynamics of two
lines strictly correlated. At the same time, comparing the time dependence of the IR
and OR at Pexc= 70 W/cm2 lines, we cannot find any correlation between rise and

Fig. 8.22 a Time integrated spectra of a double ring at different excitation power densities. T=10K
and P0 = 3W/cm2. b Top panel: time resolved PL of the OR line of a double ring at T=10K and at
different Pexc (From [90])
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decay times of the emission, thus demonstrating that the carrier dynamics in the two
rings is decoupled.

The decoupling of the carrier kinetics happens despite the proximity of the two
rings in a double ring structure. Supposing that the exciton are free to move over
the whole ring, the lack of coupling could be traced back to the lack of resonance
conditions between states having the same angular momentum value inside the IR
and OR.

8.5.1 Ring Shape Disorder Effects

As far as the energy relaxation efficiency of the electron-hole pairs photogenerated
in the quantum rings is concerned, it is worth noting that the low Pexc measurements
show relative large values of τR, compared to the quantum dot case. This can be
explained as a less effective relaxation channel in the double ring, compared to the
quantum dot case, despite the much closer spacing of the ring states which should
prevent a phonon-bottleneck effect. These are quite controversial considerations,
linked with the puzzling large broadening of 1 meV of the PL lines. It should be
noted that quantum rings possess an electronic structurewhich is a crossover between
the dot and the wire cases due to their rather peculiar annular shape [33], since
the linear extension of a ring of 80 nm diameter is already quite large (250 nm).
Therefore quantum rings can be considered as a warped analogous of quantum wires
(QWi). Confinement energy fluctuations, whose magnitude is significantly lower
than the exciton binding energy [93], can be observed in QWi, due to their size
disorder. Such disorder principally affects the exciton center of mass (COM) part
of the exciton wavefunction, giving rise to states with a spatially localized COM
motion. The presence of such states has strong effects on the optical properties of
QWi: the more evident is, naturally, the inhomogeneous broadening of the emission
lines, which is related to the exciton energy disorder. Moreover, the exciton COM
localization inQWi induces a serious reduction of the phonon scattering rates [93]. At
the same time, as far as the kinetics of excitons in localized states induced by disorder
is concerned, it is well known that an increase of the emission risetime associated to
the exciton motion toward the state of minimum energy is observed. There are two
main effects of the exciton COM localization on the coupling of OR and IR. On one
side, excitonic COM localization makes possible the coupling between states with
different angular momentum of the two rings because it partially relaxes the angular
momentum conservation in exciton transitions. But, on the other side, it increases
the average spatial separation between the exciton states, which are now localized
in small regions of the rings, thus making the coupling between states belonging to
OR and IR even more difficult.
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Fig. 8.23 Circularly
polarized PL spectra of a
double ring as a function of
magnetic field from 0 T to
8 T (from bottom to top)
with 0.5 T step. A left panel
shows the magnetic
dependence for the σ−
component, and a right panel
shows that for the σ+
component (Reprinted from
[94], Copyright Wiley-VCH
Verlag GmbH and Co.
KGaA (2009), reproduced
with permission)

8.5.2 Magneto-Photoluminescence

Magneto PL measurement were performed on single double rings [94]. A series
of polarized PL spectra with varying magnetic field in Faraday geometry is shown
in Fig. 8.23. The left and right series corresponds to σ− and σ+ polarized signals,
respectively. Both polarizations have identical spectra at 0 T. They consist of a sharp
line at 758.6 nmand a broad line at 760.8 nm,which are assigned to the recombination
of carriers inside the inner ring and the outer ring of a double ring.

Increasing the magnetic field, the σ− spectra shift to shorter wavelengths, while
the σ+ spectra slightlymove to longerwavelengths, as expected for the Zeeman effect
of quantum ring excitons. According to a fit to a quadratic dependence on magnetic
field,we estimated an exciton g factor gX = 2.4 (±0.3), and a diamagnetic coefficient
9.5 (±1)µeV/T2. The value of gX is almost the same reported by previous studies on
GaAs lens-shaped dots, while the diamagnetic coefficient is around two times larger
for the present quantum ring than the dots [95]. Difference in the diamagnetic shift
is probably due to lateral expansion of carrier confinement in quantum rings.

A striking feature is that the intensity of the σ+ signals is significantly quenched
by around 20 %, compared to that of the σ− signals, at fields more than 6 T. Note
that the σ+ signal, which shows the PL quench, arises from the lower Zeeman level.
We can therefore rule out the possibility of carrier relaxation between the Zeeman
levels.
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Two processes can be accountable for the PL quench at high magnetic field were
proposed. The first is the excitonABeffect, which comes from level crossing between
different orbital states in quantum ring. According to the theoretical proposal of [96],
the transition strength decreases to zero when relative orbital angular momentum is
changed from 0 to 1, being realized at a particular field. The field of level crossing is
given by a equation,ΔΦ/Φ0 = 1/2, whereΔΦ is the number ofmagnetic fluxwhich
inserts relative trajectory for electron and hole motion, and Φ0 is a flux quantum. As
a rough estimation which ignores Coulomb interaction sand assuming a ring shape
studied in [33], the transition field is expected to be ∼10 T, in reasonable agreement
with the present result.

The second process is related to the level crossing between bright and dark tri-
ons. Because of unintentional doping, our sample can possibly be p type, leading
to the formation of positive trions. In this case, the ground-state trion is bright at
zero field, and a dark trion with triplet holes should be present at a higher energy.
The g factor for the relevant emission is given by |gc| for the bright cold trion, and
|gc − 2gv| for the dark hot trion, the latter becoming larger than the former. Thus, the
bright-to-dark transition can appear at sufficiently high field, in contrast to the case of
neutral excitons. The value of the field of this transition is related to the energy split
from a cold trion to a hot trion, which is essentially given by the s-p orbital splitting
for a hole. This splitting is on the order of 10 meV for conventional quantum dots,
requiring an extremely high field for the transition. In the double rings, on the other
hand, the orbital split is as small as≤1 meV, because of their expanded shape. There-
fore, the magnetically-induced transition can be realized at a field available in this
experiment.

8.5.3 Single Photon Emission

In order to investigate the peculiar phenomena typical of quantum rings [1, 3–5], they
are usually considered as an ideal quantum system. However, in real semiconductor
quantum devices disorder cannot be neglected. Effects related to disorder are largely
discussed in quantum wells and quantum wire literature, leading to the concept of
exciton localization [97]. On the other hand, carrier confinement in quantum dots
occurs over a spatial regionmuch smaller that the exciton Bohr radius. For this reason
disorder does not play a role and the single quantum dot electronic properties are well
described as a two level system. This is clearly demonstrated by antibunching mea-
surements [98]. In quantum rings, the length of the circumference is usually larger
than the exciton Bohr radius. This means that quantum rings electronic structure is
a crossover between the dot and the wire cases, due to quantum rings rather pecu-
liar annular shape which. Intensity time correlation experiments based on Hanbury,
Brown and Twiss interferometer can address this issue. The second order correlation
function g(2) well characterizes the quantum nature of the emitter by the presence or
not of photon antibunching [98–100].
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Fig. 8.24 Panel a and b are
pulsed excitation
measurement of g(2)(τ ) for
OR and IR, respectively. The
error bar associated to each
peak is the coincidence count
square root normalized to the
average value of the peaks
intensity. σ is the standard
deviation of the average
value of the peak intensity
(except for the zero-delay
one). Panel c Summary of all
the measured g(2)(0) for IR
(squares) and OR (circles);
the error bars are the
measured standard deviation
σ (Reprinted from [101])

The second-order autocorrelation function for both the OR and IR emissions of a
single double ring is reported in [101] (see Fig. 8.24a, b). The reduced intensity of
the peak at zero time delay indicates that there is a small probability of finding two
or more photons inside each emitted pulse. This is the signature of a single-photon
emitter under pulsed excitation. While g(2)(0) = 0 is expected for a ideal two levels
system, the condition of g(2)(0) < 0.5 is required for a single photon emitter and the
condition g(2)(0) < 1 still denotes the quantum nature of the emitter [98, 102]. In
our case, the correlation function at zero time delay, g(2)(0), is estimated to be 0.47
(±0.15) for the IR recombination and 0.80 (±0.13) for the OR recombination.

The same analysis was performed on several double rings (Fig. 8.24c), showing an
increase of g(2)(0) with the increasing linewidth. The condition g(2)(0) < 0.5is usu-
ally fulfilled by the IR but not by the OR. Finally, cross correlation intensitymeasure-
ments between IR and OR give g(2)

IR−OR(0) = 1 within the experimental error. These
results are not unexpected because of the independent dynamic already reported on
these nanostructures [90].



218 S. Sanguinetti et al.

On the basis of the previous results, [101] concluded that IR is usually small
enough to contain well-separated quantum states and gives rise to an optical transi-
tion with antibunching features. On the contrary the OR is sufficiently large to be
influenced by structural disorder, resulting in an inhomogeneously broadening of
the emission band. Therefore, even if disorder turns out to be an important issue for
large quantum rings, for sufficiently small ring diameter, DE quantum rings can be
considered as an almost ideal quantum system.

8.5.4 Fast Exciton Dynamics in Complex Nanostructures

As reported in [103] (see Fig. 8.25), triple rings show an extremely fast decay time
τD = 40 ps, to be compared with the usual DE quantum dot and quantum ring
values, which range between 300 and 500 ps [21, 90, 104]. The short decay time
is a general feature of all the triple ring structures measured in the sample. The fast
optical response cannot be likely attributed to non radiative processed arising from
the defected triple ring barrier, because of the much longer decay times of the GaAs
(τGaAs = 300 ps) and of the Al0.3Ga0.7As barrier (τAlGaAs = 200 ps), measured in the
same sample at the same conditions.

Similar results are observed in the time resolved PL of ring/disk materials grown
on Si/Ge substrates [105] (see Fig. 8.25). As in the case of triple ring, ring/disk show
an extremely fast decay time of τD = 60 ps and, also here, the observed fast optical
response cannot be attributed to non radiative processed arising from the defected
ring/disk barrier (τAlGaAs = 200 ps, (τGaAs = 300 ps)).

The puzzling short τD was attributed in both structures to the outcome of an intrin-
sic decay mechanism in the triple ring and ring/disk such as the strong electron-hole
overlap and large transition dipole matrix element in such extended, complex nanos-
tructures. Ring based nanostructures are then promising self-assembled materials for
ultrafast optical switches for high-bit-rate operations.

8.5.5 Carrier Dynamics in Ring-Dot Complex Structures

The possibility to employ of twisted light/matter (TL) interaction should make pos-
sible to populate selectively the electronic level of a semiconductor nanostructure by
the appropriate combination of light-beam parameters. The coupled dot-ring nanos-
tructures [106] introduced in Sect. 8.2.3, can be considered a prototypical example of
the class of nanostructureswhere the use of TL could allow for optical control of elec-
tronic states by simply changing the position, waist and orbital angular momentum
of the light beam.

These nanostructures belong to type II configuration, with a spatial separation
between the electrons, localized in the external ring, and the holes, which lie in the
dot. The reduced electron hole overlap guarantees a long storage time, thuswith direct
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Fig. 8.25 a Temporally and spectrally resolved images of the triple ring sample. GaAs and triple
ring emissions are labeled. Data from [103] (b): Time resolved PL traces of the GaAs, AlGaAs and
triple ring emissions. c Temporally and spectrally resolved image of the ring/disk emission. GaAs
and ring/disk emissions are labeled. Inset: Time resolved PL traces of the ring/disk emission. The
exponential fit, with a τD = 60 ps is also shown (red line). Data from [105]

implications in optical memory devices. However, the physical implementations of
quantum information processing requires, among others, long decoherence time,
much longer than the gate operation times. In spin qubits or in spin memory devices,
operation time must be shorther than spin relaxation time. The peculiar confining
potential hybrid nanostructures made by coupled QRs and QDs leads to a large
decrease of the wave function overlap factor, thus increasing the relaxation time as
required by quantum information implementations.
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Fig. 8.26 a Dot-ring ensemble photoluminescence at T = 15K, using Pexc = 60mWcm−2. Black
arrows: calculated dot (Edot = 1.56eV) and ring (Ering = 1.61eV) transition energies. Red Arrows:
Dot excited states. b Photoluminescence spectrum taken at 10K of a single Dot-ring. Inset: mag-
nification of the dot spectral region; the red curve is the fit of the dot emission band; it is a sum
of two Lorentzian functions (green and black), one describing the background due to the nearest
dots, while the other describes the peak. The FWHM of the latter is 1.8meV. c Isosurface plots of
the electronic probability density at 50% of the wave functions in Dot-ring and, at the bottom, the
AFM profile used for calculation. N = 0 indicates the ground state while N = 1, 2, 3 indicate the
first excited radial states with J = 0. Reprinted from [106]

Figure 8.26a reports PL at T = 14K of the dot-ring ensemble. It displays a clear
double peak structure, with emission bands are centered at 1.578eV (band A) and
1.603eV (band B). The two bands are relatively narrow, compared to the usual
Droplet Epitaxy nanostructure emission [20], due to the low size fluctuation observed
in the dot-ring structures.

The micro-PL emission from a single dot-ring shows as well two spatially cor-
related bands which lie at the same wavelength of those observed in broad area PL.
This demonstrates that the two emission bands belongs to the same nanostructure.

By means of effective-mass envelope model calculations [47], band A was
attributed to the emission from the dot ground-state (ETH

dot = 1.565eV) and band
B to the emission from the ring ground-state (ETH

ring = 1.610eV).
The two bands in the emission of the dot-ring ensemble show a slightly superlinear

dependence, with a constant integrated intensity ratio, from the laser excitation power
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Fig. 8.27 a Dependence of the ensemble PL at T = 15K on power excitation density (Pexc): P0
(triangles), 10P0 (diamonds), 100P0 (circles) and 1000P0 (squares). Here P0 is 0.1Wcm−2. b Time
resolved PL of dot (red circles) and ring (black squares), using Pexc = 100Wcm−2. The system
response to laser pulse is also reported. The blue continuous lines represent the fit of the data as
explained in the text. Reprinted from [106]

density (see Fig. 8.27a). This implies a decoupled carrier dynamics in the dot and the
ring, since a charge transfer, dependent on the excitation power, would be expected
from band B to band A in the case of a coupled structure. The broadening of the band
A observed at high excitation power density is due to the population of dot excited
states.

Time resolved PL (TR-PL) measurements (see Fig. 8.27) give access to carrier
dynamics. The rise times of the dot and ring are τR

dot = (50 ± 10)ps and τR
ring = (33 ±

10)ps, respectively. The dot value is larger expected in GaAs/AlGaAs dots [107].
The PL lifetimes are τD

dot = (335 ± 5)ps and τD
ring = (195 ± 5)ps for dot and ring

emissions, respectively. The PL time trace of the two bands show a clear decoupled
dynamics. As a matter of fact, the rise time of the dot band is uncorrelated with
decay time of the ring, despite the fact that band A lies at lower energy respect to
band B. This excludes carrier transfer between the dot and the ring, at least at low
temperature.

In addition, in the case of correlated carrier dynamics a hierarchical order in the PL
decay of the two bands is expected, with the shorter time belonging to the emission
higher in energy. In the experiments reported by [106] the ring recombination lifetime
is always larger than the rise time of the dot emission (Fig. 8.27b) while, at the same
time, τD of the same order of magnitude are observed in dot and ring emission decay
(335 vs. 195ps). State filling experiments, performed exciting the nanostructures at
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Fig. 8.28 a Temperature dependence of the ensemble PL between 25 and 115K. b Experimental
integrated intensity ratio (RPL) between ring and dot emissions (black squares). The red line shows
the prediction of 8.5. Here μD = 170 and μR = 2. Reprinted from [106]

increasing power densities, confirm the independence of the carrier dynamics in the
dot and the ring despite the proximity of the two nanostructures.

Fig. 8.29 Left, from bottom: isosurface plots of the electronic probability density at 50% of dot and
ring ground states and of the first delocalized state between the dot and the ring in a dot-ring. Right:
schematics of the energy levels of the states reported on the left. The excitation and de-excitation
processes, together with the symbols indicating their probabilities, are also reported. Reprinted
from [106]
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Rising the temperature (see Fig. 8.28a), while the dot emission increases in inten-
sity, reaching its maximum around 70K, the ring to dot intensity ratio RPL (see
Fig. 8.28b) displays a minimum. The integrated PL intensity of the dot-ring above
70 K decreases and RPL increases. This behaviour is the outcome of a transfer of
excitation, activated by the temperature, between the two nanostructures. The same
phenomenology was observed in QD ensembles [108, 109] and attributed to a delo-
calized high energy state connecting the QDs. The same explanation could also be
valid for the dot-ring structure, where an excited state, common to the dot and the
ring lies atΔED = EI − ED = 41meV above the dot andΔER = EI − ER = 12meV
above the ring ground states, respectively. The wave function of such delocalized
excited state is reported in Fig. 8.29. At higher energies, additional mixed dot-ring
states are present.Hole states, due to the relatively large radius of both nanostructures,
are closely spaced in energy, replicating the electron state structure on a narrower
energy scale.

The carrier dynamics can be modeled via the simple set of rate equations:

dnD
dt

= nIΓD − nDΓ D
E − nDΓDρD exp[−ΔED/kBT ]

dnR
dt

= nIΓR − nRΓ R
E − nRΓRρR exp[−ΔER/kBT ]

dnI
dt

= G − nI(ΓD + ΓR) + nDΓDρD exp[−ΔED/kBT ]
+nRΓRρR exp[−ΔER/kBT ] (8.4)

where nD, nR and nI are the populations of the dot, ring and intermediate state,
respectively. Γ D

E and Γ R
E are the radiative recombination probabilities of dot and

ring, respectively. ΓD and ΓR are the thermalization probabilities from the inter-
mediate state to dot and ring, and ρD and ρR are the effective degeneracy ratios
between intermediate state and dot and ring states, respectively (see the schematic
energy diagram in Fig. 8.29). In steady state conditions and after simple algebraic
manipulation:

RPL(T ) = nRΓ R
E

nDΓ D
E

= ΓR

ΓD

1 + μD exp[−ΔED/kBT ]
1 + μR exp[−ΔER/kBT ] (8.5)

where μD = ΓDρD/Γ D
E and μR = ΓRρR/Γ R

E
The relative thermalization probabilities of the ring and the dot at low temperature

are given by (8.5): RPL(T = 0) = ΓR/ΓD. The ring thermalization probability is
larger than the dot one and related to the smaller number of intermediate states
involved in the thermalization process. By fixing ΔED and ΔER to the calculated
electron values and using μD = 170 and μR = 2 as fitting parameters, it is possible
to reproduce the observed RPL(T ) dependence on the temperature (red curve in
Fig. 8.28b). In [106] the authors observe nearly two orders of magnitude difference
between the dot and ring prefactors in (8.5) only partially due to the longer decay
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time and lower thermalization probability of the dot respect to the ring. In this case
a fundamental role is played in the dot-ring system carrier dynamics by the effective
degeneracy ratios between intermediate state and dot and ring states.

8.6 Conclusions

TheDE-quantum ring, disk and dot complexes are intriguing examples of designable,
complex, topology controlled nanostructures and they can be devised and fabricated
using the highly flexible DE process. Some examples of this large design flexibility
in semiconductor nanostructure fabrication by DE are concentric multiple ring struc-
tures and coupled dot-rings. The growth mechanism is based on the control of Ga
surface diffusion and As incorporation in tiny (nanometer size) Ga droplets formed
in the first step of the DE process. Partial crystallization of the Ga contained in the
droplets by pulsedAs deposition at different conditions permits to obtain the different
nanostructures which constitute the complex structures from the same droplet. Due
to this multi-step kinetic controlled fabrication, DE-quantum rings are designable in
size, shape and density.

Electronic structures of theDE-quantumnanostructures have been identified using
an optical, non-contact approach. In the quantum rings, carriers are quantized along
two orthogonal degrees of freedom: radial motion and rotational motion. Optical
transition takes place on recombination of an electron and a heavy hole, being in the
ground state of the ring and in the excited radial state. In concentric double quantum
rings, emission originating from the outer and from the inner ring are observed
distinctly. Results of effective-mass calculationswell reproduce the emission spectra.

Since well separated quantum states are present in DE-quantum rings, optical
transitions exhibiting antibunching features has been observed. Thus DE-quantum
rings can be considered as an almost ideal quantum system. Circular nanostructures
show a large variety of fascinating phenomena based on the quantum carrier confine-
ment, of the utmost relevance for the possibility of their exploitation in the research
of quantum computational devices.

As far as carrier dynamics is concerned, despite the small spatial separation
between the different nanostructures constituting dot-ring or the double ring com-
plexes, the carrier relaxation dynamics and the exciton kinetics in the different struc-
tures is decoupled at low temperature. The presence of the a temperature activated
coupling channel has been demonstrated in the dot-rings. This thermally activated
coupling can open up more possibilities in the application of dot-ring in the field of
quantum information processing.

DE technique therefore enables to produce singly-addressable, self-assembled,
topologically controlled, complex structures, including rings, dots and disks, that
could pave the way to multiple two level states devices with switchable interaction.
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Chapter 9
Optical Aharonov-Bohm Oscillations
with Disorder Effects and Wigner
Molecule in a Single GaAs/AlGaAs
Quantum Ring

K. Kyhm, H.D. Kim, R. Okuyama, M. Eto, K.C. Je,
R.A. Taylor, G. Nogues, L.S. Dang, A.A.L. Nicholet,
M. Potemski, J.S. Kim and J.D. Song

Abstract The optical Aharonov-Bohm effect in a single quantum ring is associated
with disorder effects. In the presence of structure anisotropy, localisation, internal
electric field, and impurity scattering, optical Aharonov-Bohm oscillations of an
electron-hole pair become modulated. Additionally, provided that a strongly corre-
lated exciton pair is formed in a single quantum ring similar to the Wigner molecule,
novel oscillations can be observed for increasing magnetic field. In this case, the
biexciton emission energy changes abruptly at transition magnetic fields with a frac-
tional oscillation period compared to that of the exciton, the so-called fractional
optical Aharonov-Bohm oscillations.

9.1 Introduction

The Aharonov-Bohm (AB) effect in quantum rings (QRs) is observed mostly by
electrical measurements at extremely low temperatures (∼100mK) through oscilla-
tions of the conductance and persistent current with external magnetic field [1–6].
Very recently, the AB effect became accessible to optical experiments at tens of
Kelvin by using type-II quantum dots (QDs) and nanoscale quantum rings. While
either individual electron or hole rotation in the shell results in the optical AB effect
in type-II QDs, both electrons and holes are involved for a QR. Since most of the
optical AB effects were measured in ensembles of QRs and type-II QDs, inhomo-
geneities arising from the size distribution and the morphology lead to the energy
variation of ∼102 meV, which is far larger than the energy variation of excitonic
AB oscillations (∼10−1 meV). Since this limits the ability to uncover the underlying
physics of a single electron-hole pair, optical AB oscillations need to be measured
in a single QR. However, the exciton Aharonov-Bohm oscillations in a single quan-
tum ring are rarely observed. This difficulty is associated with localisation due to
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the volcano-like anisotropic structure. Regarding large lateral diameters of droplet
structures, the spectral inhomogeneity is dominated by morphology. Additionally,
an internal electric field and an impurity scattering are also involved to the AB oscil-
lations. From a general perspective, this is of importance for understanding the AB
effect in disordered systems.

H.D. Kim
e-mail: Heedaekim3@googlemail.com

K. Kyhm · H.D. Kim
Department of Physics Education,
Pusan National University, Busan 462-41, South Korea

R. Okuyama · M. Eto
Faculty of Science and Technology,
Keio University, Yokohama 223-8522, Japan
e-mail: rokuyama@rk.phys.keio.ac.jp

M. Eto
e-mail: eto@rk.keio.ac.jp

K.C. Je
Department of Physics, Saints Cyril and Methodius University,
Skopje 1000, Republic of Macedonia
e-mail: jekoochul@gmail.com

R.A. Taylor
Clarendon Laboratory, Department of Physics,
University of Oxford, Oxford OX1 3PU, UK
e-mail: robert.taylor@physics.ox.ac.uk

G. Nogues · L.S. Dang
Department of NANO Science,
Institute Néel CNRS, Grenoble 38045, France
e-mail: gilles.nogues@neel.cnrs.fr

L.S. Dang
e-mail: lesidang@neel.cnrs.fr

A.A.L. Nicholet · M. Potemski
Laboratoire Natioal des Champs
Magnetiques Intenses, Magnetiques Intenses, CNRS-UJF-UPS-INSA,
Grenoble 38042, France
e-mail: aurelien.nicolet@lncmi.cnrs.fr

M. Potemski
e-mail: potemski@lncmi.cnrs.fr

J.S. Kim
Department of Physics, Yeungnam University,
Gyeongsan 712-749, South Korea
e-mail: jongsukim@ynu.ac.kr

J.D. Song
Center for Optoelectronic Convergence System, KIST,
Seoul 136-791, South Korea
e-mail: Jdsong72@gmail.com



9 Optical Aharonov-Bohm Oscillations with Disorder Effects . . . 233

Three important disorder effects associated with the optical AB effect in a single
QR will be introduced. First, the anisotropy of a QR gives rise to a characteris-
tic magnetic field, where the onset of circumferential phase coherence overcomes
wavefunction localisation. Secondly, when internal fields are present in a QR, the AB
oscillations become modulated. This may open a new way of quantum state control
in a QR by using both electric and magnetic fields [7–9]. Thirdly, an anti-splitting of
the photoluminescence spectrum at the transition magnetic field was also observed
as a consequence of a break-down in the rotational symmetry due to anisotropy and
localised impurities.

Additionally, an optical analogy of the correlation effect in a QR has been inves-
tigated in terms of the biexcitonic fractional AB effect. As the electronic correlation
becomes enhanced in a one-dimensional structure, a pair of electrons can behave
as a single composite particle under certain conditions, giving rise to the so-called
Wigner molecule (WM). In this case, the AB oscillation period becomes fractional
compared to that of a single electron, termed the fractional AB effect [10–16]. For
the optical analogy, a pair of the interacting excitons (biexcitons) located at oppo-
site positions in a QR forms a WM. In this case, novel saw-like oscillations can be
observed [17, 18], where the emission energy changes abruptly at a transition mag-
netic field with a fractional oscillation period compared to that of the exciton, giving
rise to fractional optical AB oscillations. In particular, it is of great importance, as the
Wigner localisation provides the novel fundamental many-body physics associated
with the correlation effect.

9.2 Experiment

The nanoscale quantum rings were grown in Riber Compact21 MBE system. After
thermal removal of any surface oxide on the GaAs under an As tetramer ambience
of 620 ◦C, a ∼100nm-thick GaAs buffer layer was grown at 580 ◦C. 20 pairs of
(61.35nm-thick AlAs and 53.2nm-thick Al0.31GaAs) and 53.2nm-thick Al0.31GaAs
were grown successively. The substrate temperature was then cooled to 310 ◦C and
the supply of As tetramer was disconnected until the partial pressure of As and
the pressure of the main chamber became less than 1 × 10−11 Torr and 1.5 × 10−9

Torr, respectively. Ga metal was introduced on the substrate in this clean state of the
chamber, equivalent to 1 monolayer of GaAs. In this state, the density of Ga droplets
was ∼7 × 108 cm−2. After As tetramer introduction at a beam equivalent pressure
of 1.25 × 10−7 Torr at 200 ◦C, the Ga droplets changed into GaAs quantum ring
structures. A 53.2nm-thick layer of Al0.31GaAs was then grown on the rings. Finally,
the whole structure was annealed in the chamber under an As tetramer ambient of
beam equivalent pressure of 3.00 × 10−6 Torr at 600 ◦C for 1h.

The micro-photoluminescence (PL) spectrum of a single NQR was measured at
4.2K using a confocal arrangement, where the PL spectrumwas measured by charge
coupled device under the excitation of frequency-doubled (400nm) Ti:sapphire laser
pulse (120 fs pulse duration at a 80MHz repetition rate). Magneto-PL from a single
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NQR was also performed in a resistive DC magnet (52mm-bore diameter), where
a miniaturised optical alignment system was installed and the sample position was
controlled by a piezoelectric stage. Excitation by a continuous-wave Ar+-ion laser
(488nm) was introduced to the sample through a multi-mode fiber, and the PL was
detected through another single-mode optical fiber.

9.3 Theoretical Model for Optical Aharonov-Bohm
Oscillations

For the theoretical model of a quasi one-dimensional QR, the radial confinement
needs to be considered by regarding the finite rim width. This model enables to
obtain the eigenenergy levels and the two-body density for the exciton and biexciton
by using the exact diagonalisation method, where a Coulomb interaction between
the electron and the hole was also considered in the presence of an external magnetic
field (B = Bẑ) applied perpendicular to the lateral xy plane of a QR. When the
isotropic confinement potential is assumed as an ideal theoretical reference, this will
be compared with experimental results, where the anisotropy effect of a volcano-
like QR is present. While experimental AB oscillations of our QR emerge beyond
a characteristic magnetic field (Bc), theoretical AB oscillations begin from B = 0.
Therefore, the theoretical results can be used as a reference to measure a magnetic
field difference (δB) for theABoscillation extremumbetween theory and experiment,
whereby the modulated AB oscillations in a real NQR is defined in this context.

Different orbital radii of the electron (Re) and the hole (Rh) can be used in order to
consider charge separation effects for the electron and hole, which are known to be
crucial for optical AB oscillations to emerge [19–21]. Suppose the electron and hole
of a QR are confined in an anharmonic potential along the radial direction, tunneling
towards the direction away from the ring center should be different for an electron and
a hole due to the mass difference. Also, any asymmetry of the confinement potential
likely gives rise to a so-called radially polarised electron-hole pair, whereby the
electron and hole rotate along the different orbits. There are various other effects
which possibly result in a radially-polarised electron-hole pair in a QR such as the
deformation potential with a large difference in the conduction and valence bands,
the built-in electric field, and the local electric field arising from the charge-trapped
interface defects. Therefore, it is plausible to assume different orbital radii for the
electrons and holes (Re �= Rh) to describe the charge separation effect. When indium
ingredients are present, strain effects are known to localise the hole toward the ring
center [22], whereas the electron resides within the rim width. However, in the case
of GaAs, the local electric field arising from the charge-trapped defects is a possible
origin for the charge separation. As the charge separation is inevitable, we assume the
orbital radius of the electron is larger than that of the hole (Re > Rh). Nevertheless,
this model is still incomplete as experimental clarification has yet to be accomplished
for the separation between the electron and hole.

Suppose Ne electrons and Nh holes are given in a single QR, the effective mass
Hamiltonian can be given by H = He + Hh + VC,
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He =
Ne∑

j=1

{ [pe, j + eA(re, j )]2
2me

+ Ve(re, j ) + 1

2
Eg + geμBS

z
e, j B

}
, (9.1)

Hh =
Nh∑

j=1

{ [ph, j − eA(rh, j )]2
2mh

+ Vh(rh, j ) + 1

2
Eg + ghμBS

z
h, j B

}
, (9.2)

VC =
∑

1≤ j<k≤Ne

e2

4πε|re, j − re,k | +
∑

1≤ j<k≤Nh

e2

4πε|rh, j − rh,k |

−
Ne∑

j=1

Nh∑

k=1

e2

4πε|re, j − rh,k | , (9.3)

with A(r) = (1/2)B × r . He (Hh) is the Hamiltonian for non-interacting electrons
(holes), whereas VC describes the Coulomb interaction. mα and gα are the effec-
tive mass and g-factor for electrons (α = e) and holes (α = h), respectively. Eg, ε,
and μB are the band gap, the dielectric constant, and the Bohr magneton, respec-
tively. One can use me = 0.067m0, mh = 0.51m0, and the effective Bohr radius
aB = 4πε�

2/(μe2) = 12 nm with μ−1 = m−1
e + m−1

h for GaAs. The g-factors for
electrons (ge) and holes (gh) are associated with the observable excitonic g-factor
(gX = ge − gh = −1.3). The anharmonic confinement potential energy Vα(r) is
given by [23]

Vα(r) = �
2λ2

α

2mαr2
+ 1

2
mαω2

αr
2. (9.4)

Using λα = (1/2)(Rα/Wα)2 and ωα = �/(2mαW 2
α ), this can be approximated as

Vα(r) = �
2

2mαW 2
α

[
1

4

(
Rα

Wα

)2

+
(
r − Rα

Wα

)2

+ O

(
r − Rα

Wα

)3
]

. (9.5)

Therefore, Vα=e,h(r) describes a quasi one-dimensional isotropic confinement poten-
tial energy with orbital radius Rα and confinement width Wα . Since Re and Rh are
much larger than the atomic scale, the effective mass approximation is still valid. For
simplicity, this model considers only the heavy-hole state, which means the mixing
between the heavy-hole and light-hole states is ignored.

Note that Vα=e,h(r) is a lateral confinement potential energy. In order to explain
the energy of the X PL spectrum near ∼1.732eV, the vertical confinement energy
of a QR structure also needs to be considered by regarding the AFM height profile.
Because the lateral size of our QR is larger than the vertical size, similar to the case
of a pancake, the vertical confinement energy can be separated according to the adi-
abatic approximation [24, 25]. The so-called adiabatic potential obtained through
this approximation corresponds to Vα=e,h(r), which also represents the morphol-
ogy of a QR. Therefore, the vertical confinement energy gives an energy offset of
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Vα=e,h(r)with respect to the conduction and valence band edge of bulkGaAs, respec-
tively. For ∼10,nm height of our QR, the total vertical confinement energy for an
electron-hole pair is∼194.1meV.With rough estimation of the Coulomb interaction
by e2

4πε|Re−Rh| ∼ 6meV, the energy of the observed X PL spectrum near ∼1.732eV
can be explained. Therefore, this is the case that both lateral and vertical confinement
energy are larger than the Coulomb interaction. However, our calculation is not the
case of single-particle states with Coulomb corrections. The many-body correlation
is fully taken into account. The many-body states can be expanded by the single-
particle states. In this case, a large number of the single-particle states are required for
calculation to converge. It has confirmed that the truncation error becomes negligibly
small with few thousands of the single-particle states.

For the single-particle states (Hα=e,h) of a QR in the presence of an external mag-
netic field, the eigenenergy and eigenfunction can be obtained analytically as [26]

Eα,n,m = �
2

2mαW 2
α

{
1
2

[(
Rα

Wα

)4 + m2

]1/2

+ 2n + 1

} [
1 + 4

(
Wα

Rα

)4
φ2

α

]1/2

−�
2φαm
mαR2

α
+ 1

2 Eg, (9.6)

ψα,n,m(r) =
[

n!
π
(μα,m+n+1)

]1/2
1

Ωα

(
r

Ωα

)μα,m

e−r2/(2Ω2
α)Pμα,m

n

(
r2

Ω2
α

)
eimθ , (9.7)

for angular momentum m = 0,±1,±2, . . . and radial quantum number n =
0, 1, 2, . . . with Pk

j (x) being the associated Laguerre polynomials and

φα = ∓πR2
αB

h/e
, μα,m = 1

2

[(
Rα

Wα

)4

+ 4m2

]1/2

, (9.8)

Ωα = √
2Wα

[
1 + 4

(
Wα

Rα

)4

φ2
α

]−1/4

. (9.9)

Using these states, the Hamiltonian H can be diagonalised numerically, and the
matrix elements of the Coulomb interaction were evaluated analytically by the use of
themultipole expansion.As (Rα/Wα)2 � 1, only the stateswith n = 0 is considered.
The states with n > 0 hardly modify the calculated results.

Finally, the exciton eigenenergies (EL
X(B)) for total exciton orbital angular

momenta (L) were obtained as a function of the externalmagnetic field (B).When the
excitonic Zeeman effect is considered with the exciton g-factor (gX), the two exciton
PL peak energy of spin-parallel (Eσ+

X ) and anti-parallel (Eσ−
X ) can be given as

Eσ±
X−PL(B) = EL

X(B) ∓ 1
2gXμBB, (9.10)

where EL
X(B) is the lowest energy among various L at a certain B to min-

imise Eσ±
X−PL(B). Also, the theoretical EL

X(B) can be compared with the measured
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Eσ±
X−PL(B) as

EL
X(B) = [Eσ+

X−PL + Eσ−
X−PL]/2. (9.11)

Likewise, the XX eigenenergy (EL
XX(B)) of total exciton orbital angular momenta

(L) were obtained as a function of the external magnetic field (B) through an exact
diagonalisation method by taking into account the Coulomb interaction amongst the
two electrons and two holes. For a XX, our model conserves the electron and hole
spins, separately as Se = Se1 + Se2 and Sh = Sh1 + Sh2. Thus, the 4-particle Hilbert
space can be split into 4 sectors, i.e., (electron singlet)× (hole singlet), (electron sin-
glet)× (hole triplet), (electron triplet)× (hole singlet), and (electron triplet)× (hole
triplet). This method drastically reduces calculation costs. For each sector, we used
500 low-lying states to diagonalize the Hamiltonian with the Coulomb interaction.
For comparison, we also diagonalized it with 1,000 states, and confirmed that the
truncation error in the total energy is less than 0.1%.

When considering the biexciton emission between EL
XX(B) and EL

X(B), the oscil-
lation period for the minimum EL

XX(B) with B is shorter than that for the minimum
EL
X(B). The selection rule adds a restriction such that the emission only occurs

when EL
XX(B) and EL

X(B) have the same L . For example, when the biexciton energy
changes from EL=0

XX to EL=1
XX with increasing B, EL=0

X is still less than EL=1
X . There-

fore, an emission between EL=1
XX and EL=0

X gives the minimum biexciton PL energy.
However, this is not the case. The emission occurs between EL=1

XX and EL=1
X due to

the selection rules. Consequently, an abrupt decrease of the XX PL energy can be
measured at the transition magnetic field, where the biexciton changes its L from 0
to 1 (Fig. 9.7c, d).

Given the observed AB oscillation period of excitons (ΔBX ∼ 1.8T) in a GaAs
QR,we found the optimumparameters of Re = 32 nm, Rh = 15nm, andWe = Wh =
5 nm to reproduce the same AB oscillation period of excitons theoretically. On the
other hand, for a biexciton, we found the confinement parameters (R′

e, R
′
h,W

′
e,W

′
h)

should be 1.4 times those for exciton. When a single particle is confined, Vα(r) is
determined by geometric structure. However, interaction among the Ne electrons and
Nh holes can also modify Vα(r) as well as the band gap Eg through the electron-
electron and hole-hole repulsion with re-distribution of the surrounding electrons
and holes. Therefore, the relatively large values in the parameters (R′

e, R
′
h,W

′
e,W

′
h)

effectively describe the modified V ′
e,h(r, Ne,h).

We also calculate the two-body densities,

ρee(xe|Xe) = 1
2

∑
σ,σ ′

〈
ψ̂†

e,σ (xe)ψ̂
†
e,σ ′(Xe)ψ̂e,σ ′(Xe)ψ̂e,σ (xe)

〉
, (9.12)

ρhe(xh|Xe) = ∑
σ,σ ′

〈
ψ̂

†
h,σ (xh)ψ̂h,σ (xh)ψ̂

†
e,σ ′(Xe)ψ̂e,σ ′(Xe)

〉
, (9.13)

that are the probabilities to find an electron at xe and a hole at xh, respectively, with

an electron fixed at Xe. Here, ψ̂e,σ (x)
[
ψ̂h,σ (x)

]
is the field operator of the electron
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[hole] with spin σ and position x . We choose Xe at which the electron density has a
maximum.

Since excitons are charge neutral, the exciton AB effect requires a difference
between the phases acquired by the electron and the hole when the magnetic flux
threads the ring. Suppose the electron and the hole in a widthless one-dimensional
(1D) loop are independent or weakly bound through a short-range interaction, optical
AB oscillations can be seen in the ground states of the bright exciton, where the
total angular momentum of the exciton is kept null as the individual orbital angular
momentum of the electron and the hole are canceled (L = �e + �h = 0). When a
finite width of the ring structure is considered, a quasi one-dimensional geometric
confining potential Vα(r) is obtained, which depends on only ring radius (r ) under
the assumption of rotational symmetry. In this case, it was known that the ratio of
exciton orbit-to-width (γ = Rx/W ≥ 1) is crucial in determining the amplitude of
the excitonic AB oscillations. With increasing W , up to Rx in a QR, the excitonic
AB oscillations become suppressed. However, when the e-h pair confined in a finite
ring width is strongly bound through a long-range Coulomb interaction, the recent
model [23] proposed that the emergence of excitonic AB oscillations is determined
by the ring width and the strain, i.e., the excitonic AB oscillations occur in a limited
range of the widths for an isotropic Vα(r). Additionally, the presence of the ring
core layer (otherwise the core area is open), plays an important role in enhancing the
excitonic AB oscillations via strain effects [27].

In the case of a strongly bound e-h pair, the one-dimensional model claims that the
initial bright exciton (L = 0) becomes dark states (L �= 0) with increasing magnetic
field, resulting in no excitonic AB oscillation with an emission quenching [20].
However, exciton AB oscillations were still observed from QRs with non-zero total
orbital angular momentum (L �= 0). The exact reason is not clear at the moment.
However, regarding the anisotropy of the volcano-like structure, the ideal selection
rule for bright and dark exciton states may break down. Therefore, the fine states of
the PL spectrum could be described by themixed states of the spin and orbital angular
momentum of bright and dark exciton states. Similar results were also observed in
type-II QDs [28, 29]. While orbital angular momentum is also added to the charged
single particle rotating in the shell of a type-II QD for increasing an external magnetic
field, clear AB oscillations were confirmed in terms of both the peak energy and the
integrated PL intensity. Regarding the elongated structure of QDs, the selection rules
may be relaxed allowing observation of the dark states (L �= 0).

Although the finite rim width can be considered in the quasi one-dimensional
model, the strongly correlated states of excitons and the Wigner molecularisation
between two excitons in a biexciton can be approximated into a simplified one-
dimensional model. When the ring width is ignored, the effective mass Hamiltonian
in (9.1)–(9.3) for an electron and a hole can be simplified as [20]

H = �
2

2meR2
e

(
�̂e + πR2

e B
h/e

)2 + �
2

2mhR2
h

(
�̂h − πR2

h B
h/e

)2

− e2

4πε

[
(Re − Rh)

2 + 4ReRh sin2
(

θe−θh
2

)]−1/2
, (9.14)
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where, θe (θh) and �̂e = −i∂/∂θe (�̂h = −i∂/∂θh) are the azimuth angle and angular
momentum of the electron (hole) respectively, and the Zeeman effect is not included.
The center-of-mass and relative coordinates of the exciton are given by

Θ = meR2
e θe + mhR2

hθh

meR2
e + mhR2

h

, θ = θe − θh. (9.15)

Then, the Hamiltonian in (9.14) becomes decoupled as H = HCM + Hrel,

HCM = �
2

2mXR2
X

[
L̂ + π(R2

e − R2
h)B

h/e

]2

,

(9.16)

Hrel = �
2

2μR2
rel

(
�̂ + πR2

relB

h/e

)
− e2

4πε

[
(Re − Rh)

2 + 4ReRh sin
2 θ

2

]−1/2

,

(9.17)

with R2
X = (meR2

e + mhR2
h)/(me + mh), Rrel = ReRh/RX, andmX = me + mh. We

have introduced the total angular momentum L̂ = �̂e + �̂h = −i∂/∂Θ and rela-

tive angular momentum �̂ = mhR2
h �̂e−meR2

e �̂h

meR2
e+mhR2

h
= −i∂/∂θ . The energy eigenstates can

be given as ΨX,L(θe, θh) = eiLΘψX,L(θ) with L (= 0,±1,±2, . . .). We see that
the center-of-mass and relative motion are not completely decoupled; ΨL(θe, θh) =
ΨL(θe ± 2π, θh) = ΨL(θe, θh ± 2π), and an unusual boundary condition for ψL(θ)

is given by

ψL(θ ± 2π) = exp

[
±i2πL

meR2
e

meR2
e + mhR2

h

]
ψL(θ). (9.18)

The low-lying states of an exciton can be estimated by using the harmonic approx-
imation. By expanding the Coulomb interaction up to θ2, we obtain ψX,L(θ) ∝
exp

{−θ2/(2ξ 2
X)

}
with the “localisation length” defined by

ξX =
[
aBR2

X|Re − Rh|3
(ReRh)3

]1/4

. (9.19)

As ξX ∼ 0.64 in our system is sufficiently small compared toπ , the harmonic approx-
imation can be justified. This indicates that the electron and the hole are strongly
correlated to each other, and move together with θe � θh, as schematically shown in
Fig. 9.1a. The low-lying energies can also be approximated as

EX(L) = �
2

2mXR2
X

[
L + π(R2

e − R2
h)B

h/e

]2

+ const., (9.20)



240 K. Kyhm et al.

which is in agreementwith the recent one-dimensionalmodel [20].On the other hand,
for a biexciton, instead of two electrons and two holes, we consider two excitons as
point particles that move in the ring, as shown in Fig. 9.1b. Suppose a ring orbit
radius R′

X is given for the exciton, the effective Hamiltonian for two excitons with
the dipole-dipole interaction can be given by

H =
2∑

j=1

�
2

2mXR
′2
X

[
�̂ j + π(R

′2
e − R

′2
h )B

h/e

]2

+ e2(R′
e − R′

h)
2

4πεR
′3
X

1 + sin2 θ1−θ2
2

8
∣∣sin3 θ1−θ2

2

∣∣ .

(9.21)

The dipole-dipole interaction becomes minimised when |θ1 − θ2| = π , i.e., the two
excitons are located at opposite sides of the ring. In a similar case to that used
for the exciton, the harmonic approximation enables us to estimate the wavefunc-
tion of the biexciton (or interacting two exciton dipoles) in relative coordinates
as ψXX,L(θ1 − θ2) ∝ exp[−(|θ1 − θ2| − π)2/(2ξ 2

XX)] (|θ1 − θ2| < 2π). Since the
“localization length” of the biexciton,

ξXX =
[
64

5

μ

mX

aBR′
X

(R′
e − R′

h)
2

]1/4

∼ 0.91, (9.22)

is smaller than π , the harmonic approximation is still valid again. Likewise, the
low-lying energy of the biexciton can be approximated as

(a) (b)

Fig. 9.1 a Schematic view of the low-lying states of an exciton in a quantum ring. An electron and
a hole are strongly coupled to each other, and they move together with θe � θh . b Simplified model
of a biexciton in the ring, where each exciton is treated as a point particle with a radial electric dipole
moment (Reprinted with permission from [18]. Copyright (2016) American Chemical Society.)
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EXX(L) = �
2

2(2mX)R
′2
X

[
L + 2

π(R
′2
e − R

′2
h )B

h/e

]2

+ const. (9.23)

This equation suggests the biexciton can be treated as a single particle with twice the
exciton mass (mX). Indeed, when the dipole-dipole interaction becomes minimised
with |θ1 − θ2| = π , the distance between the two excitons becomes maximised. This
condition indicates the formation of a Wigner molecule from the two excitons [17].

9.4 Optical Aharonov-Bohm Oscillations of an Exciton in
a Single Quantum Ring and Disorder Effects

As excitons are charge neutral, the exciton AB effect in a ring structure requires
a difference between the phases (Δφ) acquired by the electron and the hole when
a magnetic field threads the ring. This means that their orbits should be unequal,
whereby a difference between the magnetic fluxes (ΔΦ) penetrating their paths
results in the phase of a radially polarised exciton (Δφ = eΔΦ/�). Therefore,Δφ is
proportional to the radial dipole moment, and can be measured through the photon
emitted by the electron-hole pair, i.e., the center-of-mass exciton energy is given
by EX = �

2(L + Δφ)2/(2MR2
X), where L , M , and RX are the angular momentum,

the effective mass, and the orbit radius, respectively. Therefore, when an exciton is
confined to a ring structure, an oscillation in the emission energy of the exciton as
a function of magnetic flux can be observed. Therefore, a delocalised wavefunction
around the rim is a prerequisite for the AB effect.

However, the presence of localised states has been reported in a volcano-like QR
arising from height anisotropy [25, 30–33], whereby the phase coherence around the
rim can be inhibited. The degree of localisation seems to depend upon the anisotropy;
when this is negligible, excitonic AB oscillations begin at low magnetic fields [8,
34]. In the intermediate range of localisation, excitons are localised separately near
the two highest rims in a QR, but the two excitons can be paired in a biexciton with
sub-meV binding energy [30]. In the case of strong localisation in a QR [25], no
persistent current emerges unless a large magnetic field is applied. Therefore, optical
ABoscillations in aQRneed to be considered in the context of the exciton localisation
induced by rim height-anisotropy. This may explain why some experiments failed
to observe excitonic AB oscillations in a QR. We confirm the presence of a strongly
localised state in a volcano-like QR with an absence of excitonic AB oscillations
up to 14T, a small diamagnetic coefficient, and a large polarisation asymmetry.
These arise as a consequence of the small lateral extension and asymmetry of the
strongly localised crescent-like structure in the QR.

Although ring structures were observed in a field emission scanning electron
microscope (FESEM) image of the uncapped sample (Fig. 9.2b), it is known that
a volcano-like anisotropic morphology is significant in the QR [25]. The height
anisotropy gives rise to a crescent-shaped adiabatic potential and localisation of the
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Fig. 9.2 a Electrons and
holes are localised in
crescent-like adiabatic
potentials for a vertical
quantum number
k = 3(εk=3

e,h ). b A single ring
structure observed by
FESEM. Biexciton (XX) and
excited state exciton (XN=2)
emission appear near ground
exciton (XN=1) for
increasing excitation power
(c), among which analyzer
angle dependence of the PL
spectrum are compared
under an excitation power of
2kWcm−2 (d) (Reproduced
from [32], with the
permission of AIP
Publishing.)

(a)

(b)

(c)

(d)

potential becomes significant as the vertical quantum number (k) is increased [31,
32]. For a QR with ∼20nm-radius and ∼10nm-height, localised states for a vertical
quantum number of k = 3 can be seen at an energy close to the barrier (Al0.3Ga0.7As)
bandgap. As shown in Fig. 9.2a, localised adiabatic potentials (εk=3

e,h ) of the electron
and the hole for a vertical quantum number of k = 3 have a crescent-like shape. An
estimated ground state confinement energy for the electron (241meV) and the hole
(60meV) predicts a PL energy for the ground state exciton XN=1 of ∼1.812eV in
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excellent agreement with the PL spectrum in Fig. 9.1c, where the radial quantum
number N denotes the states defined in the adiabatic potential (εk=3

e,h ). It should
be noted that the wavefunction contour areas should be larger than the localised
potentials due to tunnelling effects.

The blueshift in the PL from XN=1 with increasing excitation power (Fig. 9.2c)
suggests the presence of fine structure states, where a sequential state-filling gives
rise to the observed blueshift. As a consequence of asymmetry of the crescent-like
adiabatic potential in Fig. 9.2a, the fine structure states of XN=1 within the∼1.5meV
PL linewidth can be resolved by measuring the PL at different linear polariser angles
(Fig. 9.2d).As the excitation power (Iex) is increased, two additional PLpeaks emerge
at low (1.808eV) and high energy (1.822eV) with respect to XN=1 (1.812eV). The
superlinear increase of the PL intensity (∼I α

ex) was characterized in terms of the
power factor (α) by integrating the PL spectrum. α ∼ 2.3 ± 0.1 and ∼1.5 ± 0.1
were obtained for the low and the high energy peaks compared with α ∼ 0.9 ± 0.1
measured forXN=1 before saturation of thePL intensity. Therefore, the two additional
peaks can be attributed to biexciton states (XX) and excited exciton states (XN=2) of
the localised XN=1, respectively, Both wavefunctions for XX and XN=2 are possibly
more extended and asymmetric than that of XN=1. However, as XN=2 is located
∼10meV above XN=1, the range of XN=2 is not extended significantly (∼few nm)
in the contour areas of εk=3

e and εk=3
h , but a node of the wavefunction must exist

in the middle of the crescent structure similar to p-orbitals. This possibly results in
a large polarisation asymmetry and polarity. Since XX consists of two XN=1s, the
area could be nearly doubled, but shrinks due to bonding. As the observed binding
energy of the XX is large (∼4meV), this is the case of a strongly localised XX in a
crescent-like structure rather than a pair of two different excitons, which are located
separately at different rims [30]. Again, the asymmetry of the local structure gives
rise to a strong polarisation dependence, where the emission energy difference of
XX for perpendicular polarisations is twice (2Δ) that of XN=1 (Δ ∼ 0.8mev) due
to selection rule breaking [31]. On the other hand, the emission energy difference
of XN=2 for perpendicular polarisations is 1.5Δ. Although XN=2 possibly has a
relatively smaller wavefuction area than XX, the wavefunction shape should be very
asymmetric, i.e., a node is present as in p-orbitals and is confined in the crescent-like
structure. Therefore, the emission energy difference in the level spacing between the
fine structure states of XN=2 is relatively large compared to that of XN=1.

As XN=1, XN=2, and XX are all localised, delocalisation around the whole rim
in a QR is unlikely. However, provided that an external magnetic field (B) is strong
enough to overcome the energy barrier between the two separate localised states
in an anisotropic QR, a phase coherent delocalisation can be induced; as persistent
current [25] was induced in an anisotropic QR beyond ∼14T, it is challenging to
observe an induced excitonic AB oscillation in an anisotropic QR beyond a char-
acteristic magnetic field (Bc). We measured magneto-PL of localised excitons at a
slightly lower energy (E(0) = 1.7809eV) (Fig. 9.3a) in the absence of B, which
possibly gives rise to more extended localised structure and a reduced Bc. Spectral
splitting of the localised excitons in an anisotropic QR becomes significant when
B ≥ 4T, where the Zeeman splitting becomes comparable to the energy difference
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(a) (b)

(c)

Fig. 9.3 The PL spectrum (a) and fitted peak energy (b) of localised exciton Zeeman doublet with
increasing an external magnetic field, where the energy oscillation is not significant with an error
range of 20µeV after removing Zeeman splitting and diamagnetic shift (c) (Reproduced from [32],
with the permission of AIP Publishing.)

for perpendicular linear polarisations (∼2meV), similar to the case of asymmetric
quantum dots. The high (E(σ−)) and low energy (E(σ+)) states of the exciton as
a function of B (Fig. 9.3b) were obtained by Lorentzian fitting, whereby the exci-
tonic g-factor (gX = [E(σ+) − E(σ−)]/μBB ∼ −0.2) and diamagnetic coefficient
(γ = [E(σ+)+E(σ−)]/2−E(B=0)

B2 ∼ 1.3µeVT−2) were also obtained. These small val-
ues can be attributed to the small lateral area of the local structure. After removing
the Zeeman splitting and diamagnetic shift (Fig. 9.3c), an energy drift of ∼20µeV
is seen with a Gaussian fitting accuracy of ∼ 2.5µeV. However, it is still difficult
to define a significant single period. We found several QRs grown under the same
conditions all show such a noisy or aperiodic oscillations. It is therefore possible that
14T is an insufficient field to produce a phase coherent delocalisation around the
whole QR. Therefore, it would be important to try to induce delocalisation by either
applying a larger magnetic field or by suppressing the anisotropy in the QR.

Figure9.4a shows an atomic force microscope (AFM) image taken from an
uncapped GaAs QR. As both anisotropy and asymmetry are present in the QR
structure, the volcano-like ring structure can be modelled in cylindrical coordinates
(z = z(r, φ)), where the rim height (z(r, φ)) is described by radius r and azimuthal
angle (φ). The rim height is maximum at the azimuthal angles of 0◦ and 180◦ along
the [11̄0] direction, and a minimum at the perpendicular angles of 90◦ and 270◦
along the [110] direction, respectively. Also, the in-plane shape is elliptical with
the long axis along [11̄0]. While the lateral size distribution of QRs is not signifi-
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Fig. 9.4 a AFM image of a quantum ring. Magneto-PL spectrum with an excitation intensity
of Pex = 0.7kWcm−2 (b) and 10Pex (c), where the energy difference for perpendicular polarisa-
tions was also measured separately without B for both Xs (ΔX) and XXs (ΔXX), respectively(d,e)
(Reprinted with permission from [18]. Copyright (2016) American Chemical Society.)
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cant (Fig. 9.2b), the spectral inhomogeneity of ensemble QRs is quite broad [35, 36]
due to the anisotropic volcano-like morphology, ranging from the bandgap of bulk
GaAs up to that of AlGaAs. Although the micro-PL emission of high spectral energy
ranges close to the AlGaAs barrier are mostly strongly localised states in a crescent-
like shape, the localised wavefunctions at low spectral energy ranges can extend over
the whole rim of a QR with the assistance of tunneling. For example, we concluded
that the exciton micro-PL spectrum near ∼1.7eV possibly results from a couple of
two crescent-shape adiabatic potentials, where the distance between two crescent-
shape adiabatic potentials is short enough for the wavefunction tunneling. Because of
a subtle difference between the model and a real QR, it is not sure whether tunneling
effect between the two crescent-like localised wavefunctions is strong enough to give
rise to a single wavefunction over the whole rim. If it is the case of localised states,
exciton AB oscillations can emerge in the anisotropic QR beyond a characteristic
magnetic field (Bc). Because the potential barrier between the two separate localised
states in a QR is overcome due to the diamagnetic effect, Bc can be a measure of the
degree of localisation.

As the volcano-model suggests, we selected a single QR near ∼1.732eV. In
Fig. 9.4b, magneto-PL spectra of the Xs for an excitation intensity of Pex =
0.7kWcm−2 is plotted from Bc ∼ 2T, below which the Zeeman splitting is not sig-
nificant enough to be resolved. When the excitation becomes stronger by an order of
magnitude (10Pex), we found XXs also emerge (Fig. 9.4c), which has been identified
by excitation dependence and time-resolved PL. All magneto-PL spectra were care-
fully fitted by using Gaussian functions (dotted lines in Fig. 9.5a) in order to obtain
the central emission energy of X and XX as a function of B. In the absence of B, we
also measured an energy difference (ΔX ∼ 0.13meV) in the X PL for perpendicular
polarisations to evaluate the anisotropy of the localised states in a QR (Fig. 9.4d)
[32]. With an excitation of 10Pex, a blueshift is observed as well as a decrease in ΔX

(from ∼0.13 to ∼ 0.09meV) (Fig. 9.4e). These results are possibly associated with
screening of the lateral electric field (Elat) [37]. Because a GaAs/AlGaAs QR is a
lattice matched system, Elat is possibly generated by defects at the interface between
the GaAs and AlGaAs such as Ga-antisite and As-vacancies, where trapped carriers
may cause Elat , and a large number of optically injected carriers in the AlGaAs can
suppress Elat by screening.

In addition, the energy difference of the XX emission energy for perpendicu-
lar polarisations (ΔXX ∼ 0.13meV) is different from that of the excitons (ΔX ∼
0.09meV) (Fig. 9.4e). In the case of an elliptical quantum dot (QD), an asymmetric
electron-hole exchange interaction causes a splitting (ΔX) of the spin-degenerate
exciton states into two singlet states, where two linearly orthogonally polarized
dipoles are defined along the symmetric axes of the QD. The selective transition
from the polarized XX and X states in an elliptical QD also gives rise to an identical
splitting in the XX PL spectrum (ΔXX = ΔX). Therefore, the differences seen in
a QR (ΔXX �= ΔX) can be attributed to a selection rule change in the anisotropic
structure [31, 32].

Given the inherent structural anisotropy and Elat in a QR, the AB oscillations can
be modulated by morphological control, excitation intensity, and an external electric
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Fig. 9.5 Optical AB oscillations of the exciton in a single QR. a Central energy of the X emission
for weak (Pex = 0.7kWcm−2) and strong (10Pex) excitation intensity is plotted from 2T to 11T.
When B ≤ 2T, the spectral splitting is too small to distinguish between the peaks X (σ+) and
X(σ−). b Theoretical X energy change (EL

X (B) − EL=0
X (B = 0)) for the various orbital angular

momenta (L = 0,−1,−2,−3, . . .) with B for a quasi one-dimensional isotropic quantum ring
model, where the many-body correlation is fully taken into account for the Coulomb interaction. c
Theory and experiment are compared after removing the quadratic fitting term, where the period of
exciton AB oscillations (ΔBX ∼ 1.8T) is the same, but a magnetic field difference in the oscilla-
tion extremum (δBX ∼ 0.7T for Pex and δBX ∼ 0.4T for 10Pex) is observed. d When the strong
Coulomb interaction between the electron and hole is considered, the X can also be approximated
as a single particle (θe ≈ θh) with its orbit at RX.(Reprinted with permission from [18]. Copyright
(2016) American Chemical Society.)

field. In this case, disorder effects inQRs are of great potential for quantum coherence
control. As shown in Fig. 9.5a, optical AB oscillations of the X energy with B are
significant for both weak (Pex) and strong (10Pex) excitation intensity, and both these
cases have the same period (ΔBX ∼ 1.8T). The period of XAB oscillations was also
calculated theoretically by using our quasi one-dimensional potential Ve,h(r, Re,h)

for the electron and hole of a QR, which is anharmonic and axially symmetric with
a centrifugal core. Here the quasi-1 dimensional model implies the width (We,h) of
Ve,h(r) is still smaller than the orbit size (Re,h). It is also known that the electron
and hole are likely to rotate along different orbits (Re �= Rh) due to their different
effective masses, deformation potential, and strain [20, 22, 37–41], whereby the
phase difference (Δφ) between the electron and hole as a function of B controls the
X AB oscillations [20, 21, 42].

When the Coulomb interaction between the confined electron and hole was con-
sidered in Ve,h(r, Re,h,We,h) , we obtained the X eigenstates of different orbital
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angular momentum (L) as a function of B by using an exact diagonalisation method,
where the many-body states are expanded by a large number of the single-particle
states. We also found that the exciton can be approximated as a single composite par-
ticle (θe ≈ θh) (Fig. 9.1a) with its orbit at RX and angular momentum L = �e + �h,
where �e and �h are constituent orbital angular momenta for the electron and the
hole. Recently, it was found that the ratio of exciton orbit-to-confinement width
(RX/We,h) is crucial in determining the amplitude of the excitonic AB oscillations
[27, 43], whereby the emergence of the X AB oscillations occurs under limited
conditions (1 ≤ RX/We,h ≤ 10). We found optimum values for the different orbits
(Re = 32nm, Rh = 15nm) and the rim width (We = 5nm, Wh = 5nm ) for the
electron and the hole empirically to obtain the measured AB oscillation period
(ΔBX ∼ 1.8T), which is also the case for the limiting condition (RX/We,h ∼ 4.7)
of the AB oscillation. Figure9.5b shows theoretical X energy for the various orbital
angularmomenta (L = 0,−1,−2,−3, . . .) for increasing B, where the average exci-
ton energy of L (EL

X (B)) between the two X states for spins parallel (X(σ+)) and
anti-parallel (X(σ−)) to B were subtracted by that of L = 0 (EL=0

X (B = 0)), and we
used the same diamagnetic coefficient for X(σ+) and X(σ−). Therefore, the level
spacing among L-states can be seen in terms of EL

X (B) − EL=0
X (B = 0) for increas-

ing B.

After removing the fitted quadratic functions in Fig. 9.5a, b, which are deter-
mined by the exciton g-factor (gX ∼ −1.3) and the diamagnetic coefficient (γX ∼
10µeV/T2) of the exciton, the experimental data are comparedwith theory (Fig. 9.5c).
The oscillation maxima and minima for weak (Pex) and strong (10Pex) excitation
occur at differentmagnetic fields despite the fact that all show the sameΔBX ∼ 1.8T.
This result can be associated with Bc, i.e., as the AB effect emerges at finite Bc, the
first transition from L = 0 to L = 1 also occurs at a relatively large magnetic field
compared to the case of ideal theory. For a weak excitation Pex, a magnetic field dif-
ference for the oscillation extremum between theory and experiment (δBX ∼ 0.7T)
is obtained (Fig. 9.5c). On the other hand, when the excitation is 10Pex, a small
δBX ∼ 0.4T is obtained. Recently, changes in the sequence of maxima and minima
of the X PL intensity oscillations with B were claimed to be due to Elat and thermal
effects [37, 38]. Also, the presence of Bc was shown experimentally in a volcano-
like anisotropic QR [25]. Therefore, the so-called modulated X AB oscillations in
Fig. 9.5c possibly result from a combined effect of Bc, Elat, and thermal phonons in
an anisotropic QR.

Even though the wavefunction is delocalised around the anisotropic rim, the rota-
tional symmetry of a QR most likely breaks down due to the scattering potential
arising from anisotropy and localised impurities. In this case, the orbital angular
momentum L is not a good quantum number, and the coupling between different L
states are involved. As a result, an anti-crossing splitting of the PL spectrum appears
at the transition B-field of the AB oscillations, where the exciton changes L to min-
imize its energy [21, 42]. As evidence of the anti-crossing splitting, a dip in the
middle of the Gaussian PL peak was observed up to the transition from L = −2 to
L = −3 for both weak and strong excitation (Fig. 9.6a, b). For the case of impurity
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Fig. 9.6 The anti-crossing
splitting in the presence of
disorder. Provided that the
rotational symmetry of a QR
breaks down due to disorder,
the anti-crossing splitting,
i.e. the dip in the middle of
the PL peak, is significant
when L changes, but
eventually disappears when
B is strong enough to
overcome the disorder effect
for weak
(Pex = 0.7kWcm−2) (a) and
strong (10Pex) (b) excitation
intensity (Reprinted with
permission from [18].
Copyright (2016) American
Chemical Society.)

disorder, a δ-function scattering potential (U imp
e,h δ(θe,h − θ0

i )) can be used, where θ0
i

is a fixed angle of the impurity localised at the electron/hole orbit [42]. In compari-
son to the measured anti-crossing (60 ∼ 120µeV), we estimate ∼ 110µeV for the
splitting withU imp

e,h ∼ 50µeV by using recent theory [42]. However, a dip is not seen
at the transition from L = −3 to L = −4 for both weak and strong excitation. This
result suggests that the rotational symmetry recovers, with a good quantum number
L , when a strong magnetic field overcomes disorder effects.

9.5 Fractional Optical Aharonov-Bohm Oscillations of a
Biexciton Wigner Molecule in a Single Quantum Ring

As the electronic correlation effect is enhanced in a quasi one-dimensional QR,
an electronic Wigner molecule (WM) can be formed. For optical experiments, a
XX in a NQR is a good candidate for an excitonic WM. In Fig. 9.7a, the central
emission energies of the X and XX with B are compared, where both the X and XX
show an oscillatory behaviour, although the AB period of the XX (ΔBXX ∼ 0.5T) is
shorter than that of the X (ΔBX ∼ 1.8T). We claim that the fractional AB oscillation
arises from the XX WM in a QR. In order to explain the fractional period, we have
calculated the theoretical eigenenergy levels of the XXs (EL

XX) and Xs (EL
X) for
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Fig. 9.7 The AB oscillation period of XXs in a single QR is fractional compared to that of Xs. a
Central emission energy of the X and XX for strong (10Pex = 7.0kWcm−2) excitation intensity is
plotted from 2T to 11T. XX in a QR can be considered as a pair of the interacting X dipoles, where
the dipole-dipole interaction becomes minimised when the both are located at opposite positions as
shown schematically. b Saw-like AB oscillations arising from the emission between EL

XX (B) and
EL
X (B) in experiment and theory are compared after removing the quadratic fitted functions. c, d

Theoretical energy change of the XX (EL
XX(B) − EL=0

XX (B = 0)) and X (EL
X (B) − EL=0

X (B = 0))
for the various orbital angular momenta (L = 0,−1,−2,−3, . . .) with increasing B (Reprinted
with permission from [18]. Copyright (2016) American Chemical Society.)

various Ls in a quasi one-dimensional QR as a function of B (Fig. 9.7c, d), where
the Coulomb interactions between the two electrons and two holes are fully taken
into account. Note that the XX PL results from a transition from EL

XX and EL
X,

but the energy oscillation periods of EL
XX and EL

X are different. For example, at the
(i)-transition marked in Fig. 9.7c, d, both the XX and X have the same orbital angular
momentum L = 0. On the other hand, at the (iii)-transition, the XX has already
changed its orbital angularmomentum from L = 0 to L = −1 tominimize its energy.
However, emission occurs between EL=−1

XX and EL=−1
X due to a selection rule. In other

words, emission between EL=−1
XX and EL=0

X is not allowed although EL=0
X < EL=−1

X .
Consequently, while B increases, an abrupt change of the PL energy can be seen near
the (ii)-transition. More specifically, two PL peaks are expected at the (ii) transition,
i.e, EL=0

XX − EL=0
X and EL=−1

XX − EL=−1
X , and the energy separation between the two

peaks is also expected to increase with B. Additionally, when considering disorder,
an anti-crossing splitting is also expected for the XX. Interestingly, no splitting was
found in the XX PL spectrum at any B. If a splitting of the XX PL spectrum were
present, a fast intra-relaxation between the two states could be one explanation,
whereby only the low emission energy would be dominant at the (ii)-transition.
Alternatively, the XX WM is possibly less susceptible to anisotropic disorder when
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it consists of interacting Xs located at opposite positions in the NQR (Fig. 9.7a).
Nevertheless, the exact reason is not clear at themoment.Ultrafast spectroscopy at the
transitionmagnetic field could be employed to clarify this issue. InFig. 9.7b,ΔBXX ∼
0.5T was reproduced using the quasi one-dimensional QR model and compared to
the experimental data after removing the fitted quadratic terms from Fig. 9.7a, c and
d, whereby the diamagnetic coefficient of the XX (γXX ∼ 12.4µeV/T2) was also
obtained. Because of the abrupt change of the XX PL energy near the transition
magnetic field, saw-like AB oscillations are seen. Also, the magnetic field difference
of the XX oscillation extremum between theory and experiment is the same as that of
themodulatedXABoscillations (δBXX ≈ δBX ∼ 0.4T) due to structural anisotropy.

When a XX becomes a WM in a QR, two cases are possible; either two Xs
form a WM or electrons and holes form a WM independently. In order to better
understand this issue, correlation effects associated with the formation of a WM can
be visualised in terms of a two-body charge density, which is the probability to find
either an electron (ρee) or a hole (ρhe) at the position of a fixed electron. Figure9.8a
shows that ρhe for X is localised due to the strong Coulomb interaction. This result
verifies that the exciton can be approximated as a single particle. On the other hand,
the localised distribution of ρee and ρhe for XX (Fig. 9.8b, c) suggests that a XXWM
in a QR is the former case, where the pair of Xs are strongly localised opposite each
other. Therefore, the description of a XX in a QR can be simplified as a pair of the
interacting X dipoles as shown schematically in Fig. 9.8a, where the two Xs should
be maximally separated to minimize the dipole-dipole interaction.

Note also that ΔBXX ∼ 0.5T in Fig. 9.7b is not half of ΔBX ∼ 1.8T. In order to
obtainΔBXX ∼ 0.5T, we found Re,h andWe,h of the quasi one-dimensional potential
Ve,h(r) for a XX, and these should be 1.4 times those for an X as empirical optimum
parameters, i.e. both the orbit andwidth of the confinement potential for XX increase.
The larger orbit for XX is due to the electron-electron and hole-hole repulsion in a
QRwith re-distribution of the surrounding electrons and holes, whereby the confine-
ment potential of XX becomes different from Ve,h(r) determined by the geometric
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Fig. 9.8 Two-body charge density of an isotropic QR model at B = 0. The probability distribution
of a hole with respect to the electron fixed at the marked position for an X (a) and the probability
distribution of another electron (b) and two holes (c) to a fixed electron for XXs localised with
Wigner molecule character (Reprinted with permission from [18]. Copyright (2016) American
Chemical Society.)
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structure. Therefore, a modified Ve,h(r) for XX can be an effective correction, and
partial Wigner localisation can also be a candidate [12], but the exact reason remains
an open question. As a possible origin, the presence of a local electric field (ELoc) is
quite likely at the interface between a QR and the capping barrier material. Suppose
that carriers excited in a capping barrier affect ELoc at the interface, the wavefunction
modification of a QR might be susceptible to optical excitation intensity changes.

9.6 Summary and Outlook

Ring structures remind topologically doubly connected structures such as a donut or
a loop, but epitaxially grown quantum ring structures are singly connected, where
the central part of a QR structure is not open. Additionally, the rim height of QRs
grownby the dropletmethod shows a volcano-likemorphology,where the anisotropic
height likely results in two separate potential valleys at opposite positions of a QR.
Consequently, a pair of localised states are formed in a QR, where two different
potential valleys are of a crescent-like shape. Although the two energy levels are
likely non-resonant, the energy difference can be decreased by controlling the rim
height anisotropy or applying an externalmagnetic field. Suppose the tunneling effect
between the two localised potential valleys is enhanced, the two different energy lev-
els of localised excitons can be spectrally overlapped within the emission linewidth
similar to a laterally coupled quantum-dot-dimer. Also, a biexciton can be formed
through the dipole-dipole interaction between the two non-resonant exciton. There-
fore, provided that a fine energy difference is given between the two localised exciton
levels, the biexciton transition toward the nearly degenerate emission spectrum of
two localised exciton states in a QR can be utilized in the context of an entangled
photon pair.

On the other hand, for increasing an external magnetic field, the two crescent-
like localised wavefunctions can be merged gradually into a single wavefunction,
which extends over the whole circumference of a QR. This conjecture has already
been manifested by the presence of characteristic magnetic field, where optical AB
oscillations become significant. Nevertheless, the critical transition from a pair of
localised states to a single delocalised state needs to be investigated further in terms
of the onset of circumferential phase coherence against the anisotropic potential
structure. Because the exciton AB oscillations are governed by the orbit radii of
an electron and a hole as well as the Coulomb interaction in a finite rim width, the
transition conditionmaycontain a lot of novel physics. This topic can also be extended
to the fractional AB oscillations, whereby the biexciton Wigner molecule condition
can be refined. Additionally, the disorder effects in a QR are of great importance not
only for fundamental knowledge but also for prospective applications. In particular,
the modulation of AB oscillations can be further developed by applying an external
electric field, an external excitation light, and an external strain.
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Chapter 10
Aharonov-Bohm Effect for Neutral
Excitons in Quantum Rings

M.D. Teodoro, V.L. Campo Jr., V. López-Richard, E. Marega Jr.,
G.E. Marques and G.J. Salamo

Abstract Quantum interference patterns predicted by theory due to the finite
structure of neutral excitons in a single layer of InAs quantum rings are corrobo-
rated experimentally in the magneto-photoluminescence spectra of these nanostruc-
tures. The effects associated to built in electric fields and to the temperature on these
Aharonov-Bohm-like oscillations are described and confirmed by complementary
experimental procedures. Also a similar behavior was observed in a hybrid structure
composed by a topmaster single layer of InAs quantum rings grown on a vertically
stacked and laterally aligned InGaAs quantum dot superlattice.

10.1 Introduction

Attempts to verify fundamental quantum mechanical phenomena experimentally
are some times hampered by serious scale limitations of a system. Nonetheless, the
astonishing progress observed in the synthesis and growth of nanoscopic systems has
opened opportunities for raising anew old questions while developing the technical
ways for finding answers to them. This has certainly been the case of the search
for optical implications associated to [1, 2] effect in nanoscale ring structures, or
quantum rings (QRs), that gained a significant impetus in the last decades [3–6].
Their peculiar rotational symmetry has encouraged the search for a myriad of effects
related to the quantization of the and to the unique spatial distribution of the wave
function [7–10].
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There is however, at this moment, an important shortcoming in the experimental
emulation of the original conditions for AB-effect in nanoscopic QRs. Unlike the
famous picture of an AB scattering situation, for the available experimental config-
urations, the carriers are confined within QR regions with finite values of magnetic
field. Although experimentally we shall renounce, for now, to test the seeming “para-
dox” of carriers being affected by a static in a region with zero field, we still consider
an observed effect as of the AB-type if it can be explained assuming that themagnetic
field is ideally concentrated in the middle of the QRs. Thus, we shall demonstrate
that the experimental effects described bellow arise essentially from potential vector-
mediated quantum interference.

As highlighted in previous chapters, in stationary systems, the “interference”
patterns that will be assigned to an AB-nature are beyond the angular momentum
quantization that affects the modulation with the external magnetic field of a single
carrier selfenergy and we will focus on the excitonic states that can be characterized
as proposed theoretically [11–13]. Instead of looking only at the dependence on the
magnetic flux of the electron-hole recombination energy during photo-luminescence
(PL), [14] we also consider the excitonic oscillator strength whose oscillatory be-
havior reflects directly the changes in the exciton wave function as the magnetic
flux increases [15]. A similar experimental work was reported [4] for type-II QRs,
however, here we are considering both electron and hole moving inside the ring so
that the correlation between them becomes crucial to the oscillatory behavior found
in the PL integrated intensity.

We will report the observation of a very unusual and difficult to be detected ef-
fect, since display a weak sensitivity to magnetic fields due to their neutrality [16].
Their coupling to the vector potential (or magnetic field) will be revealed when their
finite structure is considered. Thus, interesting properties of coupled electrons and
holes will rise during light absorption or emission of these QRs that can, in turn,
be affected by structural factors such as piezoelectricity [17] and strain fields, [18]
valence mass anisotropy, [18, 19] or temperature. We will contrast the experimental
observations with the theoretical predictions. We were able to detect, analyze, and
discuss systematically the different patterns observed in the oscillation of the inte-
grated PL as function of the magnetic flux (not just the magnetic field) given that the
ring size turns into a critical scaling factor for the experimental observation of this
phenomenon, as reported [20]).

10.2 Experiment

The samples were grown by molecular beam epitaxy on a semi-insulating GaAs
(100) substrate. After the growth of 0.5µm GaAs buffer layer at 580 ◦C, cycles of
0.14ML of InAs plus 2 s interruption under As2 flux were deposited until the total
formation of 2.2 ML of InAs QDs at 520 ◦C. Then, QDs were annealed during 30 s
to improve the size distribution. In order to obtain the QRs structures, the dots were
partially capped with 4nm of GaAs cap layer grown at 520 ◦C. The growth rate was
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measured by RHEED at 1 and 0.065 ML/s for GaAs and InAs respectively. Two
different samples were grown with the same conditions. The first one contain un-
capped quantum rings for morphological studies and the second one, a 50nm GaAs
cap layer was deposited to investigate the optical emission. Structural and morpho-
logical analysis of both samples were carried out by atomic force microscopy (AFM)
and transmission electron microscopy (TEM). The magneto-photoluminescence ex-
periments were performed at 2 K, with magnetic field up to 15 T, using a laser
(532nm) with 10 mW as excitation source. The luminescence was detected by a
liquid-nitrogen-cooled InGaAs charged coupled device camera.

10.3 Results and Discussion

Figure 10.1a shows an atomic force microscopy image of the uncapped InAs ring
sample. A 3D image of a single quantum ring is also displayed in Fig. 10.1b, which
represents the statistical average of ring sizes in the sample: 0.9nm in height, 15nm
inner and 60nm outer diameters. In Fig. 10.1c is shown a plan-view TEM image
from the sample with 50nm GaAs cap layer that shows clearly the ring-like shape.
A reduction in the quantum ring dimensions, if compared with the sample without
cap layer, can be clearly observed but the origin for causing this change is not yet
well understood. As will be discussed later, the ring radius of the capped samples is
compatible with the optical experimental results. A cross-section TEM image, taken
closer to 〈110〉 direction, is shown in Fig. 10.1d, where a 30nm distance between the
rims of the torus-like structure can be measured [21].

The PL spectra of the QRs, taken at 2K and for B = 15 T (gray line), is shown in
Fig. 10.2a. Only two radiative recombination channels due to a of ring distributions
are observed: a shoulder at the low energy side and amain peak at higher energy side,
labeled QR1 and QR2, respectively. The typical qualitative aspects for the shapes of
these rings are shown on the left side of the figure. Both spectra were fit with two
Gaussian lines to evaluate the evolution of the peaks energy and the area below the
curves (integrated intensities) as a function of the applied magnetic field.

Under an external magnetic field, applied along the growth direction, we observed
the expected blue shift of both emission bands, shown in Fig. 10.2b. The experimental
points for the magnetic shift were obtained from the peak position at given B-value
and subtracted the energy value at zero field. As the magnetic field increases, the
changes from angular momentum from l = 0 to l = 1, from l = 1 to l = 2, and
etc., and the energy being an slightly function of magnetic field [10]. The small
oscillations of the peak position with increasing magnetic field were detected clearly
for both ring emissions. However, being the amplitude of the oscillations of the QR1
structure ∼0.5meV, or too small when compared to the linewidth of the PL band,
∼60meV, the uncertainty of the energy oscillation becomes large for high fields. Yet,
unambiguous oscillations of the integrated intensities are much easier to be detected.

The oscillations of the integrated intensity, as the magnetic field increases, are
depicted in Fig. 10.3 [22]. Onemust note that the period and the sequences of minima
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(a)

(c)

(d)

(b)

Fig. 10.1 a Atomic force microscope image from the InAs uncapped quantum rings sample. b
3D AFM image from a single quantum ring. c TEM plan-view image, taken slightly off the 〈110〉
direction. dA cross-section TEM image from the buried quantum ring samples. Yellow dashed-line
is just a guide to the eyes

and maxima differ in these PL intensities (the same behavior was observed for the
peak intensity plot). To understand their nature we will adapt the theoretical model
of Römmer and Raikh [12, 13] to the structural conditions and parameters of our
samples. According to this model, the electron and the hole move in a ring of radius
R and zero cross-section width threaded by a magnetic flux Φ = BπR2 and they
interact by means of a contact potential. The corresponding is given by

̂H0 = (̂Pn + eΦ
2πRc )

2

2mn
+ (̂Pp − eΦ

2πRc )
2

2mp
− 2πV δP(ϕn − ϕp), (10.1)

where ϕn(p) is the angular position of electron (hole) with orbital angular momentum
̂Pn(p) = �

i R
∂
∂ϕ n(p)

.

The last term, representing an attractive short-range interaction, the function
δP(ϕn − ϕp) is a 2π -periodic Dirac’s δ-function. The strength of the interaction
parameter V was chosen so that the exciton ground-state energy obtained by this
expression fits the reported value of the exciton binding energy, and we have used
for the exciton binding energy, the value 4.35 meV as reported [23]. As the strength
of V increases, a more tightly bound exciton is produced, becoming thus less sen-
sitive to magnetic and electric fields. The theoretical study of the model above will
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(a)

(b)

Fig. 10.2 a Photoluminescence spectra of InAs quantum ring sample, taken at 2K and for B = 15
T (gray line). There are two radiative channels (triangles - peak 1 - and circles - peak 2) identified as
the recombination from two different size of quantum rings, and with morphologies represented by
the pictures on the left side. b The magnetic shift taken from the PL spectra at increasing magnetic
field. One angular momentum transition is clearly observed at B = 5.5 T. Anther occurs near
B = 13 T but only becomes clear in the integrated intensity

follow the work [11], which Chaplik and Kovalev, in Chap.9 of the present book,
extend in several ways. While we consider a contact interaction between electron
and hole, Chaplik and Kovalev treat the more realistic, providing analytical results
for the strong-coupling regime.

If we change to center-of-mass and relative coordinates,

ϕc = (

mnϕn + mpϕp
)

/M, (10.2)

θ = ϕn − ϕp, (10.3)

http://dx.doi.org/10.1007/978-3-319-95159-1_9
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Fig. 10.3 Integrated
intensities of the two
emission lines as a function
of the magnetic field. a
In-phase AB-oscillations of
the lower energy emission
line of QR1 rings show a
period corresponding to an
effective radius
R = 11.6nm. b
Counterphase oscillations of
the higher energy emission
line of QR2 rings show a
period corresponding to an
effective radius R = 19 nm

(a)

(b)

withM = mn + mp being the total mass, and θ being the angular separation between
electron and hole positions on the ring. The Hamiltonian becomes,

̂H0 = ̂Hϕc
0 + ̂H θ

0 , (10.4)

where

̂Hϕc
0 = − �

2

2MR2

∂2

∂ϕ2
c

, (10.5)

̂H θ
0 = �

2

2μR2

(

1

i

∂

∂θ
+ Φ

Φ0

)2

− 2πV δP(θ), (10.6)

and μ is the exciton reduced mass defined by 1/μ = 1/mn + 1/mp.
The solution for the center-of-mass motion equation is given by

ψc(ϕc) = ei Jϕc

√
2π

(10.7)

with the corresponding eigenenergies

Ec(J ) = �
2 J 2

2MR2
. (10.8)
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As already stated, the main effects will be connected to the relative motion, i.e.,
to the internal structure of the exciton. Firstly, we can make a gauge transformation
from an eigenfunction φint (θ) of the Hamiltonian ̂H θ

0 to a new function χ(θ), as

φint (θ) = e−i Φ
Φ0

θ
χ(θ). (10.9)

One should note that both |φint (θ)|2 or |χ(θ)|2 give the probability density of finding
electron and hole angular positions differing by θ . In terms of χ , the eigenequation
for the relative motion reads

− �
2

2μR2
χ ′′(θ) − 2πV δP(θ)χ(θ) = wχ(θ) (10.10)

which is an eigenequation for a particle moving in a 2π -periodic potential. So,
following Chaplik [11] the function χ satisfies Bloch’s theorem and can be written as

χ(θ) = eipθ ν(θ), (10.11)

where ν is a 2π -periodic function. The Bloch function χ(θ) satisfies the relation

χ(θ + 2π) = ei2pπχ(θ) (10.12)

and p can be restricted to the first Brillouin zone (−1/2, 1/2]. The total exciton wave
function will be

ΨJ (Λ, θ) = ei JΛ

√
2π

ei(−
Φ
Φ0

+p)(θ)
ν(θ). (10.13)

Given (10.12), we just need to determine the function χ(θ) in the interval [−π, π ]
using the torsional boundary conditions

χ(π) = ei2pπχ(−π), (10.14)

χ ′(π) = ei2pπχ ′(−π). (10.15)

One could understand the torsional boundary condition in terms of the AB effect:
imagine the hole being at the origin. When the electron leaves the origin, it can
arrive at the diametrically opposite point in the ring moving clockwise in one half
or counterclockwise in the other half of the ring. Due to the magnetic field, its wave
function will acquire according to these paths, so at the opposite point, there will be
interferences. For zero or for p = 1/2 phase shifts along the half cycle paths, the
interference will be constructive or destructive, a situation similar to the original AB
effect detected in transport.

In order to determine the values for angular momentum J in the center of mass
eigenfunction and p parameter phase value in the function χ , we need to go back to
the coordinates ϕn and ϕp and impose that the total wave function be periodic if the
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angular positions ϕn or ϕp change by 2π . The periodicity of Ψ (ϕc, θ) in ϕn and ϕp

yields

Jmn/M +
(

p − Φ

Φ0

)

= Nn ∈ Z, (10.16)

Jmp/M − (p − Φ

Φ0
) = Np ∈ Z. (10.17)

The addition of these last equations yields

J = Nn + Np ∈ Z, (10.18)

which means that the center-of-mass angular momentum, measured in units of �,
assumes integer values J = 0,±1,±2, . . . , what is totally reasonable because it is
exactly what would happen for a single particle of mass M moving in the ring.

By subtracting (10.16) from (10.17) we are lead to

γ J + 2

(

Φ

Φ0
− p

)

= Np − Nn ∈ Z, (10.19)

where we have introduced the constant

γ = mp − mn

M
. (10.20)

Given an integer value for J , the parameter p can be determined uniquely in the
interval (−1/2, 1/2] because the integer γ J + 2( Φ

Φ0
− p) = Np − Nn has the same

parity as J . Once we have determined p, we can solve the eigenequation (10.10) for
χ under the boundary conditions (10.14) and (10.15) to find several internal eigen-
functions. Analogously to band structure calculations, for each Bloch wavevector p
we have several eigenfunctions, one for each band. The fact that the parameter p
depends on the becomes a relevant feature when dealing with excitons that involve
either heavy or light holes. We will demonstrate that the hole in-plane effective mass
can affect the way the AB oscillations are affected by external factors such as.

At this point it is easy to understand that several physical properties of this system
will be invariant when the magnetic flux through the ring changes by a multiple of
the quantum flux. The ratio Φ

Φ0
enters in the equation (10.19) and determines p. If

Φ
Φ0

changes by an integer n, we can consider (10.18) and (10.19) with Nh increased
by n and Ne decreased by n, so that the eigenvalues for J and the value for p remain
unchanged. Therefore, the function χ and the internal energy w will be unchanged,
while the total wave function will change by a local phase factor e−inθ . Any property
which is not affected by this local phase factor will oscillate periodically as a function
of the magnetic field.

To study the function χ giving the internal structure of the exciton in more detail,
it is convenient to rewrite (10.10) in terms of dimensionless quantities,
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− χ ′′ − V0δ(θ)χ = εintχ, (10.21)

where εint = w/ε0 and V0 = 2πV/ε0, with ε0 = �
2/2μR2. If we write negative

energies as εint = −κ2 and positive energies as εint = k2, we get the following tran-
scendental equations to determine the energies

cosh(2πκ) − cos(2πp) = πV0
sinh(2πκ)

2πκ
, (10.22)

for negative energies and

cos(2πk) − cos(2πp) = πV0
sin(2πk)

2πk
, (10.23)

for positive energies.
The corresponding eigenfunctions are

χκ(θ) =
{

Nκ,p[sinh(κθ) − e−i2pπ sinh(κ(θ − 2π))], 0 ≤ θ ≤ π

Nκ,pe−i2pπ [sinh(κ(θ + 2π)) − e−i2pπ sinh(κθ)] − π ≤ θ ≤ 0,
(10.24)

and

χk(θ) =
{

Nk,p[sin(kθ) − e−i2pπ sin(k(θ − 2π))], 0 ≤ θ ≤ π

Nk,pe−i2pπ [sin(k(θ + 2π)) − e−i2pπ sin(kθ)],−π ≤ θ ≤ 0
(10.25)

where Nκ,p and Nk,p are normalization factors.
One needs to be careful when considering the cases p = 0 and p = 1/2. From

(10.24) and (10.25), the corresponding functions χ will display even parity, i.e,
χ(−θ) = χ(θ). However, there are also special odd functions. When p = 0, we
have special solutions of (10.23) which correspond to k = 1, 2, 3, 4, . . . . Substitut-
ing these values of k in (10.24), one apparently gets functions identically equal to
zero. However, a careful account of the dependence of the normalization factor on
k implies that at these special values of k, the wave functions are, in fact, given by
χ(θ) = sin(kθ)/

√
2π , which display odd parity. Analogously, when p = 1/2, we

have special solutions of (10.23) corresponding to k = 1/2, 3/2, 5/2, . . . , whose
wave functions are also given by χ(θ) = sin(kθ)/

√
2π . It is easy to understand

these odd solutions directly from (10.21). Being equal to zero at the origin, implies
that the solutions will not feel the delta potential. Therefore, the equation is simply
−χ ′′ = εexcχ , which allows solutions of form sin(kθ). To satisfy the boundary con-
ditions, in (10.14) and (10.15), k must be integer when p = 0 and half-integer when
p = 1/2.

The of the ground-state with wave function Ψ0(Λ, θ) (see 10.13), will be given
by

O0 = |
∫ π

−π

Ψ0(ϕc, 0) dϕc|2, (10.26)
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and, therefore, is a on the magnetic flux through the ring since upon increasing the
magnetic flux by Φ0 the excitonic wave function changes by the phase-factor eiθ ,
which is equal to one for θ = 0. This periodic behavior is displayed in Fig. 10.4a. In
Chap.9, Chaplik and Kovalev found oscillations of the intensity of the exciton line
along with those of the biding energy in the strong-coupling case.

According to the contact interaction model just presented, the oscillations in
Fig. 10.4a can be understood as follows. The ground-state has a center-of-mass angu-
lar momentum J = 0 and it is an even function. When the magnetic flux is zero, the
χ function is 2π -periodic, on the other hand, for magnetic flux equal to Φ

Φ0
= 1/2,

the χ function is anti-periodic. This fact combined with the fact that the ground-
state wave function should not have any node, implies that χ(−π) = χ(π) = 0 and
therefore the function χ for Φ = Φ0/2 must be more concentrated around θ = 0
than the χ function corresponding to the ground-state in the absence of magnetic
flux. See this effect depicted in Fig. 10.4b. So, the oscillator strength should have a
maximum at Φ

Φ0
= 1/2 according to the model presented above. It worths noticing

Fig. 10.4 a Oscillator
strength as a function of
magnetic flux for an
heavy-hole exciton binding
energy, Eb = 4.35 meV. b
Probability density of finding
the electron and the hole
angular positions differing
by θ for heavy-hole. Dotted
black line correspond to
magnetic flux equal to zero
and gray curve corresponds
to magnetic flux equal to
Φ0/2. In this case, the value
of the magnetic flux requires
that the ground-state wave
function be equal to zero at
θ = ±π , and to keep the
normalization, a more
pronounced peak appears at
θ = 0 with direct impact on
the oscillator strength

(a)

(b)

http://dx.doi.org/10.1007/978-3-319-95159-1_9
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that the oscillation pattern just described is qualitatively similar for both heavy and
light-hole excitons. However, quantitatively, the way the pattern is affected by exter-
nal factorsmay depend drastically on the character of the valence band state involved.
The oscillations of the oscillator strength of the excitonic recombination are a direct
consequence of the of electrons and holes due to the Coulomb attraction, leading to
the peculiar AB interference obtained experimentally. In the absence of, electron and
hole would be independent particles and the corresponding oscillator strength would
be independent of the magnetic flux through the ring. Yet, the sequence of minima
and maxima obtained after this brief theoretical discussion would correspond only
to the picture displayed in Fig. 10.3a of QR1 with an effective radius R = 11.6 nm.
The oscillations corresponding to the QR2 emission appear in counterphase. Thus,
additional ingredients must be added to the model as well as complementary
experimental facts must be sought to understand such an anomalous behavior. If
their period was also to be defined by the flux quantum, their effective QR radius
would be R = 19 nm. The fact that the emission band QR2 has higher transition
energy and larger average radius than QR1 suggests that QR2 may present smaller
ring width and height than those for QR1. Also, note in Fig. 10.3b, that a monotonic
decrease of the center of the oscillations takes place. Such an effect cannot be under-
stood within our one-dimensional ring model, where the rings have zero width. The
combination of finite ring width and certainly potential localization effects cannot
be discarded as causes for the background shifts of the PL oscillations.

10.4 Inquiring for Reasons of AB-Oscillations in
Counterphase

We turn next to a discussion of an effect which may potentially invert the sequence
of minima and maxima of the oscillator-strength oscillations: the heating. In order
to take into account the, one should generalize (10.26) including all excitonic states,

O(T ) =
∑

n One−En/kBT

∑

n e
−En/kBT

, (10.27)

where On is the oscillator strength for the n−th state (whose wave function is Ψn),

On = |
∫ π

−π

Ψn(ϕc, 0) dϕc|2. (10.28)

The electronic structure engineering in 0-dimensional structures appears as an
effective tool for tuning the magnetic properties of these systems [24–26]. In par-
ticular, and configurations can be adjusted so that the character of the valence band
ground-state can be changed from heavy- to light-hole character. As demonstrated
below, this will have implications in the way the exciton recombination responds to
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Fig. 10.5 Magnetic flux
dependence of the first states
of the exciton in the case of
a heavy hole and b light
hole. Exciton binding energy
is Eb = 4.35 meV. The gray
curves denotes the bright
excitons (which have
center-of-mass angular
momentum J = 0), while
black curves correspond to
dark ones

(a)

(b)

the magnetic field and temperature. In Fig. 10.5, the exciton energy levels are dis-
played for HH and LH excitons, where the only parameter changed has been the in-
plane hole mass. We must note that their in-plane effective masses (in the parabolic
approximation) are related to the in the following way: mHH = 1/(γ1 + γ2) and
mLH = 1/(γ1 − γ2) [24]. The character of the involved in the exciton recombina-
tion will, thus, affect the picture of the exciton energy dispersion and modify the
shape of these levels as the magnetic field is varied. In the calculations, the InAs
band parameters used are me = 0.026, γ1 = 20.4, and γ2 = 8.3 [23].

As the temperature rises, the occupation of excited levels of the exciton becomes
more probable. Note that the first excited levels correspond all to dark excitons. As
the dark exciton levels approach the bright one the net occupation of the ground-
state changes and reduces the thermalized oscillator strength. At relatively high
temperatures, this effect transforms the of the at Φ

Φ0
= 1/2 into a for the HH

exciton as displayed in Fig. 10.6a. As the temperatures rises, the net occupation of the
ground-state decreases as these levels become closer, what takes place at Φ

Φ0
= 1/2

for the HH -exciton. This, in turn, reduces the thermalized oscillator strength and its
amplitude. Yet, for the LH exciton, such a reversion of the maximum is not observed
for temperatures up to 34 K (see Fig. 10.6b). This is due to the peculiar electronic
structure of the first LH -exciton levels displayed in Fig. 10.5b. According to our
model, the temperature inversion of the maximum appears practically undetectable
since the oscillator strength becomes essentially flat before inversion. Therefore the
heating may invert the sequence of maxima and minima of the AB-oscillations,
at least in the case of the heavy-hole excitons. However, this would take place at
temperatures well above the 2K and most of our magneto-optical measurements
were performed below these temperatures. Hence, an alternative hypothesis must be
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Fig. 10.6 Average oscillator
strength as a function of
magnetic flux for an exciton
binding energy equal to
Eb = 4.35 meV and for
various temperatures. Panel
a corresponds to the
heavy-hole case and panel b
corresponds to the light hole
case. In case a, for magnetic
flux equal to Φ0/2, the
maximum oscillator strength
gets converted into a
minimum. In case b, since
the total mass (mh + me) is
large, the center-of-mass
states are almost degenerated
and the thermal average mix
so many states that the
oscillator strength decreases
and becomes flat

(a)

(b)

searched in order to explain the experimental observation.Before considering another
mechanism for the inversion in the sequences ofmaxima andminima,we should point
out that [4] reports measurements of oscillatory behavior with the magnetic field at
temperatures as high as 180K for type II QDs. It is interesting that the data in [4] in
fact show the inversion in the sequence of maxima andminima when the temperature
is raised from 4 to 60K (and, apparently, another inversion when the temperature is
raised to 180K) despite the difference between the system there and our system.

Another effect that can lead to the reversion of the maximum of the oscillator
strength of the exciton ground-state, even at low temperatures, is the appearance of
an in-plane electric field. Such an electric field can be caused by uniaxial strains and
by eccentricity of the QR. We can explain this straightforwardly. The effect of an
in-plane electric field F along x-axis can be added to the Hamiltonian used in the
previous explanations as

̂H = ̂H0 + eFR(cos(ϕn) − cos(ϕp)). (10.29)

In order to compute the eigenfunctions in the presence of the in-plane electric
field, we write down the Hamiltonian matrix in the basis of the eigenfunctions of
̂H0 and proceed with a numerical diagonalization. Since we are interested in low
temperatures, we can truncate the matrix dimension after including all basis states
whose energies are lower than some high enough cut-off value. It is easy to show
that the electric field can only couple states whose center-of-mass angular momenta
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differ by one, an this simplifies significantly the task of building the Hamiltonian
matrix.

With respect to the dependence of the matrix elements on the magnetic flux,
we see immediately that the diagonal elements are periodic, since they correspond
to the energies in the absence of the electric field, which remain unchanged when
the magnetic flux changes by a multiple of the flux quantum Φ0, as discussed in
the previous section. The off-diagonal elements

〈

Ψm |eFR(cos(ϕn) − cos(ϕp))|Ψm ′
〉

are also periodic. This is due to the fact that the eigenfunctions Ψm and Ψm ′ , in
the absence of electric field, change by the same phase factor ein(ϕn−ϕp) when the
magnetic flux is changed by nΦ0 (n integer). This common phase-factor is canceled
out when computing the off-diagonal matrix element above. Therefore the exciton
energies and the oscillator strength in the presence of an in-plane electric field will
be periodic functions of the magnetic flux with period equal to Φ0. In general, we
expect that the oscillator strength will decrease when we increase the electric field,
since the angular separation between the electron and the hole becomes larger.

For the particular cases of magnetic flux equal to zero or equal to Φ0/2, we can
get a more detailed understanding exploiting a symmetry of the Hamiltonian. The
Hamiltonian in (10.29) is invariant under a reflection relative to the x-axis combined
with an inversion of the magnetic field. For zero magnetic flux, this implies that the
eigenfunctions will be even or odd. For magnetic flux equal to Φ0/2, the symmetry
under simultaneous reflexion and inversion of the magnetic field leads to a relation
between the eigenfunctions for Φ = Φ0/2 and for Φ = −Φ0/2,

Ψ (−ϕc,−θ,Φ = −Φ0/2) = ±Ψ (ϕc, θ,Φ = Φ0/2). (10.30)

On the other hand we know, from the previous discussions, that increasing the mag-
netic flux by Φ0 adds a phase-factor to the eigenfunction,

Ψ (ϕc, θ,Φ = Φ0/2) = e−iθ Ψ (ϕc, θ,Φ = −Φ0/2). (10.31)

With (10.30) and (10.31), we get

Ψ (ϕc, θ,Φ = Φ0/2) = ±e−iθ Ψ (−ϕc,−θ,Φ = Φ0/2), (10.32)

and after making the same gauge transformation as before, defining

Ψ̃ (ϕc, θ,Φ = Φ0/2) = ei
Φ
Φ0

θ
Ψ (ϕc, θ,Φ = Φ0/2), (10.33)

we find that these functions Ψ̃ will have defined parity when Φ = Φ0/2,

Ψ̃ (ϕc, θ,Φ = Φ0/2) = ±Ψ̃ (−ϕc,−θ,Φ = Φ0/2). (10.34)

Naturally, the same is true for any half-integer value ofΦ/Φ0. For such special values
of magnetic flux, an even ground-state will exist as we increase the electric field until
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some , FC , is achieved. It is natural that at low electric fields the ground-state be even,
since at zero electric field the ground-state has center-of-mass angular momentum
J = 0 and an even function χ . At FC , there is a level-crossing between an even and
an odd state and, above FC , the ground-state becomes odd, and where electron and
hole becoming more separated allows leads to lower energy. Here it is also natural
that, at high electric fields, the ground-state wave function be odd, since it will have
significant projection on zero electric field states whose corresponding χ functions
are odd, since only these functions can give rise to electron and hole well separated
as we must have at high electric field.

At Φ = Φ0/2, by (10.33) and (10.34), the odd ground-state wave functions satis-
fies Ψ (ϕc, 0) = −Ψ (−ϕc, 0), which implies zero oscillator strength when we con-
sider (10.26). Therefore, if for zero electric field, we had a maximum in the oscillator
strength at Φ = Φ0/2, for electric field above the critical value, we have a minimum
in the oscillator strength at Φ = Φ/2 as illustrated in Fig. 10.7. The inversion of the
maximum in the curves of OS against magnetic flux at T = 0 K occurs as the result
of increasing the in-plane electric field above certain critical value. This effect was
first discussed in [13], where the electric field was supposed applied in a controllable
fashion. Here, however, the electric field is supposed to be present in the sample due
to uniaxial strains and eccentricity of the QR.

According to the description above, the stronger the electric field becomes the
higher is the projection of the ground-state over states with electron and hole more
separated, decreasing the oscillator strength as well as its sensitivity to the magnetic
field. This is particularly relevant at Φ/Φ0 = 1/2 beyond the critical field, when the
ground-state becomes a pure odd function with null oscilator strength [13]. For QR
with finite width this reduction to zero is not expected.

Since the AB-oscillations in counterphase appear only for the QR2 emission, a
set of complementary measurements can be put in place to elucidate whether or not
in-plane electric fields are present in one quantum ring set and not in the other.

Throughout the course of the synthesis of self-assembled quantum dots and rings,
strain fields are formed in the (001) plane. This has been used to control the align-
ment and elongation of these 0-dimensional structures along certain crystallographic
directions. Given the spatial differences of I n migration velocities, [27] the [110]
appears as the preferential direction for QR elongation and a built-in electric field
may appear due to the piezoelectric effect [28]. The potential appearance of built-in
electric fields in such structures has been a topic discussed previously [17]. Since
the piezoelectric polarization leads to the red-shift of the PL emission line (Stark
effect), increasing the free-carrier density one may screen the built-in electric field
provoking a subsequent blue-shift of the transition energy. This can be achieved by
varying the excitation intensity. In Fig. 10.8 we have displayed the PL spectra versus
excitation intensity. Since exciton excited states decay non-radiatively much faster
than by photon emission, the hypothesis of bimodal subsets of QRs prevails. In the
PL spectra displayed in Fig. 10.8, we see that only for very high power excitation
it is possible to see emission from excited states. In Fig. 10.2, the power excitation
was very low, reinforcing the interpretation of bimodal QRs. The excitation power
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Fig. 10.7 a Average
oscillator strength for the
ground-state excitons as a
function of the magnetic
flux. Top curves calculated
for F = 0 and bottom curves
for F = 14.6kV/cm. For
electric fields above some
critical value, Fc, the
oscillator strengths become
equal to zero at the magnetic
flux equal to Φ0/2. Panels b
and c: Oscillator strength for
heavy- and light-hole exciton
ground-states as a function
of the electric field for some
values of magnetic flux. For
Φ
Φ0

= 1/2, there is an abrupt
change of the oscillator
strength due to level crossing
happening at F 
4.8kV/cm:
for lower electric fields, the
ground-state displays even
parity, for higher electric
fields, the ground-state
changes to odd parity. Since
the symmetry is exact at this
particular magnetic flux,
even and odd states do not
couple and, thus, the
occurrence of level crossing
with consequent abrupt
changes in the oscillator
strengths. In this figure, we
considered a ring of radius
10nm for both heavy and
light holes

(a)

(b)

(c)
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(a) (b)

Fig. 10.8 a Series of the PL emission for increasing excitation powers from 0.36mW/cm2 (bottom)
to 16.4kW/cm2 (top). b Position of emission peaks versus excitation power

increase has provoked the appearance of additional emission bands corresponding
to the the excited states of QR2 band.

In Fig. 10.8b, we plotted the energy shift of the QR1 and QR2 versus excitation
intensity. Note the blue shift of the emission band QR2 at the high excitation regime
while the emission band QR1 remains practically constant. This would accord with
the idea that a has been in QR2 set and not in QR1 which is consistent with the
contrasting AB-interference patterns. We are however faced with the question: why
the built-in electric fields related to the band QR1 are negligible if the effect of
the elongation should affect all rings? The potential answer to that question may
reside in different ring widths corresponding to each emission band: for QR1 it is
larger than that for QR2, as mentioned above, leading to a more significant strain
field relief for the former than for the latter. This would ultimately result in a much
lower piezoelectric field in the QR2 set. Yet, one may still argue that this cannot be
considered a definitive proof.

To construct a more convincing argument for the presence of the built-in electric
field inQR2while expecting negligible values inQR1, additional optical experiments
were performed: PL measurements experiments versus temperature are displayed in
Fig. 10.9a. The variation of the integrated intensity for each emission band, as a func-
tion of temperature, is plotted in Fig. 10.9b. It is reasonable to assume that a decrease
of the PL intensity with temperature should take place when dark excitonic states
become thermally occupied. The QR1 emission follows this expected pattern. Yet,
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(a)

(b) (c)

Fig. 10.9 a PL spectra obtained for several temperatures. At low temperature, the PL spectra are
dominated by the emission band QR2, whereas above 160K, it becomes dominated by QR1, which
is attributed to the transference of carriers between QRs, via wetting layer (WL), favoring the lower
energy states, as also observed in QD systems. b and c PL integrated intensity normalized to the
value at T = 10K, for the emission bands QR1 and QR2, respectively. c Calculated OS (normalized
to the value at T = 0) for three values of the in-plane electric field F considering a ring of radius
19nm. The increase of PL intensity at low temperatures can be understood as an electric field effect

an intensity increase takes place for QR2 at T < 100K and we may prove that this
is another signature of the presence of an in-plane electric field in this set of ring
samples. By using our previously described model we are able to calculate the oscil-
lator strength as a function of temperature for finite values of the in-plane field and
the results are shown in Fig. 10.9c. According to this model, the oscillation strength
increases by the activation of more efficient channels for optical recombination at
excited states, where the electron-hole angular separation is smaller if compared to
the ground-state. It is interesting that this complementary experiment confirms that
the for the bandQR2 (Fig. 10.3b) cannot be ascribed to occupation effects induced by
temperature for HH -excitons, since only for T > 150K an effective reduction of the
ground-state population takes place, which is far above the temperature of 2K where
the AB-oscillations were detected. It is common, in systems that display bimodality,
to ascribe the increase in intensity of the lower energy emission with respect to the
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one at higher temperature to thermal redistribution of carriers to the lower energy en-
semble with increasing temperature. However, in the results displayed in Fig. 10.9, it
is the QR2 emission, with higher energy, that suffers the relative increase for temper-
atures between 10 and 140K. This reinforces the conviction of the presence of an in
plane electric field in the QR2 set that opposes the mechanism of thermal activation
transference of carriers from QR2 to QR1.

Finally, other attempts were made to find such oscillations in neutral excitons
using similar samples like the one described here [29]. According to [20], the main
condition for observationABeffect in in quantum rings, is the presence of an effective
confinement region close to 7nm, given by the difference between the outer and inner
radii. This is approximately the value reported in Fig. 10.1d.

10.5 Magneto-Optical Properties of Laterally Ordered
Quantum Rings

In this section1 we investigate a hybrid type of structure, similar to the one described
in Chap.7, where one layer of InAs/GaAsQRswas grown on a of InGaAs/GaAsQDs
laterally ordered. This hybrid nanostructure reveals strong anisotropy in polarized PL
spectrum and unusually strong oscillations of PL intensities as a function ofmagnetic
field in both QDs and QRs spectral emission range. These oscillations are observed
simultaneously and related to the AB interference. Such behavior of the magneto-PL
can be understood in terms of joint effects associated to strain, spatial and magnetic
confinements affecting the valence band states forming the ground state of the hybrid
structure.

The sample used in this section was grown as described in Chap.7 (Sect. 7.2). In
order to obtain realistic strain profiles inside the QDs and QR layers of our hybrid
structures, we used a commercial software package to simulated nanostructures with
finite-element method (FEM). The QDs and QR dimensions as well as morphologies
were matched to the TEM observations and inserted into a GaAs matrix [30, 31].
The In composition inside the QDs was fixed to 40% while at the QR it was set
to 25%, according to previous results [21]. A lateral cut from the FEM results is
shown in Fig. 10.10b superimposed to a TEM image of the QD/QR stack. The color
code with green/yellow/red areas represent regions of the dots and rings subjected
to tensile (positive) out-of-plane strain, due to pseudomorphic relaxation under in-
plane compressive strain, while blue regions show areas subjected to compressive
(negative) strain due to an in-plane lattice expansion associated to GaAs capping
regions between QDs. Strain profiles along selected directions are extracted from
the FEM data and used for valence band deformation potential calculations and
displayed in Fig. 10.10c for the lowest QD. Note the difference between the heavy

1This section is based on the publication [33], certain parts of which are reproduced here with
permission.

http://dx.doi.org/10.1007/978-3-319-95159-1_7
http://dx.doi.org/10.1007/978-3-319-95159-1_7
http://dx.doi.org/10.1007/978-3-319-95159-1_7
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Fig. 10.10 Panel a: AFM image of the topmost layer containing QR chains grown on an
In0.4Ga0.6As/GaAs(100) vertical. Panel b: Left side: Multi-beam bright field TEM images of the
hybrid multilayered sample used in this work. Right side: The FEMmodel of the QD/QR stack. For
the out-of-plane strain in color code shown on the right, the blue colors are related to compressive
(negative) out-of plane strain while green/yellow/red colors denote tensile (positive) out-of-plane
strain. Panel c: Calculated valence band deformation potential profiles for repulsive heavy-hole
(HH) and attractive light-hole (LH) carriers in the QD region (adapted from [33])

(HH) and light-hole (LH) energy shifts that would ultimately lead to difference on
the character of the hole confinement according to the subband.

The photoluminescence (PL) measurements were performed in a variable temper-
ature, closed-cycle, helium cryostat using various laser sources for the PL excitation.
The laser spot diameter was ∼20 µm and the optical excitation power was kept in
the range of 10−7 − 102 mW. The PL signal from the sample was dispersed by a
monochromator and detected by a liquid nitrogen-cooled InGaAs photodiode de-
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tector array. Magneto-photoluminescence (MPL) measurements were performed at
4.2K and with magnetic fields up to 21T. A monomode optical fiber with 5 µm core
was used to bring the 640nm excitation from a diode laser to the sample, with a focus
of 1µm spot and an excitation power of 1mW. The luminescence from the sample
was then collected by a multimode 200µm optical fiber before being dispersed by
a 0.5m spectrometer and analyzed with a diffraction grating and a nitrogen-cooled
CCD. A set of quarter wave plates and linear polarizers, placed close to the sample
were then used to circularly polarize the emissions. Both σ+ and σ− polarizations
were analyzed by changing from +45◦ to −45◦ the direction of the magnetic field
with respect to light propagation direction.

Figure10.11a shows continuous wave PL spectra measured at different excitation
wavelengths and normalized to the PL peak values in each spectrum and the lines
were intentioned displaced vertically for clarity and easier comparison. The relative
contribution from the low energy PL band to the total low temperature spectrum
increases if the excitation wavelength λex is shortened. The band at E = 1.079eV, is
ascribed to the ground state excitonic transition in the QR layer. On the contrary, the
contribution from the high energy PL band, at E = 1.179 eV, increases if the λex value
is increased. This high energy band corresponds to excitonic transitions from the
buried layers of dots. While the absorption coefficient of our multilayered structure
depends substantially on the radiation wavelength [34], a short wavelength radiation
will be absorbed predominantly by the top QR layer. Therefore, short excitation
wavelengths increase the QR contribution to the whole PL spectrum, as can be seen
in Fig. 10.11a, and reaches only a few buried top dot layers. The deeper the excitation

Fig. 10.11 Panel a: PL
spectra measured at different
excitation wavelengths.
Panels b, c: Spectra excited
with λex = 640nm,
excitation power Iex =
50W/cm2 and measured for
the circular polarizations, σ+
and σ−, in Faraday geometry
for: b B = 0 T and c B = 21 T
(adapted from [33])

(a)

(b) (c)
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reaches, the larger is the relative intensity difference between QR and QD emission
signals.

For magneto-PL measurements, the emission signals were collected after using
an excitation intensity Iex = 50W/cm2, and the low temperature spectra for cir-
cular polarizations are shown in panel (b) for B = 0T and in panel (c) for B =
21T of Fig. 10.11. Both lower and higher energy PL bands are blueshifted for in-
creasing magnetic field, regardless the type of polarized emission, although the PL
intensities for QR (lower) and QD (higher) bands behave rather differently as the
field is increased. The circular polarized anisotropy that arises, for finite magnetic
fields, can be seen in the panels of Fig. 10.12. The diamagnetic shift, defined as
�EDiam = [Eσ+(B) + Eσ−(B)]/2 − E(0), is shown in Fig. 10.12a. The positive
curvature is characteristic of a diamagnetic behavior and reveals a smooth depen-
dence on the magnetic field up to ∼6T. Furthermore, significant changes in the
diamagnetic curvature for field strengths above 6T can be noted. It is known, that
the PL emission split into lower and upper branches due to Zeeman effect for exci-
tons under magnetic field. As reported in [35] for very similar system, the value of
Zeeman splitting shows linear dependence on B and with a slope of 
120 µeV/T.
By applying this rate to our QD/QR hybrid structure, we estimated the value for the
Zeeman splitting on the order of 2.5meV for B = 21T in the sample. Taking into
account the width 
50 meV of the PL bands for both QD and QR ensembles we see
that it is not possible to resolve such a small splitting, in our case. The total shift to
higher energies of the PL peak positions with applied field, behaves distinctly as seen
in our experiments. For the QR emission line, no sudden changes can be identified in
the peak position at the critical field Bc = 6T, beside the subtle oscillations above Bc

(a)

(c) (d)

(b)

Fig. 10.12 a Diamagnetic shift of the exciton ground state transitions versus magnetic field. b
Degree of Circular Polarization measured at the peak energies, for QDs and QRs σ+ and σ−
emissions. The integrated PL intensities for the hybrid sample, with σ+ and σ− polarizations
measured in Faraday geometry, are shown for: QRs (panel c) and QDs(panel d) as a function of
magnetic field (adapted from [33])
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that can be ascribed to the changes in the angular momentum of the ground state with
increasing magnetic field [22]. The superlattice of QDs shows a discontinuity on the
rate of change at 6T and then, an almost quadratic increase above Bc. However, the
degree of circular polarization (DCP), although increasing for increasing B, displays
equal rates for the QR and QD emission bands up to 21T, as depicted in Fig. 10.12b.
The QR integrated σ+ intensities, displayed in Fig. 10.12c, d, also oscillates slightly
displaying changes very similar to the diamagnetic shift behavior; although the inte-
grated σ− intensities of QD and QR show rather different behavior below and above
6T. The QR σ− intensity is almost constant below 6T and then decreases gradually
with increasing field whereas the σ− intensity for QD superlattice increases almost
quadratically below 6T and oscillates slightly around a constant value above 6T. The
most drastic changes in PL occurring at about 6T is reflected in the energy position
and PL intensity of the QD emission band. This peculiarity can only be expected
when analyzing the potential differences between the HH and LH potential profiles
and the tuning of the ground state character of the valence band with the magnetic
field. As reported previously, the valence ground state can be transformed from type
I to type II in strained QDs, with profiles shown in Fig. 10.10c.

The details of the transformation of valence band due to the combination of strain
profiles, confinement, magnetic field, and interdot coupling are given in a number of
studies [36–38]. The magnetic tuning of the valance band character (HH or LH) in
QDs has been already reported experimentally and confirmed theoretically [24, 26]
and physical explanation for the origin of the type-I to type-II transition in the valence
band can be given as in [36]. Accordingly, the LH in type I QD is localized inside
the central area while HH ground state appears at the boundary in type-II systems,
as expected from the results displayed in Fig. 10.10c. The transition from type I to
type II occurs when the eigenstates of the carriers change localization and angular
momentum, with the probability for excitonic recombination decreasing drastically.
Thus, a quenching of the PL spectrum is expected after a certain value of themagnetic
field. If the QD structure occurs in type II state the conditions for optical AB can be
fulfilled. Therefore, we consider that the kink in frequency observed together with PL
oscillations are related to the character transition accompanied with the subsequent
AB interference.

To understand the reason for the subtle oscillations of the QR emission line while
the corresponding QD peak suffers abrupt changes, we have included the results of
an electronic structure calculation in Fig. 10.13. In this case, we applied the model
reported in [32] for a hybrid QD-QR system, without inter-subband coupling. For
QR with wide rims, the oscillations of the ground state due to angular momentum
transitions are attenuated by the effective dielectric shift related to the lateral wave
function confinement with the magnetic field. Note, that for a QR profile as depicted
in Fig. 10.13a, the overlap of various angular momentum valence band levels (with
pure HH-character) describes almost a parabola with B. For narrower QR, as shown
in Fig. 10.13c, the angularmomentum transitions for the ground state aremore clearly
defined. It is the case for the predicted type I - type II transition in the valence band
for a strained QD. The HH-wave function is confined in a narrow rim near the QD in-
terfaces [37]. This transition is apparent in the ground state if the proper combination
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(a)

(d)

(b)

(f)

(h)

(c)

(e)

(g)

Fig. 10.13 a Lateral QR profile and b the corresponding lower valence band levels with HH
character. Various combinations of QD profiles for the HH and LH subbands (c, e, g) with a HH in
the outer rim and a LH confined inside and d, f, g the corresponding lower valence band states in a
QD with HH in the outer rim and a LH confined inside (adapted from [33])

of strain fields and QD sizes is tuned, as illustrated in Fig. 10.13c–h. Here, the HH
QD state corresponds to the type II transition while the LH optical recombination
remains type-I in the QD. Another interesting fact detected experimentally is that the
type I - type II transition with magnetic field is strongly spin-dependent, as shown
in Fig. 10.12d, where the kink of the peak oscillation is almost imperceptible for the
σ+ polarization. In this case, the valence band g-factor plays a role. In Fig. 10.13d, f,
the ground state character changes at the boundary of the shadowed region, yet this
transition is only available for the spin-down polarization. The spin-up ground state
may remain type-I for the whole magnetic field range.
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Chapter 11
Electronic, Magnetic and Optical
Properties of Quantum Rings
in Novel Systems

Tapash Chakraborty, Aram Kh. Manaselyan and Manuk G. Barseghyan

Abstract In the past few decades, major advances in nanofabrication techniques
have resulted in the creation of tunable few-electron nanoscale quantum rings with
unique topology and the energy spectrum. These rings display many remarkable
effects in magnetotransport and optical spectroscopy that were predicted earlier in
theoretical studies. Having external control over the size and the number of elec-
trons in such a ring offers intriguing possibilities to study the interplay between the
confinement and the electron-electron interaction. Here we review the physics of
quantum rings in a few novel situations and unravel some new physical phenomena
involving these rings that go beyond our current understandings of physics derived
from conventional nanoscale quantum rings.

11.1 Introduction

Research on the electronic and optical properties of quantum confined nanoscale
structures, such as quantum dots and quantum rings has made great strides in recent
years in unraveling new phenomena. Their enormous potentials in device applica-
tions have also contributed significantly in the pursuit of those activities. In this
context, quantum rings with its doubly-connected geometry deserves special atten-
tion. Its unique topological structure provides a rich variety of fascinating physical
phenomena in this system. Observation of the Aharonov-Bohm (AB) oscillations
[1] and the persistent current [2] in small semiconductor quantum rings (QR), and
recent experimental realization of QRs containing only a few electrons [3–5] have
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made QRs an attractive topic for experimental and theoretical studies with various
quantum effects displayed in these quasi-one-dimensional systems [6–9]. In partic-
ular, recent work has indicated the great potentials of QRs as basis elements for a
broad spectrum of applications, starting with terahertz detectors [10], efficient solar
cells [11] and memory devices [12], through electrically tunable optical valves and
single photon emitters [13, 14].

In the past, for investigations of nanoscale QRs, the materials of choice had been
primarily the conventional semiconductors, for example, the GaAs or InAs het-
erostructures, where the high-mobility two-dimensional electron gas (2DEG) was
quantum confined to create the quantum dots (the artificial atoms) [15] or quantum
rings. However, in recent years many novel systems with unusual electronic proper-
ties have been developed, where the QR structure displayed a variety of intriguing
physical phenomena that are the subjects of this chapter.

11.2 Planar Electrons at the ZnO Interface

In the past few years exciting developments have taken place with the creation of
high mobility two-dimensional electron gas (2DEG) in heterostructures involving
insulating complex oxides. Most notably, the fractional quantum Hall effect (FQHE)
was observed [16, 17] in MgZnO/ZnO heterostructures grown by molecular-beam
epitaxy, where the electron mobility exceeds 180,000cm2 V−1 s−1. Further, techno-
logical advances in oxide electronics have demonstrated the opportunities to explore
strongly correlated phenomena in quantum transport of dilute carriers. Unlike in
traditional semiconductors, electrons in these systems are strongly correlated [18–
21]. These should then exhibit effects ranging from strong electron correlations,
magnetism, interface superconductivity, tunable metal-insulator transitions, among
others, and of course, the exciting possibility of all-oxide electronic devices. Many
surprising results were also found in the fractional quantum Hall states discovered
in the MgZnO/ZnO heterojunctions. For example, the odd-denominator fractional
states such as ν = 4/3, 5/3 and 8/3 were observed with indications of the ν = 2/5
state in the extreme quantum limit [16, 17]. Soon after, the even-denominator states,
such as ν = 3/2 and 7/2, were also observed [22], but surprisingly, the most promi-
nent even-denominator state of the GaAs systems, the ν = 5/2 state, was found to
be conspicuously absent in the ZnO system. The system of 2DEG in ZnO is unique
as compared to that in GaAs (see Table11.1). In the case of GaAs-based 2DEG, the
Landau level (LL) gap is large compared to that for the Coulomb interaction (e2/εl,
where ε is the dielectric constant and l = √

�/eB is the magnetic length with a mag-
netic field induction B). However, in a ZnO heterosturcutre the LL gap is very small
[22, 23]. The ratio κ between the Coulomb interaction and the LL gap is the relevant
parameter in this context. In GaAs, κ = 2.5/

√
B, which would be very small in a

strong magnetic field. In the ZnO heterointerface, where the dielectric constant is
8.5, that ratio is κ = 25.1/

√
B, i.e., about an order of magnitude larger than that of
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Table 11.1 Some useful material parameters for GaAs, InAs and ZnO

GaAs InAs ZnO

Crystal structure Zincblende Zincblende Wurtzite

Lattice constant 5.65 Å 6.05 Å 3.24 Å

Energy band gap 1.51 eV 0.42 eV 3.37 eV

Electron effective mass 0.067m0 0.024m0 0.24m0

Dielectric constant 13.18 14.6 8.5

Lande factor –0.44 –14 4.3

GaAs. Therefore, considering the electron system in a single LL may not be entirely
appropriate when dealing with this new system.

Asmentioned above, in the experiment of Falson et al. [22] the FQHEwas found to
bemissing at the filling factor 5/2 but survives at 7/2, which suggests that the electron-
hole symmetry must be broken in the N = 1 LL. Hence, the Coulomb interaction in
the two cases has to be different to make the two different spins distinguishable. In
[23] the screened Coulomb interaction was introduced to study the collective modes
of the FQHE states in the ZnO system using the exact diagonalization scheme.
Interestingly, the authors were able to satisfactorily explain the unique experimental
observations by Falson et al. [22], such as the absence of the 5/2 state but the presence
of the 9/2 state and spin-reversed excitations of the 7/2 state. Interesting effects were
also uncovered in a tilted magnetic field [22, 24]. Further studies indicated that the
small Landau level gaps in ZnO is also expected to display novel topological phase
transitions [25].

ZnO is also a perfect material for creation of different nanostructures. Preparation
of various nanostructures such as nanorings, nanobelts, nanowires etc, using a solid-
vapor phase thermal sublimation technique, have been reported [26]. Preparation of
self-assembled ZnO quantum dots with tunable optical properties have been reported
in [27]. It has been stressed there that the electron correlation effects are strong in
these systems due to the increased electron effective mass and reduced dielectric
constant of ZnO. Given the enormous potential of this newly developed source of
2DEG, it is therefore important that the electronic properties of quantum confined
systems at the oxide interfaces are thoroughly understood. The electronic states of
planar quantum dots at the ZnO interface containing a few interacting electrons in
an externally applied magnetic field have been studied [28]. The electron-electron
interaction effects are expected to be much stronger in this case than in traditional
semiconductor quantum systems, such as in GaAs or InAs quantum dots. In order
to highlight that strong Coulomb effects in ZnO quantum dots, the authors have
compared the energy spectra and magnetization in this system to those of the InAs
quantum dots. It has been shown that in the ZnO quantum dots the signatures of
stronger Coulomb interaction manifest in an unique ground state that has very differ-
ent properties than the corresponding ones in the InAs dot. Theoretical results for the
magnetization also exhibits behaviors never before observed in a quantum dot for a
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realistic set of parameters. A stronger temperature dependence of magnetization and
other unexpected features, such as paramagnetic-like behavior at high temperatures
for a ZnO quantum-dot helium have been demonstrated.

11.2.1 Properties of ZnO Quantum Rings

Let us consider here a two-dimensional quantum ring with inner radius R1 and the
outer radiusR2 having cylindrical symmetry, containing a fewelectrons, in amagnetic
field applied in the growth direction. The Hamiltonian of this system is then

H =
Ne∑

i

H i
SP + 1

2

Ne∑

i �=j

Vij, (11.1)

where Ne is the electron number in the ring, Vij = e2/ε|ri − rj| is the Coulomb
interaction term, with the dielectric constant of the ring material ε, and HSP is the
single-particle Hamiltonian in the presence of an external perpendicular magnetic
field

HSP = 1

2m

(
p − e

c
A

)2 + Vconf(r) + 1
2gμBBσz. (11.2)

In the above equation A = B/2(−y, x, 0) is the vector potential of the magnetic
field, andm is the electron effective mass. We chose the confinement potential of the
QR to have infinitely high borders: Vconf(r) = 0, if R1 ≤ r ≤ R2 and infinity outside
of the QR. This choice of the confinement potential is suitable for ZnO/MgZnO
heterostructures because of the large values of the conduction band offset and the
electron effective mass [29]. The last term of (11.2) is the Zeeman interaction.

The numerical studies are based on the exact diagonalization scheme [30]. As for
the basis states, we consider the eigenfunctions ofHSP forB = 0. The eigenfunctions
of this Hamiltonian will then have the form [31, 32]

φnl(r, θ) = C√
2π

eilθ
(
Jl(γnlr) − Jl(γnlR1)

Yl(γnlR1)
Yl(γnlr)

)
, (11.3)

where Jl(r) and Yl(r) are Bessel functions of the first and second kind respectively,
γnl = 2mEnl/�

2, where Enl are the eigenstates defined by the boundary conditions

Jl(γnlR2) − Jl(γnlR1)

Yl(γnlR1)
Yl(γnlR2) = 0. (11.4)

The constant C is determined from the normalization integral, and n and l are the
radial and angular quantum numbers respectively. For evaluation of the energy spec-
trum in a many-electron (interacting) system, we have to digonalize the matrix of
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the Hamiltonian (11.1) in a basis of the slater determinants constructed from the
single-electron wave functions [6].

We have also studied the intraband optical transitions in the conduction band.
According to the Fermi golden rule the intensity of absorption in the dipole approx-
imation is proportional to the square of the matrix element [30, 33]

I = 〈f |
N∑

i=1

rie
±iθi |i〉 (11.5)

when the transition is from the initial N -particle state |i〉 to the final state |f 〉. In this
work we always consider |i〉 to be the N -particle ground state. To evaluate (11.5) we
need to calculate the dipole matrix elements between the one electron states |n, l〉
and |n′, l′〉

M =
∫ R2

R1

∫ 2π

0
φnl(r, θ)(re±iθ )φn′l′(r, θ)r dr dθ. (11.6)

After the angular integration we arrive at the optical transition selection rule for the
total angular momentum Lf = Li ± 1.

The numerical studies were carried out for the ZnO quantum ring with param-
eters m = 0.24m0, g = 4.3, ε = 8.5 [29]. For the purpose of comparison we also
present similar studies for the GaAs quantum ring with parameters m = 0.067m0,
g = −0.44, ε = 13.18 respectively [30]. The two QRs were taken to be of same
sizes with radii R1 = 10 nm and R2 = 40 nm.

The low-lying energy levels of the ZnO QR containing one and two electrons are
shown in Fig. 11.1 as a function of the magnetic field B. For comparison, similar
results are also presented for the GaAs QR in Fig. 11.1c, d. In all these figures
different colors correspond to different values of the total angular momentum L of
the electrons. In theQRcontaining only one electron in both systems, the ground state
changes periodically with increasing magnetic field (Fig. 11.1a, c) thereby providing
the direct signature of the Aharonov-Bohm effect in a QR. For the ZnO QR the
energy eigenvalues are lower due to the larger value of the electron effective mass.
Additionally, the states with different spin are highly split due to the larger value
of the g-factor for ZnO. More importantly, for the non-interacting electrons the AB
effect survives in both systems.

In the QRs having two interacting electrons, there are several substantial differ-
ences between the energy spectra of the ZnO and GaAs QRs. For instance, in the
GaAs QR we see the usual and well observed AB oscillations due to level crossings
between the singlet and triplet ground states, and for each crossing of the two-electron
ground state the total angular momentum L changes by unity. On the other hand, for
the ZnO QR containing two electrons (Fig. 11.1b), due to the combined effect of
the strong Zeeman splitting and the strong Coulomb interaction, the singlet-triplet
crossings no longer appear in the ground state. Interestingly, the periodic crossings
can be noticed only in the excited states. For small values of the magnetic field
the ground state is a singlet with L = 0 and the total electron spin S = 0. With an
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Fig. 11.1 The low-lying energy levels versus themagnetic field for a the ZnOQRwith one electron,
b the ZnO QR with two electrons, c the GaAs QR with one electron and d the GaAs QR containing
two electrons. Different colors represent different values of the total angular momentum L

increase of the magnetic field the ground state changes to a triplet state with L = −1
and S = −1. With a further increase of the magnetic field all the observed crossings
of the ground state correspond to triplet-triplet transitions between the states with
odd number of total angular momentum (|L| = 1, 3, 5 . . .). These interesting and
unexpected results will result in distinct behaviors of optical transitions in the ZnO
QR.

The dipole-allowed optical transition energies are shown in Fig. 11.2 as a function
of themagnetic field for the ZnO [(a) and (c)] and theGaAs [(b) and (d)] QRs contain-
ing one and two electrons respectively. Different colors in Fig. 11.2 correspond to the
value of the ground state angular momentum (see Fig. 11.1) of the optical transition
and the sizes of the points are proportional to the intensity of the optical transitions.
For the QRs containing only one electron for both materials we can see the expected
features: periodic optical AB oscillations. Comparing Fig. 11.2a, b we notice that
although the strong Zeeman effect changes the one-electron energy spectra of the
ZnO QR, it does not change the periodicity of the optical AB oscillations. In the
case of the QRs with two electrons, again we see considerable differences in features
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Fig. 11.2 Dipole-allowed optical transition energies versus the magnetic field, for a the ZnO QR
with one electron, b the GaAs QR having one electron, c the ZnO QR containing two electrons and
d the GaAs QR with two electrons. The size of the colored dots is proportional to the intensity of
the calculated optical transitions

displayed by these two systems. In the case of the two-electron GaAs QR, we see the
periodic optical AB oscillations with the period that is half the flux quantum, which
is an well-known result [4, 8]. In contrast, for the two-electron ZnO QR we notice
an aperiodic behavior of the optical AB oscillations. The first oscillation, which cor-
responds to the singlet-triplet transition from the state with L = 0 to the state with
L = −1 has a smaller period compared to the other oscillations which correspond
to transitions between the triplet states with odd angular momentum. The period of
these triplet-triplet oscillations is almost equal to the period of the single-electron
case. This unexpected effect is a result of the different properties of the energy spectra
of the two-electron ZnO QR discussed above and can be explained by the combined
effect of the strong Zeeman interaction and the strong electron-electron interaction
in the ZnO.

The low-lying energy levels for the ZnO and GaAs QRs containing three elec-
trons are shown as a function of the magnetic field B in Fig. 11.3a, b. For the three-
electron GaAs QR we again notice the periodic ground-state transitions and during
each transition the ground-state angular momentum changes by one. In contrast,
for the three-electron ZnO QR only two ground-state transitions are visible in that
range of the magnetic field. At low magnetic fields the ground state has the angular
momentum L = 0. With an increase of the magnetic field at B = 1.3T the ground
state changes to L = −3. The next ground-state transition occurs at B = 6T and the
angular momentum changes to L = −5. Therefore, we can conclude that within the
range of the magnetic field considered here the Aharonov-Bohm effect disappears.
The corresponding optical transition energies for the three-electron ZnO QR are
shown in Fig. 11.3c. That figure clearly illustrates the disappearence of the optical
Aharonov-Bohm oscillations in a ZnO quantum ring.
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Fig. 11.3 Same as in Fig. 11.1 but for a the ZnO QR containing three electrons and b the GaAs
QR with three electrons. c Dipole allowed optical transition energies versus the magnetic field for
the ZnO QR containing three electrons

To summarize, the electronic states and optical transitions of a ZnO quantum
ring containing a few interacting electrons in an applied magnetic field were studied
via the exact diagonalization scheme. These results are also compared with similar
quantities for a conventional GaAs ring.We found that the strong Zeeman interaction
and the strong electron-electronCoulomb interaction, twomajor characteristics of the
ZnO system, exert a profound influence on the electron states and as a consequence,
the optical properties of the ring also displays unexpected behaviors. In particular, we
find that theABeffect is strongly electron number dependent.Our study indicated that
in the case of two interacting electrons in a ZnO ring, the AB oscillations become
aperiodic. For three electrons (interacting) we found that the the AB oscillations
actually disappear. These unusual properties of the ZnO QR are explained in terms
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of the energy level crossings that are very different from those of the conventional
semiconductor QRs, such as for the GaAs. The AB effect (and thereby the persistent
current) in a ZnO quantum ring can therefore be controlled by varying the electron
number, an interesting prospect for possible future applications of this novel system.

11.2.2 Properties of ZnO Dot-Ring Nanostructures

Recently we have witnessed an increasing demand for the realization of complex
quantum confined systems, such as laterally coupled quantum dots, QRs and also
quantum dot-ring (QDR) complexes [34–36]. The reason lies in both practical appli-
cations and fundamental studies of these structures, that include geometrical quantum
phase [37], spin-spin interactions [38] and quantum-state couplings [39]. Due to the
unique topology of the QDR structures and their potentials for applications, theoreti-
cal investigation of QDR’s properties has received plenty of attention in recent years.
A few electrons confined in a QDR in the presence of an external magnetic field indi-
cates that the distribution of electrons between the dot and the ring is influenced by
the relative strength of the dot-ring confinement and themagnetic fieldwhich induces
transitions of electrons between the two regions of the system [40]. These transitions
are also accompanied by changes in the periodicity of the AB oscillations. It has
been recently reported [41–43] that many measurable properties of a QDR, such as
spin relaxation or optical absorption, can be significantly changed by modifying the
confinement potentials. This demonstrates the high controllability and flexibility of
these systems. The transport properties of QDR nanostructures are also known to be
intensely modified due to the unique geometry [44]. Theoretical studies of the dc
current through a QDR in the Coulomb blockade regime have revealed that it can
efficiently work as a single-electron transistor or a current rectifier. In recent theoret-
ical works the electronic and optical properties of QDRs containing the hydrogenic
donor impurity were investigated in external electric and magnetic fields [45–47].

In what follows, we consider a two dimensional quantum dot-ring structure with
cylindrical symmetry, based on the 2DEG at the ZnO interface, containing few inter-
acting electrons, in a magnetic field that is applied in the growth direction. The
many-body and single-particle Hamiltonians of our system are similar to (11.1) and
(11.2), but here the confinement potential of the QDR is chosen to consist of double
parabolas [40, 47]

Vconf(r) = min
[
1
2mω2

dr
2, 1

2mω2
r (r − R)2

]
. (11.7)

Here ωd and ωr are the parameters that describe the strength of the confine-
ment potential and also the sizes of the dot and the ring respectively. The radius
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Fig. 11.4 The QDR
confinement potential
(schematic)

of the ring R is defined as the sum of oscillator lengths for the dot and ring
related wells and the barrier thickness d between the dot and the ring according
to R = √

2�/mωd + √
2�/mωr + d . The QDR confinement potential is presented

schematically in Fig. 11.4.
Just as for other interacting systems described in this chapter, the eigenfunctions

and the eigenenergies of the single-electron Hamiltonian (11.2) are obtained with the
help of the exact diagonalization technique, with the basis of wave functions of the
cylindrical QD with larger radius. We have used the exact diagonalization scheme
also to evaluate the energy spectra and the wave functions of the few-electron QDR.
In order to evaluate the energy spectrum of the many-electron system, we need to
digonalize thematrix of theHamiltonian (11.1)with confinement potential (11.7) in a
basis of the Slater determinants constructed from the single-electron wave functions
[32]. In our model we have used 132 single-electron basis states. As a result we have
8646 two-electron states and 374,660 three-electron basis states that are adequate
for accurately determining the first few energy eigenvalues for a given value of the
total angular momentum of electrons.

In order to determine the average electron numbers in the dot or in the ring we
have also studied the electron densities for few-electron states in the QDR

ρ(r) =
∫

dr2dr3 . . . |Ψi(r, r2, r3, . . .)|2, (11.8)
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(a) (c)

(b) (d)

Fig. 11.5 Magnetic field dependence of the two-electron energy spectra, the corresponding average
electron number in the dot (left scales of the lower row) and the ground state angular momenta (right
scales of the lower row) for �ωd = 2 meV (a, b) and for �ωd = 3 meV (c, d). All results are given
for �ωr = 8 meV and d = 10 nm

whereΨi(r, r2, r3, . . .) is thewave function of the few-electron state i. For the average
electron number in the dot region of the QDR we have

Ndot =
∫ d0

0

∫ 2π

0
ρ(r)r dr dϕ, (11.9)

where d0 = ωrR/(ωd + ωr) is the radius of the border between the dot and the ring.
Our investigations were carried out for the ZnO QDR with parameters

m = 0.24m0, g = 4.3, ε = 8.5 [29]. In Fig. 11.5a, the magnetic field dependence
of the first few energy levels are shown for a two-electron QDR with �ωd = 2 meV,
�ωr = 8 meV, d = 10 nm for various values of the total angular momenta L. In
Fig. 11.5b the corresponding ground state average electron number in the dot (left
scale, red line) and the ground state angular momentum (right scale, blue line) are
presented. It is clear from these figures that for all values of the magnetic field, both
electrons are localized in the dot region and the ground state behaves like in a two-
electron single quantum dot [28]. For weak values of the magnetic field the ground
state is a singlet state with angular momentum L = 0 and total spin S = 0. With an
increase of the magnetic field, at B ≈ 3.5T, a singlet-triplet transition of the ground
state is observed to the state L = −1, S = −1. Similar results are presented also
in Fig. 11.5c, d but for �ωd = 3 meV. Again for weak values of the magnetic field
both electrons are located in the dot region, but starting from B ≈ 2.2T one of the
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(a)

(b)

(c)

(d)

Fig. 11.6 Magnetic field dependence of two-electron energy spectra, the corresponding average
electron number in the dot (left scale of lower row) and the ground state angular momenta (right
scales of lower row) for �ωr = 4 meV (a, b) and for �ωr = 8 meV (c, d). All results are given for
�ωd = 4 meV and d = 10 nm

electrons moves to the ring region (Fig. 11.5d red line) and the ground state changes
to the triplet state L = −2, S = −1. Starting from 2.2T the behavior of the energy
spectra in Fig. 11.5c changes drastically and the regular periodic AB oscillations of
the ground state can be observed with periodic change of the total angular momen-
tum by ΔL = 1. This is qualitatively similar to the case of one-electron ZnO QR,
discussed above and in [32], but now all AB oscillations occur between the triplet
states.

Figure11.6 is similar to Fig. 11.5 but for a fixed value of �ωd = 4 meV and
for two values of the ring confinement parameter �ωr = 4 meV (Fig. 11.6a, b) and
�ωr = 8 meV (Fig. 11.6c, d). For �ωr = 4 meV both electrons are localized in the
ring (Fig. 11.6b) and the energy spectra is similar to the one of the two-electron
ZnO QR observed in the previous section. In this case we observe irregular AB
oscillations which is typical for the ZnO QRs, as previously described. Due to the
combined effect of the strong Zeeman splitting and the strong Coulomb interaction in
ZnO, the singlet-triplet crossings disappear from the ground state. For smallmagnetic
fields the ground state is a singlet with L = 0. As the magnetic field is increased, the
ground state changes to a triplet with L = −1 and S = −1. With further increase of
the magnetic field all the observed crossings of the ground state correspond to triplet-
triplet transitions between the states with an odd number of total angular momentum
(|L| = 1, 3, 5 . . .). With an increase of �ωr , one of the electrons moves to the dot
region (Fig. 11.6d) while the other remains in the ring. In this case the magnetic field
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11.7 Magnetic field dependence of the three-electron energy spectra, the corresponding aver-
age electron number in the dot (left scales of lower row) and ground state angular momenta (right
scales of lower row) for �ωd = 2 meV (a, b), for �ωd = 3 meV (c, d) and for �ωd = 4 meV (e, f).
All results are for �ωr = 8 meV and d = 10 nm

almost does not change the average electron number in the dot, and as a consequence,
we observe almost regular AB oscillations similar to the ZnOQR containing a single
electron (Fig. 11.6c).

The energy spectra and the average electron numbers in the dot region are shown
in Fig. 11.7 against the magnetic field for a QDR containing three electrons, for a
fixed value of �ωr = 8 meV, and for various values of �ωd. When �ωd = 2 meV
(Fig. 11.7a, b) and for weak magnetic fields all three electrons are mostly located
in the dot region, the ground state is L = −1, S = −1/2 and the AB oscillations
are absent. But at B ≈ 4T one of the electrons moves to the ring region and the
ground state changes to L = −4, S = −3/2. Starting from B ≈ 4T the usual AB
effect appears.

For �ωd = 3 meV (Fig. 11.7c, d) and in the absence of the magnetic field, only
two electrons are located in the dot and one in the ring region. With an increase of
the magnetic field we observe a charge switching between the dot and the ring of the
QDR. At B ≈ 2.1T the electron number in the dot changes to 1 and the irregular AB
effect is observed with odd angular momenta |L| = 3, 5 . . ..

Finally, when �ωd = 4 meV (Fig. 11.7e, f) for the entire range of the magnetic
field, only one electron is located in the dot region and the other two resides in
the ring. As a result, in Fig. 11.7e the irregular AB oscillations are observed for the
ground state, similar to the case of two-electron ZnOQR, as discussed in the previous
section.

To summarize: we have studied the electronic states and the Aharonov-Bohm
effect in ZnO quantum dot-ring nanostructures containing a few electrons. We have
shown that in contrast to the QDRs made out of conventional semiconductors, such
as InAs or GaAs, QDRs in ZnO heterojunctions demonstrate several unique charac-
teristics. In particular, the energy spectra of the ZnO QDR and the Aharnov-Bohm
oscillations are strongly dependant on the electron number in the dot or in the ring.
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Therefore, even a small change of the confinement potential, the dot-ring size or the
magnetic field can drastically alter the energy spectra and the behavior of Aharonov-
Bohm oscillations in the system. This interesting phenomenon can certainly lead
to effective control with high accuracy of the electron charge and spin distribution
inside the dot-ring structure. These unique properties will certainly have important
implications for possible applications in spintronic devices and quantum information
technologies.

11.3 Interaction of Single Quantum Rings with Intense
Laser Fields: Continuous Evolution of Quantum
States

Although the mostly circular or slightly oval shaped QRs have been fabricated
by various experimental groups [48–51], anisotropic QRs are the ones most com-
monly obtained during the growth process [50, 52–54]. Theoretically, the effect of
anisotropy on electronic, magnetic and optical properties of quantum rings have been
investigated by various authors [55–62]. Those studies report the influence of differ-
ent types of anistropies. For example, in [57, 58, 60, 61] the shape anisotropy of
the QR was considered, while in [55, 56, 59] the anisotropy associated with defects
was studied. Also in [62] the effective mass anisotropy was investigated. All these
studies have indicated that the anisotropy can dramatically alter the AB oscillations
in the QR. In particular, in [62] it was demonstrated that the unusual AB oscilla-
tions caused by the effective mass anisotropy in the QR can be converted to usual
AB oscillations if the QR has an elliptical shape. Further, in [63] the unusual AB
oscillation caused by the eccentricity effect was compensated by the lateral electric
field. On the other hand, the unusual AB oscillation under the influence of lateral
electric field in infinitely narrow QR was observed [64–67]. Clearly, to experimen-
tally confirm these results, one is forced to grow QRs having different anisotropies
and then compare their measurable optical and magnetic characteristics individually.

Rapid advances in laser technology have greatly contributed to the exploration
of light-matter interaction in various branches of physics. In the past few years,
the development of modern high-power, tunable laser sources, e.g. the free-electron
lasers, has allowed the experimental study of the interaction of intense laser fields
(ILFs) with charge carriers in semiconductors, mainly in the terahertz frequency
range [68–70]. Interestingly, by illuminating nanostructures with ILFs some new
physical phenomena were theoretically anticipated and observed. We can men-
tion, for instance, terahertz resonant absorption [71], strong distortions in the opti-
cal absorption spectra [72], and Floquet-Bloch states in single-walled carbon nan-
otubes [73].

The THz technology has been garnering increasing attention from specialists in
various fields, such as imaging, sensing, quality control, wireless communication,
and basic science [74]. The development of this technology depends on realizing effi-
cient and robust sources and detectors. For example, the development of terahertz
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time-domain spectroscopy [75] more than two decades ago opened a new chapter
in THz science, initiating great efforts to develop applications to exploit the unique
opportunities that THz waves offer. With remarkable advances in THz technology,
there has recently been a considerable surge in the research on intense THz sources
and their applications. Nevertheless, there is also an immediate need to develop
nonlinear THz spectroscopy techniques and intense terahertz sources that have the
potential to reveal a new category of nonlinear phenomena and explore nonlinear
effects in various materials. Intense THz pulses can induce an ultrafast electric- or
magnetic-field switching operation at tens of femtoseconds to picosecond timescale,
which is much faster than what can be achieved through conventional electronics.
The study of such nonlinear phenomena has been possible thanks to the development
of ultrafast nonlinear THz spectrometers [76]. Recently the effect of ILF on single
electron states and intraband optical properties in isotropic GaAs/Ga0.7Al0.3As sin-
gle QR has been investigated [77]. It has been shown that the laser field destroys
the cylindrical symmetry and laser-dressed effective confinement potential gets an
elliptic shape (see Fig. 11.8).

The splitting and increment of energy levels induced by the ILF has been observed.
The simultaneous influences of the ILF and lateral electric field on one-electron states
in isotropicGaAs/Ga0.7Al0.3As singleQRhave been investigated [78]. These authors
have observed the splitting and increasing of energy levels induced by the ILF.Mean-
while, the energy splitting, decreasing and increasing of the energy levels induced
by the lateral electric field have been reported. It was found that the incident light
polarization direction can induce redshifts and blueshifts in the intraband absorption
spectrum of the QR. On the other hand, the simultaneous influences of the ILF and
lateral electric field can lead both to the blueshift and redshift of the intraband optical
absorption spectrum.

We discuss below the effect of a terahertz ILF on isotropic and anisotropic QRs
and demonstrate that in the case of isotropic QRs the ILF can create unusual AB
oscillations that are characteristics of anisotropic rings. We have also shown that in
the case of anisotropic QRs the ILF can be used as an anisotropy controlling tool with
the help of which it will be possible to visualize both the isotropic and anisotropic
properties on a single QR. As an example, we show below that the unusual AB

Fig. 11.8 The laser dressed confining potential of theQR for different values of laser field parameter
[77] [Reproduced from (A. Radu et al., J. Appl. Phys. 116, 093101 (2014)), with the permission
of AIP Publishing]
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oscillations obtained for the elliptic QR can be made usual with the help of the
ILF. In this regard, the ILF can unify all the electronic properties of isotropic and
anisotropic rings in a single system, thereby providing a simplified route to their
investigations.

We begin with a two-dimensional anisotropic QR structure containing electrons
that are under the action of laser radiation and an external magnetic field that is
oriented along the growthdirection. The laser field is represented by amonochromatic
plane wave of frequency ω. The laser beam is non-resonant with the semiconductor
structure, and linearly polarized along a radial direction of the structure (chosen
along the x-axis). In the non-interacting case, the electron motion is described by the
solution of the time-dependent Schrödinger equation

[
1

2m

(
p̂ − e

c
(A(t) + Am)

)2 + V (x, y)

]
Φ(x, y, t) = i�

∂

∂t
Φ(x, y, t) . (11.10)

Here m is the electron effective mass, p is the lateral momentum of the electron, e
is the absolute value of the electron charge, A(t) = exA0 cos(ωt) is the laser field’s
vector potential, where ex denotes the unit vector along the x-axis. In (11.10), Am is
the vector potential of the magnetic field that is taken to be Am = (0,Bx, 0). In this
case the scalar product (A(t) · Am) = 0.

As for the lateral confinement potential V (x, y), we model it as finite, square-well
type:

V (x, y) =
{
0, if R1 ≤

√
x2 + (y/

√
1 − ε2)2 ≤ R2,

V0, otherwise,
(11.11)

where R1 and R2 are the inner and outer radii of the QR respectively, the ε describes
the anisotropy of the QR (ε = 0 corresponds to the case of circular QR) [62]. The
Kramers-Henneberger unitary translation transformation [79] can be performed on
(11.10) to transfer the time dependence from the kinetic to the potential term in the
Hamiltonian operator at the left hand side of the aforementioned equation. Using the
dipole approximation and Kramers-Henneberger unitary transformation in the high-
frequency regime [68, 80–84] the laser-dressed energies of the QR can be obtained
from the following time-independent Schrödinger equation [85]:

[
1

2m

(
p̂ − e

c
Am

)2 + Vd (x, y)

]
Φd (x, y) = EdΦd (x, y) , (11.12)

where Vd (x, y) is the time-averaged laser-dressed potential that can be expressed by
the following analytical expression [77, 78]

Vd (r⊥, α0) = V0
π

[
π−

θ
(
α0 − x − Γ1

)
arccos

(
Γ1+x
α0

)
+ θ

(
α0 − x − Γ2

)
arccos

(
Γ2+x
α0

)
−

θ
(
α0 + x − Γ1

)
arccos

(
Γ1−x
α0

)
+ θ

(
α0 + x − Γ2

)
arccos

(
Γ2−x
α0

)]
,

(11.13)
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Fig. 11.9 The density plot
of the dressed confinement
potential for different values
of the ILF parameter α0 for
both circular and elliptic
QRs

0

V0

circular elliptic

nm 3.2nm
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where θ(u) is the Heaviside unit-step function and Γi = Re(
√
R2
i − (y/

√
1 − ε2)2).

It is worth mentioning that in the case of a more realistic confinement potential
other than the square-well type, the laser-dressed potential can not be presented
by the analytical form and the obtained results do not change qualitatively. The
parameter α0 = (e/mε

1/4
h ν2)

√
I/(2cπ3) describes the strength of the laser field, and

comprises both the intensity I and frequency ν of the laser field that can be chosen
for a broad range in units of kW/cm2 and THz correspondingly [68]. Here εh is the
high-frequency dielectric constant of the system. In Fig. 11.9 the schematic picture
of dressed potential for different values of the ILF parameter α0 is presented. The
circular and elliptic cases of QRs are shown. The laser dressed energy eigenvalues
Ed and eigenfunctions Φd (x, y) may be obtained by solving (11.12) with the help
of the exact diagonalization technique. The eigenfunctions are presented as a linear
expansion of the eigenfunctions of the two-dimensional rectangular infinitely high
potential well [77, 78]. In our calculations we have used 361 basis states which is
adequate for determining the first few energy eigenvalues with high accuracy.

We also consider here the intraband optical transitions in the conduction band.
According to the Fermi golden rule for the x-polarization of the incident light the
intensity of absorption in the dipole approximation is proportional to the square of
the matrix elementMfi = 〈f |x|i〉, when the transition goes from the initial state |i〉 to
the final state |f 〉. In what follows we always consider |i〉 to be the ground state.

Our numerical studies have been carried out for GaAs QRs having parameters
V0 = 228 meV, m = 0.067m0 (m0 is the free electron mass), εh = 10.5, R1 = 5 nm
[29]. In Fig. 11.10, the low-lying energy levels of a circular QR with outer radius
R2 = 25 nm are shown as a function of the magnetic field B for various values of
the laser field parameter α0. In Fig. 11.10a the AB effect has been observed without
the laser field, which corresponds to the case of a circular QR. The ILF applied
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(a) (b)

(c) (d)

Fig. 11.10 The low-lying energy levels of a circular QR as a function of the magnetic field B for
different values of the laser field parameter α0. The results are for R2 = 25 nm

on a QR creates an anisotropy in the confinement potential (Fig. 11.9b) as a result
of which the effective length of the confinement along the x-direction decreases in
the lower part of QR potential well. It is worth noting that with the increase of α0,
the anisotropy of the QR is strengthened and the degeneracy of the excited states
at B = 0 disappears. With an increase of α0 due to the reduced symmetry from C∞
to C2, one should expect an energy spectrum split into non-crossing pairs of states
which in turn cross repeatedly as B increases (each pair of repeatedly crossing states
containing one instance of each of two C2 symmetries). A similar behavior of the
energy levels, which can be called ‘unusual’ AB oscillations, was reported earlier in
QRs by other authors that is caused by the effective mass anisotropy [60, 62] and
structural distortions in QRs [58]. For α0 = 2 nm, only the ground and first excited
states feel the deformation of the potential (see Fig. 11.10b). Whereas, for larger
values of α0 more excited states start to feel the deformation of the QR confinement
potential and the two periodically crossing pairs can be visible (Fig. 11.10d).
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(a)

(c)

(b)
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Fig. 11.11 The low-lying energy levels of an elliptic QR as a function of the magnetic field B for
different values of α0. The results are for R2 = 25 nm [85]

Let us now consider the case of the anisotropic QR under the action of ILF. From
expression (11.11) and Fig. 11.9c it is clear that if ε �= 0 the undressed confinement
potential is anisotropic, and the QR is compressed along the y direction. On the other
hand the laser field brings an anisotropy of the confinement potential along the x
direction due to which the bottom of the effective confinement potential can have
almost circular form (see Fig. 11.9c, d). Therefore, we have two competing differ-
ent effects, the first one is caused by the structural anisotropy of the system while
the other is caused by the external ILF. In Fig. 11.11 the magnetic field dependence
of the low-lying energy levels are presented, for an anisotropic QR (ε = 0.5) and
for different values of α0. Figure11.11a displays the unusual AB oscillations with-
out the ILF due to the structural anisotropy of the QR. With an increase of α0 the
effect of structural anisotropy on the energy levels weakens (Fig. 11.11b), and for
α0 = 3.2 nm the usual AB oscillations are completely recovered (Fig. 11.11c). A
further increase of the ILF parameter again creates an anisotropy in the x direction,
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(a) (b)

(c) (d)

Fig. 11.12 The low-lying energy levels of an elliptic QR as a function of the magnetic field B for
different values of α0. The results are for R2 = 15 nm [85]

and again the unusual AB oscillations can be observed in Fig. 11.11d. This behavior
of the electronic states have never been reported earlier in a quantum ring. Simi-
lar effects also can be observed for smaller QRs, which is presented in Fig. 11.12.
The influence of ILF on the confinement potential of the QR is stronger for smaller
QRs, and therefore the usual AB oscillations are recovered for α0 = 2.1 nm (see
Fig. 11.12c).

These interesting properties of the energy spectra are expected to influence the
optical properties of the QRs. In Fig. 11.13 the dipole-allowed optical transition
energies as a function of the magnetic field are presented for different values of α0
for isotropic QRwith outer radiusR2 = 25 nm. The size and the color of the circles in
this figure are proportional to the intensity |Mfi|2 of the calculated optical transitions.
Without the laser field the signature of the usual AB optical oscillations is seen in
Fig. 11.13a. The energies in Fig. 11.13a correspond to the transitions from the ground
state to the first and second excited states. All other transitions are forbidden due to
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(a) (b)

(c) (d)

Fig. 11.13 Dipole allowed optical transition energies as a function of magnetic field B for different
values of α0. The results are for a R2 = 25 nm circular QR. The size and the color of the circles is
proportional to the intensity of the calculated optical transitions [85]

the cylindrical symmetry of the structure. With the increase of α0 the unusual optical
AB oscillations are again visible. Further, it should be noted that with the increase
of α0 the intensity of the 1 → 2 transition weakens and the intensity of the 1 → 3
transition strengthens. As an example, for α0 = 5 nm the 1 → 2 transition has almost
disappeared. This fact can be explained by the anisotropy of the system created by
the ILF in the x direction.

In Fig. 11.14 the same results as in Fig. 11.13 are presented for an anisotropic QR
and for the value ε = 0.5. Without the laser field the optical AB oscillations again
have unusual behavior (Fig. 11.14a), but now the intensity of the 1 → 2 transition is
stronger than that of 1 → 3. This is because the structural anisotropy is created in the
y direction. With an increase of α0 the intensity of 1 → 3 increases and the intensity
of 1 → 2 decreases. For the value of α0 = 3.2 nm the usual optical AB oscillations
are completely recovered for an anisotropic QR (Fig. 11.14c). Therefore, we believe
that these interesting effects can be confirmed experimentally.

In conclusion, we have investigated the strong influence of intense terahertz laser
field on the electronic and optical properties of isotropic and anisotropic QRs in an
applied magnetic field [85]. In isotropic QRs the laser field creates the unusual AB
oscillations, which is usually expected in anisotropic rings. Therefore, with the laser
field we can observe a continuous evolution of AB oscillations within the same ring.
In the case of anisotropic QRs we have shown that with the ILF it is possible to com-
pletely ‘control’ the anisotropy of the QR and thus also the physical characteristics.
We have demonstrated that the energy spectra and the AB oscillations can be made
completely usual by the ILF for anisotropic QRs. It is also worth noting that the
ILF can in principle restore isotropic properties of a QR from any type of anisotropy
(structural, effective masses, defects, etc.) of the QRs. This important outcome has
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(a) (b)

(c) (d)

Fig. 11.14 Dipole-allowed optical transition energies as a function of the magnetic field B for
different values of the laser field parameter α0. The results are for R2 = 25 nm elliptic QR. The size
and the color of the circles in the figure are proportional to the intensity of the calculated optical
transitions

the potential to open up new route to exploration of quantum rings. In fact, in addition
to providing an unified picture of the electronic and optical properties of quantum
rings, we believe that our studies will offer new possibilities to design, fabricate and
improve new devices based on QRs, such as therahertz detectors, efficient solar cells,
photon emitters, etc.

11.4 Properties of Graphene Quantum Rings

The term ‘graphene’ was originally attributed to a single layer of graphite consisting
of a honeycomb lattice with two carbon atoms per unit cell [86]. It is a bipartite
lattice made up of two interpenetrating triangular sublattices. Long before graphene
and other related systems (bilayer graphene [87–91], graphane [92], phosphorene
[93, 94], silicene [95, 96], germanene [97] just to name a few) became a sensational
research topic all across the globe [98], a few pioneering theoretical studies already
unfolded most of the unusual electronic properties of this unique two-dimensional
electron system (2DES). In 1947, Wallace [99] reported that the nearest-neighbor
tight-binding description of graphene results in a very unique band structure, where
two of the six corners of the first Brillouin zone are inequivalent points in the recip-
rocal space (denoted as K and K′) [87–89, 100]. Within the effective mass approx-
imation, that describes the low-energy properties, these points correspond to two
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‘valleys’, In each valley the low-energy electron dynamics near the Fermi energy is
described by the following Hamiltonian [101]

Hξ = ξvF

(
0 p−
p+ 0

)

where p− = px − ipy, p+ = px + ipy, and p is the two-dimensional momentum of
an electron. Here vF ≈ 106 m/s is the Fermi velocity. The index ξ is 1 and -1 for
valleys K and K ′ respectively. Without the spin-orbit interaction [102], each level
determined by the above Hamiltonian has a two-fold degeneracy. The single-electron
state obtained from the above Hamiltonian has a linear dispersion relation given by

ε(p) = ±vFp,

which is the dispersion relation of Dirac “relativistic” massless particle. In addition
to the spin degeneracy, each energy level has a two-fold valley degeneracy. Helicity
(chirality) is a good quantum number in graphene. In an external perpendicular
magnetic field B, the relativistic-like energy dispersion brings in very specific form
of the Landau levels of electrons in graphene, viz., a square root dependence of both
B and n the LL index, and ε = 0 for n = 0 [87–89, 100, 103]. The resulting quantum
Hall effect was observed experimentally and the Dirac nature of electron dynamics
was thereby confirmed [104, 105].

However, all these wonderful phenomena remained strictly ‘theoretical’ until
free-standing graphene flakes were obtained experimentally by Geim et al. [106].
Although the idea of a technological revolution to be ushered in by graphene can be
safely relegated to the distant horizon, graphene has made possible a quantum leap in
the exploration of several very interesting physical phenomena related to the 2DES,
many studied by us. Most notably, the fractal butterflies [96, 107, 108], possible
presence of the pfaffians [89, 100, 109], unique features of the fractional quantum
Hall effect [110, 111], magnetism [92], the quantum dots [112], and quantum rings
[113].

Theoretical studies of graphene QR was initiated by Recher et al. [114], who
used the Dirac model to analyze the electronic properties of AB rings made out of
graphene (Fig. 11.15). They demonstrated that the ring confinement and the external
magnetic field have the combined effect to break the valley degeneracy in graphene.
If confirmed, it will open up the intriguing possibility to control valley polarization
for device applications. The interelectron interaction effects were however ignored in
this work, thereby reducing the practicality of this idea. The important and interesting
question of the interplay between valley polarization and the Coulomb interaction
was first addressed by Abergel et al. [113]. They found that the interaction causes
drastic changes in the nature of the ground state. TheCoulomb interaction has a strong
influence on the energy spectrum, the persistent current, and the optical-absorption
spectrum of a graphene ring.
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Fig. 11.15 The geometry of
a quantum ring. The
magnetic field is
perpendicular to the
graphene plane

In the continuum model, the valley-symmetric graphene Hamiltonian is written
as [113, 114]

H = τ0 ⊗ H0 + τz ⊗ σzV (r)

where V (r) is a mass term which describes the confinement of the electron,
H0 = vF (p · σ ) is the graphene Hamiltonian in the bulk, σx,y,z,0 and τx,y,z,0 are Pauli
matrices in the sublattice and valley spaces respectively, p = −i�∇ + eA and vF
is the Fermi velocity. The vector potential is taken as A = (Φ/2πr)eϕ where Φ is
the total magnetic flux threading the ring. The index N stands for the pair of quan-
tum numbers [m, τ ], where m is the orbital angular momentum, and τ = +1(−1) in
the K (K ′) valley. The single-electron wave function ψN (ρ) for a ring of width W
and radius R (see Fig. 11.15) written in terms of the dimensionless radial coordinate
ρ = R/W is given by

ψN (ρ) = ei(m− 1
2 )ϕbN

[
fN (|εN |ρ)

isgn(εN )eiϕgN (|εN |ρ)

]

fN = αNH
(1)
m̄− 1

2
(|εN |ρ) + H (2)

m̄− 1
2
(|εN |ρ),

gN = αNH
(1)
m̄+ 1

2
(|εN |ρ) + H (2)

m̄+ 1
2
(|εN |ρ),

αN = −
H (2)

m̄− 1
2
(|εN |ρ−) + τ sgn(εN )H (2)

m̄+ 1
2
(|εN |ρ−)

H (1)
m̄− 1

2
(|εN |ρ−) + τ sgn(εN )H (1)

m̄+ 1
2
(|εN |ρ−)
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with ρ± = R
W ± 1

2 , m̄ = m + Φ
Φ0
, bN is the normalization factor and sgn(x) = 1 for

x ≥ 0 and sgn(x) = −1 for x < 0. The functionsH (1)
ν (x) andH (2)

ν (x) are respectively
Hankel functions of the first and second kind.

The ring confinement used to derive the above equations is defined by the mass
term [written as the potential V (r)] in the Hamiltonian. We employ the infinite mass
boundary conditions [113–115] so that V (r) → ∞ outside the ring. This yields
the boundary condition ψ(ρ±) = τ(n · σ )ψ(ρ±). The coefficient αN is found by
applying this condition at the inside edge, an eigenvalue equation for εN is derived
by subsequently imposing the boundary condition at the outside edge, and bN is
numerically evaluated for each state and value of the flux via the normalization
condition for the wave function.

The Coulomb interaction does not change the valley state of the electron, and
conserves the total angular momentum between the initial and final states. The exact
diagonalization scheme was then applied to determine the energy and eigenstates
of the interacting system. The persistent current j was then calculated by taking the
derivative of the ground state energy E0 of the few electron system with respect to
the flux: j(Φ) = ∂

∂Φ
E0.

Absorption of incident light by the graphene ring can be studied by adding a term
to theHamiltonianwhich describes the coupling of electrons to the field via the vector
potentialAEM = 2A0α cos(k · r − ωt). We assume that the radiation propagates as a
plane wave with wave vector k, frequency ω, and polarization described by the unit
vector α. The Hamiltonian can then be written

H = vFσ · (
p + eAB + eAEM

) + τV (r)σz + C(r1 − r2) (11.14)

in thevalley symmetric representation.Here,C = τ0 ⊗ σ0 V (r1 − r2) is theCoulomb
interaction operator. The transition rate from state N to state N ′ is calculated from

wN ′N ∝
∣∣∣
〈
N ′∣∣ σxαx + σyαy |N 〉

∣∣∣
2 = 4π2

∣∣IN ′N
∣∣2 , (11.15)

with

IN ′N =
∫ ρ+

ρ−
ρ dρ b∗

N ′bN
(
δτ ′,Kδτ,K + δτ ′,K ′δτ,K ′

) ×

×
[
δm′,m+1(αx − iαy)f

∗
N ′gN − δm′,m−1(αx + iαy)g

∗
N ′ fN

]
(11.16)

in the dipole approximation. The integral (where the coordinate dependence of the
spatial functions was dropped for brevity) must be evaluated numerically. The inten-
sity of the absorption is proportional to this transition rate and the area of the dots
in the lowest panels of Fig. 11.16a–c scale with this quantity. In all figures we show
the absorption of unpolarized light [i.e. α = (ex + ey)/

√
2]. Equation (11.16) shows
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Fig. 11.16 Energy spectrum (top pane), persistent current (middle pane) and optical absorption of
unpolarized light (lower pane) as a function of Φ/Φ0 by a a single electron, b two non-interacting
electrons, and c two electrons with the Coulomb interaction included. States in the two-electron
plots are labelled by the pair of quantum numbers (M ,T ) whereM is the total angular momentum,
and T is the total valley index. The area of the points in the absorption plots represent the intensity
of the peak in arbitrary units. In all three plots, W = 10 nm and R

W = 10, and εg = 2.5 [116].
Reproduced from [113]

that transitions which change the angular momentum quantum number by ±1 are
permitted, as long as the valley index remains unchanged. Where the initial state of
a transition is degenerate, we take the average of the intensity of all possible pairs of
initial and final states.

The energy spectrum, persistent current and optical absorption for a single elec-
tron in the graphene ring with R/W = 10 are shown in Fig. 11.16a. Lifting of the
valley degeneracy previously described causes the step in the persistent current at
φ = Φ/Φ0 = 0.5. For 0 < φ < 0.5 the ground state consists of one electron in the
m = − 1

2 , τ = −1 state whereas for 0.5 < φ < 1 the valley index is τ = +1. For
φ � 0, transitions to the lowest-lying statesm = + 1

2 , τ = +1 andm = − 1
2 , τ = −1

are not allowed since the optical absorption cannot mix valleys.
For two non-interacting electrons, the ground state consists of a pair of electrons

with anti-parallel spins occupying the same single-particle states as in the single-
electron system (Fig. 11.16b). The persistent current reflects the similarity between
the ground states of the single-particle and N = 2 non-interacting system, and since
there are now two electrons, the persistent current is doubled. The excited states
can have varying degrees of degeneracy: If the quantum number pairs P = [mP, τP]
and Q = [mQ, τQ] of the two electrons are identical then there is only one permitted
configuration of the electron spins, the singlet state. However, if P �= Q then there
are four degenerate possibilities: the singlet and three triplet states.

In the presence of the Coulomb interaction (Fig. 11.16c), the picture changes
drastically. In order to describe the two particle states, we introduce the notation
M = m1 + m2 for the total angular momentum and T = τ1 + τ2 for the total valley
quantum number. The exchange interaction will split the degenerate singlet-triplet
states when both of the electrons are in the same valley i.e. for T = ±2. In this case,
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(a) (b)

Fig. 11.17 a Non-interacting, and b interacting three electron energy spectrum, persistent current
and optical absorption for R

W = 10. Dashed lines denote two-fold degeneracy, solid lines four-fold
degeneracy and thick solid line eight-fold degeneracy of the state [113]

the energy of the singlet does not contain any contribution from the exchange and
as a consequence, has a rather higher energy than the corresponding triplet. This is
exemplified by the (M = 0,T = 2) state. The triplet part experiences the exchange
and this reduces its energy sufficiently for it to form the ground state for φ ≈ 0.3
with ε � 3.191. At the same flux the singlet state has ε � 3.205 and therefore has
energy too high to be shown in Fig. 11.16c. On the other hand, the singlet and triplet
parts of the (−1, 0) degenerate state are not split by the exchange interaction.

For three non-interacting electrons in the ring (Fig. 11.17), the ground state is
composed of spin and valley unpolarized states (i.e.T = ±1).When the interaction is
added, the contribution from exchange is largest for T = ±3 states so the low-energy
spectrum becomes much more compact, just as in the N = 2 case. Qualitatively, the
effect of the interaction is the same as previously, so that the changing nature of
the ground state again demonstrates the complexity due to the absence of the valley
degeneracy. However, because there are more possible combinations of states, the
persistent current and absorption spectrum are correspondingly more complex in
their structure. In particular it is not possible to have T = 0 so the exchange energy
is always finite. However, its contribution is larger forT = ±3 states than forT = ±1
states. The interesting interplay of the interaction and the total valley quantumnumber
allow for an intricate manifestation of the breaking of valley degeneracy in this
geometry. The change of the interacting ground state between singlet, triplet and
degenerate singlet-triplet natures are reflected in the fractional nature of the AB
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oscillations in the persistent current, and in the steps and intensity changes in the
absorption spectrum as the flux is varied.

A brief review of all the subsequent works on graphene QRs can be found in
Schelter et al. [117]. Experimental realization of a graphene ring was first reported
in 2008 [118]. Electron transport in that ring displayed clear AB oscillations in
magnetoconductance.

11.5 Quantum Rings Proximity Coupled to
Superconductors: Possible Signatures of Majorana
Fermions

Another type of novel material where the QR can play an important role is a semicon-
ductor heterostructure that is proximity coupled to a superconductor. Recently these
types of hybrid semiconductor-superconductor structures became attractive due to
the possibility to find Majorana fermions (MFs) [119] inside them.

In particle physics, the MFs are defined as particles which are their own antipar-
ticles [120]. It is still unclear if there are elementary particles which are MFs, but
they are more likely to exist in condensed matter systems as a zero energy quasi-
particle excitation which is its own hole. The condensed matter version of the MFs
became attractive mainly because of their special non-Abelian exchange statistics
[121]. In other words, MF is half of a normal fermion, meaning that a fermionic state
is obtained as a superposition of two MFs [122]. In principle, any fermion can be
written as a combination of two MFs which corresponds to splitting the fermion into
a real and an imaginary part, each of which is an MF. But usually this is a purely
mathematical operation without any physical consequences because both MFs are
spatially localized close to each other and cannot be addressed individually due to
the significant overlap. Starting from here when we talk about the MFs we mean
a fermionic state which can be presented as a superposition of two MFs that are
spatially separated.

Being its own hole means that the MF must be a superposition of an electron
and a hole state. Therefore, it is natural to search such excitations in supeconducting
systems where the wave functions of Bogoliubov quasiparticles have both electron
and hole components. A simple model where the MFs can be observed was first
suggested by Kitaev [123]. He considered a one-dimensional tight-binding atomic
chain with p-wave superconducting pairing and has shown that the MFs can be
observed at the two ends of the chain.

Recently MFs have gained considerable attention due to several proposals for
the existence of Majorana modes in semiconductor systems proximity coupled to a
superconductor [124–127]. If a good interface is made between a semiconductor and
a superconductor, electrons can tunel between these two systems. The effect is that the
electrons in the semiconductor feel an effective proximity-induced superconducting
pairing field. The strength of that field depends on the details of the semiconductor
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and the superconductor, as well as the interface. One of the proposed methods for
realization of MFs is the observation of the topological superconducting phase in a
one-dimensional semiconductor wire with large Rashba spin orbit coupling [128],
proximity coupled to an s-wave superconductor. By tuning the chemical potential of
this system in the gap region created by the magnetic field, the system effectively
becomes spinless and is expected to support the MFs at the edges of the wire similar
to Kitaev’s p-wave superconductor chain model [123].

In all these studies of the characteristics of topological superconductivity and
MFs in semiconductor quantum wires, the role of the interaction between electrons
have been ignored. The effects of screened and unscreened long-range Coulomb
interaction on the topological superconductivity phase in a quasi-one-dimensional
semiconductor wire, proximity-coupled to an s-wave superconductor was reported
in [129]. It appears that inclusion of the Coulomb interaction results in an enlarge-
ment of the region of parameter values where topological superconductivity can be
observed. This enlargement is proportional to the screening length of the Coulomb
interaction. The authors have also found that the interaction decreases the super-
conducting bulk gap. Some screening of the Coulomb interaction was found to be
essential for observing topological superconductivity in a quasi-one-dimensional
semiconductor wire proximity-coupled to an s-wave superconductor.

We wish to demonstrated below that elongated elliptical QRs with large Rashba
spin orbit coupling could reveal the signatures of MFs. Although almost circular
QRs have been grown by various experimental groups, anisotropic QRs are the
ones mostly obtained during the fabrication process. Elongated InAs/InP QRs were
fabricated by several groups [53, 54]. Here we propose that an anisotropic InAs QR
with few electrons, proximity coupled to an s-wave superconductor is an excellent
candidate for detecting the signatures of the MFs.

We consider an elliptical QRwith strong Rashba SO coupling, which is proximity
coupled to a superconductor. In order to model the elliptical ring, we define the
coordinate system in the form x = ar cos θ, y = br sin θ,where a and b are constants
defining the ellipticity of the QR, and r is the dimensionless radius of the QR [130].
Clearly, for a = b the QR is circular, while for a �= b it has elliptical boundaries with
the eccentricity ε = √

1 − b2/a2. The confinement potential of the QR was chosen
to be Vconf(r) = 0, if R1 ≤ r ≤ R2 and infinity otherwise.

Without the superconducting pairing potential the Hamiltonian of our system is

H =
Ne∑

i

H i
SP + 1

2

Ne∑

i �=j

Vij, (11.17)

where Ne is the number of electrons and

Vij = e2e
−λ

∣∣∣ri−rj
∣∣∣

ε|ri − rj|
(11.18)
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is theYukawa type screenedCoulombpotentialwith screeningparameterλ [129], and
ε is the dielectric constant of the QR. Finally,HSP is the single-particle Hamiltonian
in the presence of an external magnetic field and the Rashba spin-orbit interaction
(SOI).

HSP = H0 + HSO = 1

2me

Π2 − μ + Vconf(r) + 1
2gμBBσz + HSO. (11.19)

In (11.19), Π = p + e
cA, the vector potential of the magnetic field A = B/2

(−y, x, 0), and μ is the chemical potential. The last two terms of (11.19) are the
Zeeman splitting and the Rashba SOI respectively:

HSO = α

�
[σ × Π]z , (11.20)

with α being the Rashba SOI parameter. In the case of a circular QR (a = b)we take
the eigenfunctions of H0 without the magnetic field (B = 0) as the basis states.

φnl(r, θ) = C√
2π

eilθ
(
Jl(γnlr) − Jl(γnlR1)

Yl(γnlR1)
Yl(γnlr)

)
= 1√

2π
eilθχnl(r), (11.21)

where Jl(r) and Yl(r) are Bessel functions of the first and second kind respectively,
and γnl = 2mea

2Enl/�
2, with the eigenstates Enl defined from the boundary condi-

tions. The normalization constant C is determined from the integral

∫ 2π

0
dθ

∫ R2

R1

dra2r
∣∣φnl(r, θ)

∣∣2 = 1.

For an elliptical QR we choose the following orthonormal basis states

Φnl(r, θ) = 1√
2π

√
a

b
eilθχnl(r) =

√
a

b
ψnl(r, θ), (11.22)

where the
√
a/b term is included for the normalization of the basis states:

∫ 2π

0
dθ

∫ R2

R1

rdr ab
∣∣Φnl(r, θ)

∣∣2 = 1. (11.23)

The many-body Hamiltonian (11.17) in the second-quantized form is written as

H =
∑

n′l′nl

[∑

s

〈n′l′|H0|nl〉c†n′l′scnls + iα

�
〈n′l′|Π−|nl〉

× c†n′l′↑cnl↓ − iα

�
〈n′l′|Π+|nl〉c†n′l′↓cnl↑

]
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+ 1

2

∑

n′
1l

′
1,n

′
2l

′
2

∑

nl1,n2l2

∑

s1s2

〈n′
1l

′
1, n

′
2l

′
2|V12|n1l1, n2l2〉

× c†n′
1l

′
1s2
c†n′

2l
′
2s1
cn1l1s1cn2l2s2 , (11.24)

where c†nls and cnls are creation and annihilation operators and Π± = Πx ± iΠy.
The corresponding non-zero matrix elements were calculated in [61] and have the
following form:

for l′ = l,

〈n′l|H0|nl〉 = Enl

2

(
1 + a2

b2

)
δn′n + �ωBl

4

(
a

b
+ b

a

)
δn′n

+ e2B2

16mc2
(
a2 + b2

)
Γ

(3)
n′l,nl, (11.25)

for l′ = l + 2,

〈n′l′|H0|nl〉 = Enl

4

(
1 − a2

b2

)
Γ

(1)
n′l′,nl − �

2γnl(l + 1)

4me

(
1

a2
− 1

b2

)
Λ

(0)
n′l′,nl

+ �ωBγnl

8

(
a

b
− b

a

)
Λ

(2)
n′l′,nl + e2B2

32mec
2

(
a2 − b2

)
Γ

(3)
n′l′,nl, (11.26)

for l′ = l + 1,

〈n′l′|Π+|nl〉 = i�γnl

2

(
1

a
+ 1

b

)
Λ

(1)
n′l′,nl + ieB

4c
(a + b) Γ

(2)
n′l′,nl, (11.27)

〈n′l′|Π−|nl〉 = i�γnl

2

(
1

a
− 1

b

)
Λ

(1)
n′l′,nl − ieB

4c
(a − b) Γ

(2)
n′l′,nl, (11.28)

for l′ = l − 1,

〈n′l′|Π+|nl〉 = i�
(γnl

2
Λ

(1)
n′l′,nl − lΓ (0)

n′l′,nl

) (
1

a
− 1

b

)
+ ieB

4c
(a − b) Γ

(2)
n′l′,nl,

(11.29)

〈n′l′|Π−|nl〉 = i�
(γnl

2
Λ

(1)
n′l′,nl − lΓ (0)

n′l′,nl

) (
1

a
+ 1

b

)
− ieB

4c
(a + b) Γ

(2)
n′l′,nl .

(11.30)

Here ωB = eB/mec is the cyclotron frequency and Γ
(m)

n′l′,nl and Λ
(m)

n′l′,nl are defined as

Γ
(m)

n′l′,nl =
R2∫

R1

dr a2rmχn′l′(r)χnl(r), (11.31)
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Λ
(m)

n′l′,nl =
R2∫

R1

dr a2rmχn′l′(r)Knl(r), (11.32)

with
Knl(r) = C

(
Jl+1(γnlr) − Jl(γnlR1)Yl+1(γnlr)/Yl(γnlR1)

)
.

In order to evaluate the Coulomb matrix elements, it will be convenient to use
the Fourier transform of the Yukawa type screened Coulomb potential, which is
V (k) = 2πe2/ε

√
λ2 + k2. The corresponding Coulomb matrix elements are

〈n′
1l

′
1, n

′
2l

′
2|V12|n1l1, n2l2〉 = e2

2πε
(−1)l1−l′2 i(l1+l2−l′1−l′2)

×
∫ ∞

0
kdk

∫ 2π

0
dθk

ei(l1+l2−l′1−l′2)
√

λ2a2b2 + k2b2 cos2 θk + k2a2 sin2 θk

×
∫ R2

R1

r1 dr1a
2χn′

1l
′
1
(r1)χn2l2

(r1)Jl2−l′1
(kr1)

×
∫ R2

R1

r2 dr2a
2χn′

2l
′
2
(r2)χn1l1

(r2)Jl1−l′2
(kr2). (11.33)

We can start the derivation of the induced superconducting potential for the QR
using its general form presented with the help of the field operators [122]

HSC =
∫

d2rΨ↓(r)Δ(r)Ψ↑(r) + h.c. (11.34)

For the s-wave superconductors Δ(r) = Δe−inΦθ and nΦ = [2Φ/Φ0] [131, 132]. In
our model Δ is real and Φ = πabR2

1B, Φ0 = hc/e ([v] denotes the integer closest to
v). After the transition from field operators to creation-annihilation operators defined
for the basis (11.22): Ψs(r) = ∑

nl Φnl(r, θ)cnls, we get the following final form for
the superconducting potential

HSC = Δ
∑

n′nl

Γ
(1)
n′(nΦ−l),nl

[
cn′(nΦ−l)↓cnl↑ + c†n′(nΦ−l)↑c

†
nl↓

]
(11.35)

The eigenstates of the total Hamiltonian HPSC = H + HSC can be evaluated with
the help of the exact diagonalization procedure in even and odd sectors [129]. For
example, for the odd sector we can diagonalize HPSC using the basis set with non-
constant odd number of electrons 1, 3, . . .Ne. Similarly we can diagonalize the
Hamiltonian also for the even sector. As a result we determine the low-lying energy
spectra and the wave functions for even and odd sectors with high accuracy.
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Several different approaches for identification of the signatures of topological
superconductivity and the existence of separated MFs in the QR are available. In
semiconductors isolatedMFs are zero-energy quasi-excitationswithout charge [126].
The fermion number parity is a good quantum number. Therefore, the addition of a
non-local electron which consists of twowell separatedMFswill not change the total
energy and the charge of the system.Even in the case of the systemwithout boundaries
where isolated MFs usually reside, the phase transition between the trivial and non-
trivial (topological) superconducting states results in closing of the superconducting
bulk gap. Therefore, the first parameter which can be used for identification of the
phase transition between two superconducting phases and for the appearance of
isolated MFs is the energy difference between the odd and even sectors [133]

ΔE = ∣∣Eodd − Eeven

∣∣ . (11.36)

This difference vanishes in the topological phase but remains finite for the ordinary
superconducting state [133]. The next parameter is the charge difference between
the even and odd sectors ΔN , which can be defined as the mean electron number
difference between the two sectors. For the evaluation of this parameter at first we
have to calculate the electron densities in each sector

ρeven(odd)(r) =
∫

dr2 dr3 . . .
∣∣Ψeven(odd)

(
r, r2, . . .

)∣∣2 . (11.37)

HereΨeven(odd)
(
r1, r2, . . .

)
is thewave function of the system in the even (odd) sector,

which can be represented as a superposition of the basis states with different number
of electrons up to maximum numberNe due to the cutoff in the exact-diagonalization
procedure. The basis states with different number of electrons are orthogonal and
the number of integrals in (11.37) will be equal to the number of electrons for each
basis state component of Ψeven(odd)

(
r1, r2, . . .

)
.

It has been shown that for a semiconductor quantum wire in the topological
superconducting phase, the ground state parity could be changed by the changes of
the system parameters, such as the chemical potential or the magnetic field. For a
wire of finite size this can be accompanied by a jump of the total electron number
and the charge, because the jump is spread along the wire and has an oscillating
behavior [134]. Therefore, at first we have to calculate the difference between the
electron densities in odd and even sector Δρ(r) = ρodd(r) − ρeven(r) and compare
the results for the ring with similar ones for the quantum wire [134]. The charge
difference between the odd and even sectorΔN is the cumulative difference between
the particle densities, i.e., ΔN = ∫

drΔρ(r). Finally, we have calculated also the
MF probability distributions using the procedure outlined in [129, 133].

p(j)(r, θ) =
∑

s

∣∣∣∣∣
∑

nl

d (j)
nlsΦ

∗
nl (r, θ)

∣∣∣∣∣

2

. (11.38)
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Here d (j)
nls are the coefficients of the linear expansion of the MFs operators γa in

terms of the electron creation and annihilation operators c†nls and cnls, and j = 1, 2
correspond to two Majorana states.

Numerical calculations are performed for the InAs QR with parameters listed in
Table11.1. We take the SO coupling strength to be α = 20meV · nm, the super-
conducting pairing potential strength to be Δ = 0.225 meV and consider the cases
when nΦ = [2Φ/Φ0] or nΦ = 0. The geometrical parameters of the ring are R1 = 3,
R2 = 8, a = 10nm, and for b we use two values b = 6 nm and b = 8 nm, which
correspond to the values of the eccentricities ε = 0.8 and ε = 0.6 respectively. At
this point we disregard the electron-electron interaction which means that we take
λ = ∞. The role of interaction will be discussed below.

In Fig. 11.18, the single-electron energy spectra are presented against themagnetic
field in an elliptical QR with b = 6 nm (a) and b = 8 nm (b). Due to the reduced
symmetry of the ring from circular to C2 the first two low-lying energy levels (for
each spin component) are highly separated from the other states. This separation
(more than 1 meV) is clearly visible in Fig. 11.18. The AB oscillations are also
visible in Fig. 11.18, both for the low-lying group of states as well as for the higher
excited states. It should be noted that observation of the AB oscillations for the low-
lying states means that there is a finite probability for electron transfer from one
side of the major axis of the QR to the other. We will show below that this fact is
essential for confining two MFs of the non-local electron at the two sides of the QR.
In order to consider the topological superconducting phase in the QR, we have to
tune the chemical potential in the energy range of the first quadruplet. During our
calculations we can limit the maximum number of electrons by four due to the fact
that Δ < 1 meV. Therefore, for the odd sector the number of electrons will be one
or three. For the even sector considering system size up to four electrons results in
the Hilbert space size bigger than 700,000, which makes the calculations somewhat

(a) (b)

Fig. 11.18 The dependence of the low-lying energy states on magnetic field B for a single electron
in an elliptical quantum ring for a b = 6 nm and b b = 8 nm. Chemical potential is chosen to be
μ = 0 [61]
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(a) (b)

Fig. 11.19 The dependence of the energies of the ground states of odd and even sector on the
magnetic field B (a) and the chemical potential μ (b). Insets show the absolute difference between
the energies of the ground states. The ring parameter is b = 6 nm and nΦ = 0 [61]

cumbersome. In order to make the Hilbert space smaller we will take the number of
electrons for the even sector to be zero or two. This approximation will be valid only
if the separation between two doublets in the quadruplet is comparable to Δ, which
is correct for B > 0.3 T.

In Fig. 11.19, the ground state energies for even and odd sectors are presented as
a function of the magnetic field B (a) and the chemical potential μ (b), for the ring
parameter b = 6 nm and the superconducting phase nΦ = 0. The absolute energy
differences for the same ranges are presented as insets. It is clear from Fig. 11.19a
that for the range of the magnetic field B = 0.28 − 0.55 T two ground states are
close to each other (the energy difference is less than 0.05 meV). It is known that
in a quantum wire proximity coupled to an s-wave superconductor, the topological
phase appears above certain threshold values of themagnetic field (VZ >

√
μ2 + Δ2,

where VZ is the Zeeman energy) and remains until the high values of the magnetic
field for which s-wave pairing is suppressed due to the spin alignment. This is not the
case for the QR, because the orbital effects and the AB oscillations start to push the
states far from each other after a certain value of the magnetic field. That is why, for
a QR we get only a range of about 0.3T when the topological superconducting state
can be observed. A similar picture is observed also in Fig. 11.19b for the dependence
on the chemical potential. In this case the topological phase is visible fromμ = 4.85
meV to μ = 5.2 meV. There are crossings between the two ground state energies
inside this range and therefore the absolute energy difference shows an oscillatory
behavior.

Similar results as in Fig. 11.19 but for the ring parameter b = 8 nm are shown
in Fig. 11.20. As seen in Fig. 11.20a the magnetic field range where the two ground
states come close to each other is slightly shifted to higher magnetic fields, namely
B = 0.34 − 0.66 T, but the range remains almost the same. Similar picture is also vis-
ible in Fig. 11.20b. The chemical potential range of the topological phase is shifted
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(a) (b)

Fig. 11.20 Same as in Fig. 11.19 but for b = 8 nm [61]

by 1 meV to the smaller values, which is the consequence of the single-particle
energy difference between b = 6 nm and b = 8 nm (Fig. 11.18). This confirms that
the presence of the parameter ranges for which the ground state energies of odd and
even sectors coming close to each other is not accidental, but rather a clear indication
of the topological superconducting phase which is universal for the anisotropic QR.
This will result in the observation of confined MFs inside the region of the topo-
logical phase, as will be shown below. Similar dependence as in Fig. 11.20, but for
nΦ = [

2Φ/Φ0

]
are shown in Fig. 11.21. As seen from the figure, in the case of b = 8

nm, the transition between nΦ = 0 and nΦ = 1 takes place in the region of topological
superconducting phase. This has a detrimental effect on the robustness of topological
superconducting phase or the extent of confinement of the MFs. For the magnetic
field dependence the range of the topological superconducting phase is reduced as
compared to the case of nΦ = 0 and is about 0.12 T. As for the chemical potential
dependence, the range is almost the same as for nΦ = 0, but the absolute difference
between the ground state energies is considerably higher and reaches up to 0.1 meV
for μ = 4.1 meV. This is a clear indication of the increase of the overlap between
two MFs confined at the two sides of the major axis of the QR.

In order to present a clear indication of the confined MFs in a QR, the MF proba-
bility distribution is presented in Fig. 11.22 for the parameters b = 8 nm, B = 0.5 T
and μ = 3.95 meV. In Fig. 11.22a, b the contour plots of the probability distribution
for MF(1) and MF(2) respectively are presented as defined by (11.38). Clearly, each
MF is located at one side of the major axis of QR. Both MFs are mostly confined
in the center of the QR along the r direction, but MF(1) is confined near θ = π

and MF(2) is confined near θ = 0. Similar distribution is observed also for b = 6
nm. The angular dependence of the MF distribution for MF(1) at r = 5.5 (which
corresponds to the center of the QR) is presented in Fig. 11.22c. The MF distribution
has a Gaussian form and the probability to find MF(1) on the other side of the major
axis of the QR is considerably smaller. The main reason why a QR with sizes of
a few hundred angstrom can localize the MFs, is the infinite central barrier of the
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(a) (b)

Fig. 11.21 Same as in Fig. 11.19 but for b = 8 nm and nΦ = [
2Φ/Φ0

]
[61]

(a) (c)

(b)

Fig. 11.22 The MF probability distribution inside the ring for B = 0.5 T, μ = 3.95 meV and for
ring parameter b = 8 nm. In a and b we show the contour plots of the MF probability distribution
for the MF(1) and MF(2) as defined by (11.38). c The dependence of MF probability distribution
on angle θ for MF(1) and r = 5.5. In all figures nΦ = 0 [61]

QR, which prevents a direct overlap of the MFs. The only way the MFs can overlap
would be through two narrow strips that connect the two sides of the major axis of the
elliptic QR. This property is only present in a QR and not in other low-dimensional
systems, such as the quantumwires or quantum dots. The transfer amplitude between
the two sides of the QR can be controlled by changing the value of the parameter b.
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(a) (b)

Fig. 11.23 a Contour plot of the difference between the single-particle densities of the many-body
states in odd and even sector for b = 8 nm. The parameters are B = 0.5 T, nΦ = 0 and μ = 3.95
meV b The dependence of the difference between the single-particle densities on the angle θ for
r = 5.5 and for the same parameters as in (a) [61]

Further, confined MFs appear only at the major axis of the QR, which means that the
direction at which the QR is elongated defines where theMFs will likely be confined.
Therefore in a QR, both the position of the MFs and the extent by which they are
confined can be controlled by external means. This is an important result for moving
the Majoranas along the ring.

In Fig. 11.23a the contour plot of the difference between the electron densities of
the many-body states in odd and even sectors is shown for a QR with parameters
b = 8 nm, B = 0.5 T and μ = 3.95 meV. The corresponding angular dependence
for r = 5.5 is presented in Fig. 11.23b. We have also calculated the mean electron
number difference between odd and even sectors for these parameter values and have
found that ΔN = 0.32. The mean electron number difference being less than one
indicates once again that the MFs are confined at the two sides of the major axis of
the QR. Figure11.23 shows how this charge difference is distributed in the ring. In
fact, Fig. 11.23 indicate that the charge is mostly confined in the central part of the
ring in the r direction but is spread through the whole ring in the θ direction and has
the oscillatory behavior with maxima at the two sides of the QR. This result is in
good agreement with the similar result for a semiconductor wire [134], and can be
used in the single-electron transistor measurement as an indication of the topological
superconducting phase and confined MFs.

We have also performed similar investigations with the Coulomb interaction
included. As was mentioned earlier [129], the screening is essential for the stability
of the topological superconducting phase. Therefore, we have done the calculations
using the screening parameter value λ = 0.1 nm−1. While a detailed investigation of
the complete phase diagram is needed for understanding of the comprehensive effect
of interaction on the obtained results, our calculations for some points of the diagram
indicate that in most cases the interaction does not improve either the stability of the
topological superconducting phase or confinement of the MFs in a QR. Therefore,
superconducting materials with high level of screening for electrons in the semicon-
ductor QR will perhaps be most suitable for detection of the Majorana fermions.
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To summarize, we have studied the electronic states in a few-electron semicon-
ductor QR with a strong SOI and proximity coupled to an s-wave superconductor.
We have demonstrated that both the topological superconducting phase and confined
MFs can be found in a QR system. In particular, we have demonstrated that for the
ranges of the magnetic field and the chemical potential considered here, the differ-
ence between the ground state energies of even and odd electron number system is
close to zero and has the oscillatory behavior. This effect is not specific to special
ring parameters. From theMF probability distribution we have demonstrated that the
MFs are located at the two sides of themajor axis of the QR. Both the position and the
extent of the MF confinement can be controlled externally by choosing the direction
of elongation and the eccentricity of the elliptical barriers. Therefore, we believe
that in many ways, few-electron QRs are perhaps more appropriate for locating the
elusive MFs than in quantum wires or in quantum dots.

11.6 Conclusion

In recent years many novel systems with unusual electronic properties have been cre-
ated, where the QR structure has displayed many intriguing physical phenomena that
are the subject of this chapter. More significantly, we have considered the electronic
states and optical transitions of a ZnO quantum ring and dot-ring systems containing
few interacting electrons in an applied magnetic field. The strong Zeeman interaction
and the strong electron-electron Coulomb interaction, two major characteristics of
the ZnO system, exert a profound influence on the electron states and as a conse-
quence, on the optical properties of the ring. In particular the AB effect in the ZnO
QR is strongly electron number dependent. In the case of the ZnO QDR the energy
spectra of the ZnOQDR and theAharonov-Bohm oscillations are strongly dependant
on the electron number in the dot or in the ring. Therefore even a small change of
the confinement potential, sizes of the dot-ring or the magnetic field can drastically
change the energy spectra and the behavior of the Aharonov-Bohm oscillations in
such a system. Due to this interesting phenomena it is possible to effectively con-
trol with high accuracy the electron charge and spin distribution inside the dot-ring
structure.

We have also studied the strong influence of intense terahertz laser field on the
electronic andoptical properties of isotropic and anisotropicQRs.Wehave shown that
in isotropicQRs the laser field creates unusualABoscillations that is usually expected
in anisotropic rings. Therefore with the laser field we can observe a continuous
evolution of AB oscillations within the same ring. In the case of anisotropic QRs we
have shown that with the ILF it is possible to completely ‘control’ the anisotropy of
the QR and thus also the physical characteristics. In particular we have shown here
that the energy spectra and the AB oscillations have been made completely usual by
the ILF for anisotropic QRs. Last but not the least, it is worth noting that the ILF
can in principle restore isotropic properties of a QR from any type of anisotropy
(structural, effective masses, defects, etc.) of the QRs.
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Nextwe have reviewed the physical properties of grapheneQR.Wehave discussed
about the interplay of valley polarization and the Coulomb interaction on the energy
spectrum, persistent current, and optical absorption of a graphene quantum ring. We
show that the interaction has a dramatic effect on the nature of the ground state as a
function of the magnetic flux and that the absence of exchange interaction between
electrons in opposite valleys means that the singlet-triplet degeneracy is not lifted
for certain few-electron states. The additional energy-level crossings (fractional flux
periodicity) due to the interaction directly lead to extra steps in the persistent current
and intricate structures in the absorption spectrum that should be experimentally
observable. As the nanoscale graphene rings are already available for experimental
studies, we expect future confirmation of the novel properties discussed here.

Another type of novel material where the QR can play an important role is a semi-
conductor heterostructure that is proximity coupled to a superconductor. Recently
these types of hybrid semiconductor-superconductor structures have become attrac-
tive due to the possibility to find Majorana fermions inside them. We have studied
the electronic states in a few-electron semiconductor quantum ring with a strong SOI
and proximity coupled to an s-wave superconductor. We have shown that both the
topological superconducting phase and confined Majorana fermions can possibly be
found in this system. From the Majorana fermion probability distribution we have
shown that the Majorana fermions are located at the two sides of the major axis of
the anisotropic quantum ring. Both the position and the extent of the MF confine-
ment can be controlled externally by choosing the direction of elongation and the
eccentricity of the elliptical barriers.
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Chapter 12
Spin Interference Effects in Rashba
Quantum Rings

Carmine Ortix

Abstract Quantum interference effects in rings provide suitable means to control
spins at the mesoscopic scale. In this chapter we present the theory underlying spin-
induced modulations of unpolarized currents in quantum rings subject to the Rashba
spin-orbit interaction. We discuss explicitly the connection between the conductance
modulations and the geometric phase acquired by the spin during transport, as well
as pathways to directly control them.

12.1 Quantum Rings with Rashba Spin-Orbit Interaction:
Effective One-Dimensional Hamiltonian

The effect of the Rashba spin-orbit interaction [1] on electronsmoving inmesoscopic
rings has been studied in several contexts, including magnetoconductance oscilla-
tions [2, 3] and persistence currents [4, 5]. Essentially all these theoretical studies
have employed one-dimensional (1D) model Hamiltonians. Different Hamiltonians
havebeenusedbydifferent authors in the past, and consequently someambiguitywith
regard to the correct form of the 1D Hamiltonian exists in the literature. Aronov and
Lyanda-Geller [2], for instance, studied the effect of the Rashba spin-orbit interaction
on the Aharonov-Bohm conductance oscillations using a non-Hermitean operator.
The procedure for obtaining the correct one-dimensional Hamiltonian in quantum
rings in the presence of Rashba spin-orbit interaction has been first provided by
Meijer et al. [6], who started out from the full two-dimensional (2D) Hamiltonian
of a two-dimensional electron gas (2DEG) subject to a strong confining potential
with circular symmetry forcing the electrons to be localized on the quantum ring
in the radial direction. This procedure, which is the most rigorous, and physically
sound one, corresponds precisely to the so-called “thin-wall” quantization procedure

C. Ortix (B)
Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena,
Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
e-mail: c.ortix@uu.nl

C. Ortix
Dipartimento di Fisica “E. R. Caianiello”, Universitá di Salerno, 84084 Fisciano, Italy

© Springer International Publishing AG, part of Springer Nature 2018
V.M. Fomin (ed.), Physics of Quantum Rings, NanoScience and Technology,
https://doi.org/10.1007/978-3-319-95159-1_12

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-95159-1_12&domain=pdf


328 C. Ortix

originally introduced by Jensen and Koppe [7], and da Costa (JKC) [8] to describe
the quantum mechanics of non-relativistic particles constrained to generic “curved”
n-dimensional manifolds but embedded in a n + 1 Euclidean space.

In the absence of spin-orbit coupling, the JKC approach predicts the existence of
a curvature-induced quantum geometric potential (QGP), which causes intriguing
phenomena at the nanoscale [9–19]. In periodically minimal surfaces, for instance,
the QGP leads to a topological band structure [10]. Similarly, in spirally rolled-up
nanotubes the QGP has been shown to lead to winding-generated bound states [19].
These curvature effects have been predicted to become evenmore pervasive in strain-
driven nanostructures where the nanoscale variation of strain induced by curvature
leads to a strain-induced geometric potential that is of the same functional form as
the QGP, but gigantically boosting it [20].

The JKC thin-wall approach has been recently shown to be well founded also
in presence of externally applied electric and magnetic fields [21, 22] and sub-
sequently employed to predict novel curvature-induced phenomena, such as the
strongly anisotropic ballistic magnetoresistance of spirally rolled-up semiconduct-
ing nanotubes without magnetism and spin-orbit interaction [23]. Finally, the exper-
imental realization of an optical analog of the curvature-induced QGP has provided
empirical evidence for the validity of the JKC squeezing procedure [24]. As we
will show below, the JKC procedure can be also applied without restrictions in the
presence of spin-orbit coupling, thereby allowing to derive the correct Hermitean
Hamiltonian of quantum rings with an arbitrary geometric shape.

To start with, we recall that in the usual effective-mass approximation, the move-
ment of the charge carriers in presence of spin-orbit interaction can be described
with an effective Schrödinger-Pauli equation acting on a two-dimensional spinor ψ :

(
p2

2m�
+ α · σ × p

)
ψ = E ψ, (12.1)

where p = −i�∇ is the canonical momentum operator and the σ ’s are the usual Pauli
matrices generating theClifford algebra ofR3, which obey the anticommutation rela-
tions

{
σi, σj

} = 2 ηij with ηij the standard spatial metric given by the identity matrix.
In addition, we introduced the vector α with magnitude corresponding to the spin-
orbit interaction constant, and direction determined by the effective electric field from
which the spin-orbit coupling originates. Finally m� is the material dependent effec-
tive mass of the carriers. In the remainder, we will use Latin indices for spatial tensor
components of the flat Euclidean three-dimensional spacewhereasGreek indiceswill
be used for the corresponding tensor components in curved space. Adopting Einstein
summation convention (12.1) can be generalized to a curved three-dimensional space
as follows

Eψ =
[
− �

2

2m�

(
Gμν∂μ∂ν − Gμν Γ λ

μν∂λ

)

−i � Eμνλ αμςν∂λ

]
ψ, (12.2)
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where Gμν is the inverse of the metric tensor Gμν , Eμνλ is the contravariant Levi-
Civita tensor – it can be written in terms of the usual Levi-Civita symbol as Eμνλ =
εμνλ/

√||G|| – and we introduced the affine connection

Γ λ
μν = 1

2
Gλξ

[
∂νGξμ + ∂μGξν − ∂ξGμν

]
.

Finally, the ς ’s are the generators of the Clifford algebra in curved space
{
ςμ, ςν

} =
2Gμν .

To proceed further, we need to define a coordinate system. We therefore start out
by defining a planar curve C of parametric equations r = r(s) with s indicating the
corresponding arclength. Theportion of the three-dimensional space in the immediate
neighborhoodofC canbe thenparametrized asR(s, q2, q3) = r(s) + N̂ (s) q2 + B̂ q3,
where N̂ is the unit vector normal to C, but residing in the curve plane, while B̂ is
the binormal vector perpendicular to the quantum ring plane. The structure of the
corresponding three-dimensional spatial metric tensor can be determined using that
the two orthonormal vectors T̂ (s) = ∂sr(s) and N̂ (s) obey the Frenet-Serret type
equations of motion as they propagate along s

(
∂sT̂ (s)
∂sN̂ (s)

)
=
(

0 κ(s)
−κ(s) 0

)(
T̂ (s)
N̂ (s)

)
, (12.3)

where κ(s) denotes the local curvature of the quantum ring. With this, the metric
tensor corresponding to the three-dimensional portion of space explicitly assumes
the diagonal form

G =
⎛
⎝
[
1 − κ(s)q2

]2
0 0

0 1 0
0 0 1

⎞
⎠ ,

whose determinant ||G|| = [
1 − κ(s)q2

]2
. The generators of the Clifford algebra

for the metric tensor written above can be derived introducing the Cartan’s dreibein
formalism [25]. At each point, we define a set of one forms with components eiμ and

a dual set of vector fields eμ
i obeying the duality relations eiμe

ν
i = δμ

ν and eiμe
ν
j = δ

j
i ,

and corresponding to the “square root” of the metric tensor Gμν = eiμδije
j
ν . The

generators of the Clifford algebra can be then expressed as ςμ = eiμσi. For the metric

tensor written above, the dreibein field can be chosen as eis = T̂ i(s) (1 − κ(s)q2),
eiq2 = N̂ i(s) and eiq3 = B̂i(s). This immediately allows to identify the ς ’s as ςs =
σT (1 − κ(s)q2), ςq2 = σN , and ςq3 = σB written in terms of a local set of three Pauli
matrices comoving with the Frenet-Serret frame σT ,N ,B = σ · (T̂ , N̂ , B̂).

In the same spirit of JKC [7, 8], we now apply a thin-wall quantization proce-
dure and take explicitly into account the effect of two strong confining potentials
in the normal and binormal directions VλN (q2), VλB(q3) respectively, with λN ,B the
two independent squeezing parameters. Furthermore, we introduce a rescaled spino-
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rial wavefunction χ such that the line probability can be defined as
∫

χ†χ dq2 dq3.
Conservation of the norm requires

N =
∫ √||G|| ds dq2 dq3 ψ†ψ =

∫
ds dq2 dq3 χ†χ,

from which the rescaled spinor χ ≡ ψ × ||G||1/4.
In the λN ,B → ∞ limit, the spinorial wavefunction will be localized in a narrow

range close to q2,3 = 0. This allows us to expand all terms appearing in (12.2) in
powers of q2,3. At the zeroth order we then obtain the following Schrödinger-Pauli
equation:

E χ =
[
− �

2

2m�

(
ημν∂μ∂ν + κ(s)2

4

)
− i� εμνλ αμσν∂λ

−i� εμνq2 αμσν

κ(s)

2
+ VλN (q2) + VλB(q3)

]
χ (12.4)

In the equation above, we have used that in the q2,3 → 0 limit the only non-vanishing
affine connection componentΓ q2

s s = κ(s), and employed the limiting relations for the
derivatives of the original spinor in terms of the rescaled one

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂q2ψ = ∂q2χ + κ(s)

2
χ

∂2
q2ψ = ∂2

q2χ + κ(s)∂q2χ + 3

4
κ(s)2χ.

The presence of the relativistic spin-orbit interaction in (12.4) prevents the separa-
bility of the quantum dynamics along the tangential direction of the planar curve
from the normal quantum motion. However, the strong size quantization along the
latter direction still allows us to employ an adiabatic approximation [20], encoded in
the ansatz for the spinorial wavefunction χ(s, q2, q3) = χT (s) × χN (q2) × χB(q3)
where the normal and binormal wavefunctions solve the Schrödinger equation

− �
2

2m�
∂2
q2,q3 χN ,B + VλN ,B(q2,3) χN ,B = EN ,B χN ,B.

We can assume the two confining potential to take either the form of an harmonic
trap∝ q22,3 or an infinite potential well centered at q2,3 ≡ 0. Taken perturbatively, the
first derivatives terms ∂q2,3 of (12.4) vanish and thus the effective one-dimensional
Schrödinger-Pauli equation for the tangential wavefunction reads
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E χT =
[
− �

2

2m�

(
∂2
s + κ(s)2

4

)
− i�αNσB∂s (12.5)

+i�αB

(
σN∂s − σT

κ(s)

2

)]
χT ,

where we explicitly considered a spin-orbit coupling originating either from an elec-
tric field orthogonal to the ring plane (αN ) or from an electric field pointing in the
normal direction to the ring (αB). Equation (12.5) represents the correct effective one-
dimensional Schrödinger-Pauli equation for a single electron in presence of Rashba
spin-orbit interaction, and generalizes the result obtained for a circular quantum ring
[6, 26, 27]. The corresponding Schrödinger-Pauli operator is indeed Hermitian as
can be shown by calculating its matrix elements in any complete basis, or simply
noticing that it can be written, using anticommutators, in the compact form

EχT =
[

p̂2s
2m�

− �
2κ(s)2

8m�
+ αN

2

{
p̂s, σB

}

−αB

2

{
p̂s, σN

}]
χT ,

where the tangential momentum operator p̂s = −i�∂s.

12.2 Conductance Modulations in Rashba Circular
Quantum Rings

In this section, we discuss the quantum transport properties of a mesoscopic bal-
listic device in which a circular quantum ring with Rashba spin-orbit couplings is
symmetrically coupled to two contact leads (c.f. Fig. 12.1a). The transport properties
can be analyzed straightforwardly in the linear response regime, in which the system
is subject to a constant, low-bias voltage. According to the Landauer formula, the
zero-temperature conductance reads [26]

G = e2

h

N∑
m,m′=1

∑
σσ ′

T σ ′,σ
m′,m (12.6)

where T σ ′,σ
m′,m denotes the quantum probability of transmission between incoming

(m, σ ) and outgoing (m′, σ ′) states on the semi-infinite ballistic leads, with m,m′
and σ, σ ′ the mode and spin quantum numbers, respectively. The total number of
modes M = 1 in an effective one-dimensional description. Assuming perfect cou-
plings between the leads and the ring, and thus neglecting backscattering effects, the
quantum transmission probability are entirely determined by the eigenstates of the
Hamiltonian (12.5) for the Rashba spin-orbit coupled quantum ring.
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Fig. 12.1 a Sketch of the spin interferometer devices based on amesoscopic ring with Rashba spin-
orbit interaction (Adapted from [28]). b Energy levels in a quantum ring with Rashba spin-orbit
interaction plotted as a function of the mode quantum number n. The two time-reversal channels I ,
II are indicated

We first analyze a circular quantum ring with a Rashba spin-orbit interaction
due to a radial electric field [29, 30]. Adopting polar coordinates, the effective one-
dimensional Hamiltonian (12.5) then takes the following form:

H = − �
2

2m�R2
∂2
φ + i

α�

R
σz∂φ. (12.7)

The corresponding one-dimensional spinorial eigenstates can be simply found as

Ψ ↑
n (φ) = einφ

(
1
0

)
,
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Ψ ↓
n (φ) = einφ

(
0
1

)
,

with the associated eigenenergies reading

E↑,↓(n) = �
2

2m�R2
n2 ∓ �α

R
n.

The energy splitting due to the Rashba spin-orbit interaction implies that incoming
spins |σ 〉 entering the ring at φ = 0 with a Fermi energy EF can propagate coherently
along four different channels obtained by solving E↑,↓(n) ≡ EF . Specifically, two
opposite spin states |n1; ↑ 〉, |n2; ↓ 〉 propagate along the upper branch of the ring,
whereas their time-reversal partners | − n1; ↓ 〉, | − n2; ↑ 〉 propagate along the lower
branch of the ring. The interference between the channels at φ = π then implies that
injected spins leave the ring in a mixed spin state:

|σout〉 =
∑
s=↑,↓

∑
i=1,2

〈ni; s|σ 〉 × einiπ |ni; s〉.

Choosing a complete basis of incoming and outgoing spin states, the spin-resolved
transmission probabilities are obtained as T σ ′σ = |〈σ ′|σout〉|2. By further summing
over the spin indices σ ′ and σ , we thereby obtain the total conductance

G = e2

h
[1 + cos (n1 − n2)π ] (12.8)

The relation between the two wave numbers n1, n2 can be simply found to be n1 −
n2 ≡ QR ≡ 2m�Rα/�. With this, it follows that the conductance exhibits uniform
oscillations as a function of the spin-orbit interaction strength, which is the signature
of the Aharonov-Casher effect [31] for spins traveling in an external electric field.

The radial electric field considered above, however, does not correspond to the nor-
mal situation in which the electric field is orthogonal to the plane in which the quan-
tum ring resides. When considering this, the one-dimensional Hamiltonian (12.5)
for a quantum ring with circular symmetry explicitly reads:

H = − �
2

2m�R2
∂2
φ + i

α�

R

[
σN∂φ + σT

2

]
, (12.9)

where we introduced the two local Pauli matrices
{

σN = cosφ σx + sin φ σy

σT = − sin φ σx + cosφ σy
. (12.10)

The spinorial eigenstates of theHamiltonian above can be found using a trial spinorial
wavefunction of the form Ψ = einφ × [

χ1e−iφ/2, χ2eiφ/2
]T
, where the amplitudes

χ1,2 are determined by the effective Hamiltonian
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H̃ =

⎛
⎜⎜⎜⎝

�
2

2m�R2
(n − 1

2 )
2 −�α

R
n

−�α

R
n

�
2

2m�R2
(n + 1

2 )
2

⎞
⎟⎟⎟⎠ . (12.11)

Apart from a trivial rigid energy shift, the eigenenergies are simply obtained as

EI ,II (n) = �
2

2m�R2

[
n2 ∓ n

√
1 + Q2

R

]
,

where the index I , II refers to the two time-reversed channels guaranteed byKramers’
theorem. The corresponding spinorial eigenstates can be found to be

Ψ I
n (φ) = einφ

⎛
⎝ cos γ

2 e
−iφ/2

sin γ

2 e
iφ/2

⎞
⎠ ,

Ψ II
n (φ) = einφ

⎛
⎝ sin γ

2 e
−iφ/2

− cos γ

2 e
iφ/2

⎞
⎠ .

Here the tilt angle γ is related to the dimensionless Rashba strength QR intro-
duced above by tan γ = QR. In the limit of strong Rashba spin-orbit interaction,
i.e. QR → ∞, the tilt angle γ → π/2 in which case the eigenstates of the Hamil-
tonian correspond to the spin eigenstates of σN . This limit therefore corresponds
to the “adiabatic” limit in which the spin carriers of the quantum ring orient along
the effective momentum dependent Rashba magnetic field in the in-plane normal
direction (c.f. Fig. 12.2a). For finite values of the dimensionless Rashba strength QR

instead, the spin carriers acquire a finite out-of-plane component, which is a unique
signature of the non-adiabatic spin transport along the ring (c.f. Fig. 12.2b). Such
a non-adiabaticity in the spin motion is immediately reflected in the ballistic trans-
port. Considering as before, incoming spins that propagate coherently along the four
available channels of the quantum ring, i.e. |n1, I〉; |n2, II〉; | − n1, II〉; | − n2, I〉, we
have that the mixed spin state leaving the ring at φ = π can be written as

|σout〉 =
∑
s=I ,II

∑
i=1,2

〈Ψ s
ni (φ = 0)|σ 〉 × |Ψ s

ni (φ = ±π)〉.

where π (−π ) refers to the modes propagating along the upper branch and the lower
branch of the quantum ring respectively. By summing the spin-resolved quantum
transmission probabilities, we obtain that the total conductance takes the following
form

G = e2

h
[1 − cos (n1 − n2)π ] (12.12)
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Fig. 12.2 a Quantum ring with Rashba spin-orbit coupling. The spin-orbit coupling induces an
effective in-plane magnetic field BSO , which is perpendicular to the electron momentum p. b In
non-adiabatic transport, the electron spin do not align to BSO but acquire an additional out-of-plane
component (Adapted from [28])

From the eigenenergies written above, we have that n1 − n2 =
√
1 + Q2

R and thus
the total conductance can be written as

G = e2

h

[
1 + cos

(
π

√
1 + Q2

R − π

)]
(12.13)

There are two features that differentiate the conductance oscillations in (12.13) as
compared to the oscillations predicted for a quantum ring with a spin-orbit coupling
originating from a radial electric field. First, contrary to the uniform oscillations
found in (12.8), (12.13) implies the occurrence of quasiperiodic oscillations for small
Rashba strength QR < 1. Second, in the large Rashba regime QR � 1, one observes
a relative π phase shift between the two conductance modulations (c.f. Fig. 12.3).

As a spoiler for the next section, we here anticipate that this π phase shift is
the principal consequence of the π Berry phase [32] acquired by the spins while
precessing around the effective momentum dependent radial Rashba magnetic field
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Fig. 12.3 Conductance modulation profiles of one-dimensional quantum rings as a function of the
dimensionless Rashba strength QR. The blue line corresponds to a Rashba spin-orbit originating
from an electric field orthogonal to the ring plane, whereas the red line is for a Rahsba spin-orbit due
to a radial electric field. The latter also corresponds to the incomplete result of [33]. The conductance
modulation profiles agree with a related model for one-dimensional rings based on a transfer matrix
approach [34]

due to the out-of-plane electric field. Furthermore, the specific influence of quantum
geometric phases in the conductance can be also seen by rewriting (12.13) as follows

G = e2

h

{
1 + cos

[
πQR sin γ − π (1 − cos γ )

]}
.

The phase in the equation above has then two important contributions: One is the
dynamical phase πQR sin γ who also manifests itself for a radial electric field. The
other is the Aharonov-Anandan [35] phase π (1 − cos γ ) for non-adiabatic cyclic
motion. It corresponds to the solid angle accumulated by the change of spinor orien-
tation during transport, and reduces to the π spin Berry phase in the purely adiabatic
limit γ → π/2. This formulation of the conductance in terms of geometric and
dynamical phases will be analyzed in detail in the next section (Sect. 12.3).

12.3 Conductance Modulations as a Probe
of the Aharonov-Anandan Geometric Phase

In this section, we derive the relation between the conductance modulation and the
Aharonov-Anandan geometric phase [35] for a quantum ringwith generic shape. This
will also allow us to show that real-space geometric deformations directly influence
the geometric quantum phase and hence the spin transport properties.
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We start out from the one-dimensional Hamiltonian in the presence of Rashba
spin-orbit interaction (due to a perpendicular electric field) derived in Sect. 12.1:

H = − �
2

2m�
∂2
s + i�α

2
[σN (s)∂s + ∂sσN (s)] , (12.14)

where, for simplicity, we have disregarded the quantum geometric potential since
it can be assumed to be a small perturbation as compared to the Rashba spin-orbit
interaction. Let us discuss the spin textures that are generally realised in a quantum
ring with Rashba spin-orbit interaction. To show this, we rewrite the Hamiltonian
written above as

H = H 2
l − α2m�

2
σ0

with σ0 being the identity matrix and Hl reading:

Hl =
(
i

�√
2m�

∂s + α
√
m�

√
2

σN (s)

)
.

Clearly,Hl andH have common eigenstates with an eigenvalue relation given byE =
E2
l − α2m�/2. Let us now introduce the spin orientation of a given spin eigenmode

|ΨE〉 as the corresponding expectation value of the spin operators in the local Frenet-
Serret reference frame (see Sect. 12.1), i.e. 〈σ 〉 = {〈σT 〉, 〈σN 〉, 〈σz〉}. It is possible to
determine the equation for the spatial derivative of the local spin components using
that the Schrödinger equation Hl |ΨE〉 = El |ΨE〉 can be rewritten as

i∂s|ΨE〉 = Ĝ(s)|ΨE〉 (12.15)

〈ΨE |i∂s = −〈ΨE |Ĝ(s)

where we introduced the operator Ĝ(s)

Ĝ(s) = −σN (s)

2 lα
− σ0

√
2m�E

�2
+ m� 2

α2

�2
,

and lα is the characteristic spin-orbit interaction length defined by 1/lα = 2m�α/�.
Equation (12.15) yield the general expression for the spatial derivative of the expec-
tation value of the spin components

∂s〈σ 〉 = i〈[G, σ ]〉 + 〈∂sσ 〉 (12.16)

with [A,B] indicating the commutator of A and B. Using the commutation relations
for the local Pauli matrices we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
Ĝ(s), σT (s)

]
= i

σ z

lα
[
Ĝ(s), σN (s)

]
= 0

[
Ĝ(s), σz

]
= −i

σT

lα

(12.17)

To proceed further, we use that the spatial derivative of the local Pauli matrices
obey the Frenet-Serret equations, ∂sσN (s) = −κ(s)σT (s) and ∂sσT (s) = κ(s)σN (s),
with κ(s) the local curvature. When combining these relations with (12.17), we
therefore find the following equations for the spatial derivative of the spin expectation
values: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂s〈σN 〉 = −κ(s)〈σT 〉
∂s〈σT 〉 = −〈σz〉

lα
+ κ(s)〈σN 〉

∂s〈σz〉 = 〈σT 〉
lα

(12.18)

The equations above represent a fundamental relation that links the geometric curva-
ture of the quantum ring, the Rashba SO coupling, and the electron spin orientation
in the local Frenet-Serret frame. It can be also written in the compact form

∂s〈σ 〉 = −heff × 〈σ 〉, (12.19)

where we introduced the local field heff = {0, l−1
α , κ(s)} which lies in the normal-

binormal plane, and depends on the local curvature and effective spin-orbit length
introduced above. With this, it also follows that the spin direction lives in a Frenet-
Serret-Bloch sphere [36] (see Fig. 12.4). Equation (12.19) generally implies that due
to a non zero curvature, the electron spin acquires a finite out-of-plane binormal ẑ
component. In particular, for a circular quantum ring where the curvature is constant
κ(s) = −1/R we find, in agreement with the results presented in Sect. 12.2, a local
spin orientation given by tan θ = 2m�αR/� = QR (c.f. Fig. 12.4). More importantly,
a non trivial component along the tangential direction appears provided the curvature
is not constant. Although the derivative ∂s of the spin vector locally vanishes if the
spin is aligned to the effective spin-orbit field, variations of the local curvature yields
a non-vanishing torque which results into a component of the spin vector parallel to
the electron propagation direction. Such a torque effect due to the geometric shape
of the quantum ring is manifested by considering the example of a quantum ring
of total length L with an elliptical shape and a ratio a/b between the minor (a) and
the major (b) axes of the ellipse. This is a paradigmatic case of a quantum ring with
positive but non-uniform curvature that can be suitably enhanced (suppressed) at the
positions nearby the poles of the major (minor) axes. There are two distinct spin
texture regimes in this Rashba quantum ring. For very strong spin-orbit interactions
or quasi-constant curvature, i.e. a/b � 1, the electron spin is pinned nearby the quasi-
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Fig. 12.4 The
Frenet-Serret-Bloch sphere
in the moving frame of the
charge carriers in a generic
quantum ring with the
vectors associated to the
electron spin orientation and
the effective local field heff
(Adapted from [36])

static effective field heff in the Frenet-Serret-Bloch sphere. In the regime of weaker
spin-orbit interaction or sizable non-uniform curvature profile, instead, the electron
spin is not able to follow the periodic motion of the effective spin-orbit field. As
a result, a finite spin component along the tangential direction appears, and in the
local frame the electron spin starts to wind both around the normal and the binormal
directions. These features of the spin textures are shown in Fig. 12.5 where we report
the spin textures of an elliptical quantum ring obtained by solving a tight-binding
model Hamiltonian derived by discretizing (12.14) on an atomic chain [36]. For
very weak spin-orbit coupling strength (c.f. Fig. 12.5a), the spin textures are almost
aligned along the binormal direction ẑ. In an intermediate regime ofRashba spin-orbit
strength instead, the torque exerted on the spin yields complex three-dimensional spin
textures (c.f. Fig. 12.5b–f). In the very large spin-orbit interaction regime instead, the
spin completely aligns along the normal direction signaling an almost adiabatic spin
motion.

These variety of complex three-dimensional spin textures are not only interesting
per se: they indeed strongly impact the spin transport properties. To show this, we
will now find a link between the spin textures and the quantum phases for a cyclic
evolution in a generic quantum ring.We therefore start by noticing that the real space
evolution of the spin eigenmode is regulated by (12.15). Closely following Aharonov
and Anandan [35], we use that for any one-dimensional quantum ring the spinorial
wavefunction |Ψ (s)〉 must satisfy the condition

|Ψ (L)〉 ≡ eiχ |Ψ (0)〉.
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Fig. 12.5 Evolution of the electronic trajectories on the Bloch-Frenet-Serret sphere and spin tex-
tures in the lab frame for a quantum ringwith elliptical shapewith ratio between theminor andmajor
axes a/b = 0.4 and different values of the spin-orbit coupling strength α. Panels (a–f) correspond
to m�αL/� = 1, 4, 8, 10, 12, 50 (From [36])

We then define a newwavefunction |Ψ̃ (s)〉 = e−iβ(s)|Ψ (s)〉 in such away that β(L) −
β(0) = χ . It immediately follows that |Ψ̃ (L)〉 = |Ψ̃ (0)〉 and from (12.15) that

−∂sβ(s) = 〈Ψ |Ĝ(s)|Ψ 〉 − 〈Ψ̃ |i∂s|Ψ̃ 〉 .

Therefore, we can express the total phase χ accumulated by the charge carriers once
they complete the spatial loop as the sum of a geometric Aharonov-Anandan (AA)
phase and a dynamical phase as follows

gAA =
∫ L

0
〈Ψ̃ |i∂s|Ψ̃ 〉ds (12.20)

d = −
∫ L

0
〈Ψ |Ĝ(s)|Ψ 〉ds . (12.21)

The dynamical phase can be immediately linked to the expectation value of the local
spin as

d = m�α

�

∫ L

0
〈σN (s)〉ds + const. (12.22)

In order to find the relation between the local spin expectation value and the geometric
(AA) phase we first relate the local normal direction, as well as the tangential one,
to the Euclidean coordinates via:
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⎧⎨
⎩
N̂ (s) = cosφ(s)x̂ + sin φ(s)ŷ

T̂ (s) = − sin φ(s)x̂ + cosφ(s)ŷ,

where φ(s) is a real-valued function, which is related to the local curvature via the
Frenet-Serret equations yielding

φ(s) = −
∫ s

0
κ(s′)ds′.

Next, we express the normalized spinorial eigenfunction in the following general
form

|Ψ 〉 =
⎛
⎝ exp[−iφ(s)/2] exp[iθ⇑(s)]A⇑(s)

exp[iφ(s)/2] exp[iθ⇓(s)]A⇓(s)

⎞
⎠ ,

where A⇑,⇓(s) are real-valued functions. Such a general expression is convenient
since we can express the expectation values of the local spin components in the
following form ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈σT 〉 = 2A⇑(s)A⇓(s) sin
[
θ⇓(s) − θ⇑(s)

]

〈σN 〉 = 2A⇑(s)A⇓(s) cos
[
θ⇓(s) − θ⇑(s)

]

〈σz〉 = A⇑(s)2 − A⇓(s)2

(12.23)

Furthermore,wehave that
∫ L
0 κ(s′)ds′ = 2πNκ withNκ integer for a closed curve.The

same holds true for the phase difference θ⇓(s) − θ⇑(s), which acquires a phase shift
2πW withW the winding number of the normal and tangential local spin expectation
values around the out-of-plane binormal direction, i.e. W = 1

2π

∫ L
0 qNT (s) where we

introduced

qNT (s) = 〈σN 〉∂s〈σT 〉 − 〈σT 〉∂s〈σN 〉
〈σT 〉2 + 〈σN 〉2 .

With this, it follows that

|Ψ̃ 〉 =
(

A⇑(s)
exp[iφ(s)] exp[i(θ⇓(s) − θ⇑(s))]A⇓(s)

)
,

and the AA phase can be simply expressed as

gAA = π

(
Nκ + W − 1

2π

∫
〈σz〉[κ(s) + qNT (s)]ds

)
. (12.24)

The knowledge of both the geometric AA phase (12.24) and the dynamical phase
(12.22) also allows to express in a straightforward manner the conductance of a
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generic ballistic one-dimensional ring. By using that the transmission along the arms
of ring can be described using a spin rotation operator [36, 37], one finds the relation
between the conductance and the quantum phases to be given by

G = e2

h
{1 + cos (gAA + d)} , (12.25)

where the dynamical phase has to be computed disregarding the constant factor in
(12.22).

For a circular quantum ring, the dynamical as well as the AA phases can be easily
computed by noticing that 〈σN 〉 = sin γ , and 〈σz〉 = cos γ . By also considering that
Nκ = −1, we therefore find the result for the conductance modulation anticipated in
Sect. 12.2, that is

G = e2

h

[
1 + cos

[
πQR sin γ − π (1 − cos γ )

]]
.

Most importantly (12.22) and (12.24) directly yield a connection between the
complex three-dimensional spin textures due to shape deformations and the spin
transport properties. This is manifested in Fig. 12.6 where we show the influence
of the geometric shape deformation on the spin interference patterns for the case of
elliptical quantum rings [36]. One can observe distinct geometrically driven channels
of electronic transportwith a changeover fromconstructive to destructive interference
as the ratio between the ellipse axis a/b increases. This results therefore yield a tight
connection between the conductance and the character of the spin textures in aRashba
quantum ring.

12.4 Topological Transitions in Spin Interferometers

In the former sectionwehave shown the connection between the spin textures realized
in generic quantum rings and the spin geometric phase, with the latter that can be
directly probed by changes in the conductance interference patterns. The spin textures
of quantum rings can be also directly controlled using an externally applied magnetic
field in the ring plane. The Zeeman coupling

HZ = g�μBσy

indeed changes the solid angle accumulated by the spin eigenmode during transport
in a quantum ring and consequently the non-adiabatic AA phase. This can be verified
in the small B limit, in which case, by employing standard perturbation theory [28],
the conductance modulations of a circular quantum ring can be written as
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Fig. 12.6 Contour map of the cosine of the geometric phase (a), the spin component of the dynam-
ical phase (b), and the total phase (c) contributing to the conductance for a quantum ring of total
length L with elliptic shape as a function of the ellipse ration a/b and the dimensionless spin-orbit
coupling strength L/(4π lα) (From [36])

G = e2

h

{
1 + cos

[
π

(√
1 + Q2

R − 1 + φ(B)

)]}
,

where φ(B) ∝ B2. This magnetic-field-induced shift in the interference pattern has
been experimentally verified in arrays of InGaAs-based quantum rings [28]. Note
that the magnetic field contribution to the conductance modulations only enters in



344 C. Ortix

Fig. 12.7 The Berry phases
in the adiabatic limit for a
circular quantum ring with
an additional planar
magnetic field. For
BSO � B, the accumulated
Berry phase correspond to π .
The opposite limit gives
instead a 0 Berry phase From
[38] (Copyright 2015
American Physical Society)

the AA phase. This is because for a quantum ring with symmetrically coupled leads,
electronic spins acquire the sameZeemandynamical phase, and therefore theZeeman
effect only contributes the geometric part of the quantum phase.

An external magnetic field can, however, also directly modify the topology of
the effective magnetic field felt by the carriers during transport, thereby paving the
way for the development of topological spin engineering. An early proposal for the
topological manipulation of electron spin, which has been put forward by Lyanda-
Geller [39], involved the abrupt switching of Berry phases. Assuming an entirely
adiabatic spin transport, it was predicted that a change in the winding number asso-
ciated with the effective field felt by the charge carriers (c.f. Fig. 12.7) would mani-
fest itself as a steplike characteristic in the quantum ring conductance. The intrinsic
non-adiabatic nature of the spin transport discussed in the former section, however,
requires a more sophisticated approach [38].

Saarikoski et al. have thereby analyzed the electronic transport characteristic of a
spin interferometerwith an externally applied planarmagnetic field considering rings
tangentially coupled to leads. In this geometric configuration, indeed, the dynamical
Zeeman phases can yield both constructive and destructive interference. Henceforth,
the conductance will be modulated by both a magnetic field dependent dynami-
cal phase and the magnetic field dependent geometric phase. In Fig. 12.8 we report
the behavior of the two quantum phases in the spin-orbit coupling, magnetic field
parameter space. The interference pattern possesses radial wave fronts, which can
be mainly ascribed to Zeeman oscillations. Most importantly, one observes distinct
phase dislocations along the critical line where the effective magnetic field textures
change topology, i.e. at BSO = B (c.f. Fig. 12.7). This result is surprising since the
topology of the magnetic field textures is reflected in an abrupt change of the con-
ductance modulations even though the spin dynamics is completely non-adiabatic as
testified by the complex behaviors of the geometric and dynamic phase for BSO � B.
Whether or not the existence of phase dislocation can be linked to an “effective”
Berry phase with phase slips at the critical line is a matter of future investigations.
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Fig. 12.8 Contour map of the cosine of the geometric phase (top panel), the dynamical phase
(middle panel), and the total phase (bottom panel) as a function of the spin-orbit coupling and
Zeeman splitting in a ballistic single-mode quantum ring tangentially coupled to leads From [38]
(Copyright 2015 American Physical Society)
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Chapter 13
Quantum Rings in Electromagnetic
Fields

A.M. Alexeev and M.E. Portnoi

Abstract This chapter is devoted to optical properties of so-called Aharonov-Bohm
quantum rings (quantum rings pierced by a magnetic flux resulting in Aharonov-
Bohm oscillations of their electronic spectra) in external electromagnetic fields. It
studies two problems. The first problemdealswith a single-electronAharonov-Bohm
quantum ring pierced by amagnetic flux and subjected to an in-plane (lateral) electric
field. We predict magneto-oscillations of the ring electric dipole moment. These
oscillations are accompanied by periodic changes in the selection rules for inter-
level optical transitions in the ring allowing control of polarization properties of the
associated Terahertz radiation. The second problem treats a single-modemicrocavity
with an embeddedAharonov-Bohmquantum ringwhich is pierced by amagnetic flux
and subjected to a lateral electric field. We show that external electric and magnetic
fields provide additional means of control of the emission spectrum of the system.
In particular, when the magnetic flux through the quantum ring is equal to a half-
integer number of the magnetic flux quanta, a small change in the lateral electric
field allows for tuning of the energy levels of the quantum ring into resonance with
the microcavity mode, thus providing an efficient way to control the quantum ring-
microcavity coupling strength. Emission spectra of the system are discussed for
several combinations of the applied magnetic and electric fields.
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13.1 Introduction and Overview. Quantum Mechanics
in Semiconductor Aharonov-Bohm Quantum Rings
and Quantum Electrodynamics in Microcavities

13.1.1 Introduction

In their celebrated paper [1] Aharonov and Bohm demonstrated that while in clas-
sical mechanics the fundamental equations of motion can always be expressed in
terms of the field alone, in quantum mechanics a canonical formalism is essential
and, as a result, potentials cannot be eliminated from the basic equations. Nanoscale-
sized semiconductor rings, which are now commonly called Aharonov-Bohm quan-
tum rings, are among other quantum systems used for experimental studies of the
renowned discovery. Few-electron quantum rings with a radial size of 10–20 nm are
noweasily fabricated.Themean free path of particles confined in these nanostructures
exceeds the ring length, which results in the self-interference effects experienced by
particles. The influence of the field potentials upon this interference in the regions
with vanishing field magnitudes is a direct evidence of the Aharonov-Bohm effect
present in quantum rings.

This chapter is devoted to the optical properties ofAharonov-Bohmquantum rings
in external electromagnetic fields. The research presented in Sect. 13.4wasmotivated
by a number ofworkswhich demonstrated the beneficial influence of an external elec-
tric field on some electronic and optical properties of an Aharonov-Bohm quantum
ring. The list of these works and a brief description of their main results can be found
in Sect. 13.1.2. In our work, we study an infinitely-narrow quantum ring subjected
to a relatively weak static lateral electric field and pierced by a magnetic flux [2,
3]. We predict magneto-oscillations of the ring electric dipole moment and examine
their electric field and temperature dependence. These oscillations are accompanied
by periodic changes for the selection rules for inter-level optical transitions in the
ring. Radiation associated with these transitions occurs at terahertz frequencies for
quantum rings with the radial size of 10–20nm. Most of the results obtained for the
static in-plane electric field can be easily generalized to the case of the rotating field
by a proper change of the coordinates system [4].

Exceptional opportunities to control the optical properties of quantum rings with
external fields stimulated our further research, which is presented in Sect. 13.5. In
this work, we study an Aharonov-Bohm quantum ring embedded into a single-mode
terahertz microcavity [5].

Microcavity quantum electrodynamics is an area which keeps attracting a strong
interest of both the condensed matter and quantum optics research communities.
One of the reasons of this everlasting interest is the feasibility of utilizing novel
effects originating from field-matter coupling for developing novel nanodevices such
as terahertz polariton-lasers. In our studies, we calculate the emission spectrum of
the coupled quantum ring-microcavity system and show how it can be tuned by
variation of the magnetic field piercing the quantum ring and the lateral electric
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field. Such control of the emission spectrum was never possible with quantum dots
in microcavities. Advantages arising of using quantum rings instead of quantum dots
as photon emitters in microcavities are discussed in Sects. 13.5.3 and in 13.6.

The rest of this chapter is organized as follows. In Sects. 13.1.2 and 13.2 we
provide a cursory overview of quantum phenomena in quantum rings and optical
microcavities. In Sect. 13.3 some theoretical basics needed for understanding of the
later presented research are introduced. Sections13.4 and 13.5 contain original work
as described above. Conclusions and possible extension of this work are included in
Sect. 13.6.

13.1.2 Quantum Mechanics in Nanoscale Aharonov-Bohm
Quantum Rings

Progress in epitaxial techniques in recent decades has resulted in burgeoning devel-
opments in the physics of quantum dots (QDs), i.e., semiconductor-based ‘artifi-
cial atoms’. More recently, a lot of attention has been turned towards non-simply-
connected nanostructures, such as quantum rings (QRs), which have been obtained in
various semiconductor systems [6–32]. Originally, QRs were fabricated accidently,
when optimizing growth conditions for self-assembled InAs quantum dots on aGaAs
substrate, the QD material was splashed out from the QD centre, forming a volcano-
like structure [6–9]. Improved and perfected, it has now become a routine procedure
for the fabrication of QRs with typical radii of 10–100 nm [11–14, 16, 18, 19, 21–
30]. In the literature, QRs produced as described above are usually referred to as
‘type-I quantum rings’.

Nanostructures with an alternative realization of the ring-shape confinement, the
so-called ‘type-II quantum dots’, were suggested for exploring effects arising from
the non-simply-connectedness of such objects. In these nano-sized structures one
carrier is confined inside the QD and a carrier of an opposite charge is confined
in the barrier [10]. As a result, the carrier in the barrier experiences a rotational
movement with a radius of 10–20nm around the QD [15, 20, 31–33].

Another possible way of QRs fabrication is based on using the evaporative tem-
plating method [17]. This fabrication procedure includes three stages: introduction
of an aqueous solution which contains QDs and polystyrene microspheres onto the
surface of a glass substrate, evaporation, and microsphere removal. During the evap-
oration stage, QDs surround the microspheres and merge, which finally results in the
formation of a QR with the radial dimension of 80nm–1µm.

The fascination in QRs is caused by a wide variety of purely quantummechanical
effects, which are observed in ring-like nanostructures (for a review see [34–38]).
The star amongst them is the Aharonov-Bohm effect, in which a charged particle [1,
39] is affected by a magnetic field away from the particle’s trajectory, resulting in
magnetic-flux-dependent oscillations of the ring-confined particle energy. The same
research group which discovered type-I QRs was the first to observe the Aharonov-
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Bohm type oscillations in these nanostructures [9]. This became the starting point
for a series of experiments dedicated to the Aharonov-Bohm effect in both type-I
QRs [9, 19] and type-II QDs [10, 18, 20, 40].

There is significant interest in the excitonicAharonov-Bohm effect inQRs, which,
in principle, should not exist as the exciton is a neutral particle and can not be
influenced by the magnetic field. However, due to the finite size of the exciton, the
excitonic Aharonov-Bohm effect is, in fact, possible. The excitonic Aharonov-Bohm
effect was theoretically studied by a number of authors in both 1D QRs [41–46] and
2DQRs [33, 47–56]. It was shown that theAharonov-Bohm type oscillations do exist
in both 1D and 2D models, but vanish in QRs with the ring radial size larger than the
exciton Bohr radius or with increased ring width. Recently, it was demonstrated that
in the 2Dexactly solvablemodel previously used in [57–59] themagneto-oscillations
in the exciton ground state survive down to regimes with radius-width ratio less than
unity [60].

To reveal the excitonic Aharonov-Bohm effect it was suggested to place the QR in
an external electric field, which delocalizes the relative electron-hole motion around
the entire ring [18, 61–63]. It was also shown that in the presence of an in-plane
(lateral) electric field exceeding a particular threshold it is possible to switch the
ground state of the QR exciton from being optically active (bright) to optically
inactive (dark) [18, 62].

13.2 Quantum Electrodynamics in Microcavities:
Light-Matter Coupling

The strong coupling regime requires a microcavity (MC) to sustain an isolated mode.
Otherwise, the excited mode exponentially decays into the other MC modes. There
are three main designs which achieve the goal of zero-dimensional radiation con-
finement, described below.

The first design, pillar MCs, are fabricated by etching a stack of conventional
Bragg mirrors. The typical height of pillar MCs is about 10µm. The lateral confine-
ment in pillar MCs is provided by the reflecting interface between the MC walls and
the surrounding media. The chances that the chosen pillar MC contains an emitter
(usually, a QD) which is in the strong coupling regime with the MC mode are com-
parably small and one has to check all produced MCs one by one until a cavity with
required characteristics is found.

Another possible realization of a single-mode MC is the photonic crystal cav-
ity. The original idea of a photonic crystal was developed by Yablonovich [64] and
John [65]. It is based on the same phenomena which leads to the appearance of
bandgaps in semiconductors. A structure with periodic modulations of permittivity
becomes forbidden for several ranges of wavelength due to the destructive interfer-
ences similar to those of Bragg physics. The first 3D photonic crystal was created
by drilling holes in a slab at three different angles, resulting in a full bandgap in
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the microwave range [66]. Several years later, a 2D photonic crystal with a bandgap
in the optical spectrum was reported [67]. By introducing a defect in the photonic
crystal periodic structure it is possible to create a MC (the so-called ‘Noda cavity’)
- radiation becomes trapped within the defect region [68]. Originally, values of the
Q-factor in photonic crystal MC were quite small (only around 400), but now using
some cunning designs of the photonic crystals periodic structure, MCwith Q-factors
as large as 106 can be fabricated [69]. Some MC designs which promise Q-factors
up to 109 were also suggested [70].

The last design, the microdisk MC, confines radiation in whispering gallery
modes. For a review of microdisk cavities one can refer to [71].

One of phenomena which can be observed in semiconductor MCs in the Purcell
effect [72] in which the time of spontaneous emission is affected by the environment
of an emitter. The ratio of the times of spontaneous emission when the emitter is
placed in two different environments (e.g., MC and vacuum) is usually referred as
the Purcell factor. The first observation of the Purcell effect in semiconductor MCs
was done with a QD embedded into a pillar MC [73]. In this experiment, the time of
photon spontaneous emission was affected with a Purcell factor of 5. Several similar
observations in different systems (e.g., [74, 75] in pillar MCs, [76] in microdisk
MC, [77] in photonic crystal MC) followed this pioneering work. For instance, in
the experiment of [77] when a QD was placed inside a photonic bandgap of a semi-
conductor the time of its spontaneous emission was extended to 2.52 ns comparing
to the time of 0.65 ns when the same QD was placed in the bulk semiconductor. The
time of spontaneous emission of another QD placed in the same photonic bandgap
and brought into the resonance with the cavity was 0.21 ns.

There has been an impressivedevelopment towards abetter quantumcouplingwith
QDs in MC and improved external control. The latest achievements in fabrication
techniques now allow one to position QDs inside MCs with spectacular accuracy.
In [78] a photonic crystal MC with a single QD placed exactly at the maximum of
the MC field intensity was demonstrated. In photonic crystal MCs one can spectrally
match theMCmode emission with the QD emission by artful etching of the photonic
crystal periodic structure. However, once the structure is fabricated, adjustment of
any system parameters becomes a difficult task.

The strong coupling regime in QDs in semiconductor MCs was first attained in
2004 in two sequential papers, [79] in a photonic crystal MC and [80] in a pillar
MC. The strong coupling in microdiscMCwas reported a year later [81]. Since then,
the strong coupling regime in semiconductor MCs was reported by several research
groups, but the number of experiments that achieved this regime remains limited. In
this cursory overview, we only provide the list of some of these works—please see
[79–87]. Two of the listed experiments deserve a more detailed discussion.

In the first work, [84, 85], the authors developed an electronically controlled
device which uses the quantum confined Stark effect [88], in which the external
electric field shifts theQD exciton discrete states towards lower energies, to tuneQDs
in resonance with the mode of the photonic crystal MC. This experiment presents a
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solution with on-chip control of the strong coupling. But still, due to the weakness
of the phenomena, this way of controlling the QR-MC coupling strength remains
somewhat limited. In the secondwork [82], the strong coupling regimewas observed
with a single QD in a photonic crystal MC. In this experiment the antibunching of
the Rabi doublet peaks was proved, which is possibly the first real evidence of full
field quantization in a coupled QD-MC system.

A system with a genuine strong coupling should noticeably change its behaviour
when an additional quantum of excitation is added or removed. In an ideal picture,
an emitter embedded in a MC (e.g., QD or QR) can be modelled as a two-level
system coupled to the MC mode. Such a system possesses a Hamiltonian which
eigenstates, hybrid light-matter states, form the so-called ‘Jaynes-Cummings ladder’.
The emissionmeasured outside of theMC shouldmirror the structure of this ‘ladder’.

Lastly, we would like to note that to the best of our knowledge there are no
experimental works exploring the strong coupling phenomena in QRs embedded into
MCs. We hope that our research presented in Sect. 13.5 will stimulate experiments
in this area.

13.3 Theoretical Background. Quantum Description
of Light-Matter Coupling and the Dipole
Approximation for Optical Transitions

13.3.1 Introduction

This section contains a brief review of the background theory which is used in the
rest of this chapter: quantization of the electromagnetic field, the two-level model for
a single-photon emitter, the density matrix operator concept, the equations of motion
for the density matrix operator, and the electric dipole approximation. We also refer
the reader to various textbooks [89–96] covering these topics.

13.3.2 Light-Matter Coupling in Microcavities:
Quantum Description

13.3.2.1 Quantization of the Electromagnetic Field

Field oscillators—harmonic oscillators

In theCoulombgauge the vector potential of a sourceless classical electromagnetic
field (CEF) satisfies the requirement

divA (r, t) = 0, (13.1)
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and the homogeneous wave-equation

1

c2
∂2A (r, t)

∂t2
− ∇2A (r, t) = 0, (13.2)

where r is the position vector and t is the time variable. The field scalar potential
can be chosen to be identically zero, so that the field is fully defined by the vector
potential

E (r, t) = − ∂

∂t
A(r, t), (13.3)

B (r, t) = ∇ × A(r, t). (13.4)

In what follows we consider a MC of a volume V without specifying its exact
shape. The quantization procedure, which we introduce later, does not depend on
the MC shape and is the same in MCs with various shapes (e.g., [97] in planar MCs,
[98] in a spherical MCs, [99] in cylindrical MCs). The solution of (13.2) can be
written in the following form with separated variables

A (r, t) = √1/ε0
∑

i

Qi (t)Ui(r), (13.5)

where Qi (t) are the field amplitudes, Ui (r) is the set of field modes, and ε0 is the
vacuum dielectric permittivity. For the present moment, we assume that all field
modes are linearly independent and thus can be orthonormalized. We discuss this
assumption in more detail later.

Substitution of (13.5) into (13.3) and (13.4) results in the following expressions

E (r, t) = −√1/ε0
∑

i

Q̇i (t)Ui (r) , (13.6)

B (r, t) = √1/ε0
∑

i

Qi (t)∇ × Ui (r) . (13.7)

Now let us return to the wave equation and substitute the chosen vector potential,
given by (13.5), into (13.2) to obtain

1

c2
[
Q̈i (t) + Ω2

i Qi (t)
]
Ui (r) − Qi (t)

[
∇2Ui (r) + Ω2

i

c2
Ui (r)

]
= 0,

Here Ωi are the frequencies of the field modes. Since each of these equations should
be satisfied identically at any time moment and for any position in the space, the
expressions in square brackets should vanish separately

Q̈i (t) + Ω2
i Qi (t) = 0, (13.8)
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∇2Ui (r) + Ω2
i

c2
Ui (r) = 0. (13.9)

One can see that the above equations define CEF time (13.8) and spatial (13.9)
dynamics.

There are two boundary conditions imposed upon the electromagnetic field inside
a MC. Namely, the tangential component of the electric field and the normal compo-
nent of the magnetic field should vanish at the MC walls. Together with (13.1) they
lead to the following set of restricting conditions

Ui (r) |tang = 0 on the MC walls,

curlUi (r) |norm = 0 on the MC walls,

and
divUi (r) = 0 in all MC volume.

It can be shown that the first and the third conditions result in the electric field
vanishing on the MC walls. That, in turn, gives Ui (r) |walls = 0.

Once the exactMCshape is given, using the above conditions, one can solve (13.9).
The obtained solutions are unique for a given MC. Due to this fact, these solutions
are usually called ‘normal modes’ of the MC. Normal modes fully characterize the
geometry of a particular problem.

To be able to proceed with the field quantization we now need to define new
functions, the so-called ‘normal variables’, ai and a∗

i , which re-express the field
amplitudes Qi in the following way

Qi =
√

�

2Ωi
(ai + a∗

i ),

Q̇i = −i

√
�Ωi

2

(
ai − a∗

i

)
.

The expressions above can be inverted. Carrying out this simple operation one obtains
the following result

ai =
√

1

2�Ωi
(ΩiQi + iQ̇i),

a∗
i =

√
1

2�Ωi

(
ΩiQi − iQ̇i

)
.

Using the normal variables we can redefine the field vector potential (13.5) and the
electric and magnetic fields (13.6)–(13.7) as
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A (r, t) =
∑

i

√
�

2ε0Ωi

(
ai + a∗

i

)
Ui(r) ,

E (r, t) = i
∑

i

√
�Ωi

2ε0

(
ai − a∗

i

)
Ui(r),

B (r, t) =
∑

i

√
�

2ε0Ωi

(
ai + a∗

i

)
curlUi (r) .

In classical electrodynamics the energy of the electromagnetic field is given by
the integral

ECEF = ε0

2

∫

V

[
E2 + c2B2

]
dr.

Performing several transformations it is easy to rewrite this expression in terms
of the field amplitudes and the normal variables

ECEF = 1

2

∑

i

[
Q̇2

i + Ω2
i Q

2
i

] =
∑

i

�Ωia
∗
i ai. (13.10)

Now we need to recall some basics of the quantum harmonic oscillator (QHO).
The Hamiltonian of one-dimensional QHO with a unit mass reads as [95]

HQHO = �ω(â†â + 1/2), (13.11)

where ω is the oscillator frequency and â†, â are the creation and annihilation oper-
ators. The eigenstates of the QHO can be denoted by |n〉 with n = 0, 1, 2, . . . , so
that

HQHO |n〉 = �ω (n + 1/2) |n〉 .

These states form the so-called ‘QHO ladder’. Each of these states can be constructed
from the vacuum state |0〉, which possesses the property â |0〉 = 0, by application of
the creation operator n-times:

|n〉 =
(
â†
)n |0〉√
n! .

One can notice that the QHO Hamiltonian given by (13.11) is of the same form as
the (13.10), which defines energy of CEF expressed in terms of normal variables.
The only difference is the term �ω/2 which appears due to the non-commutativity
of the creation and annihilation operators. Later we show that this term should be
omitted in order to normalize energy of the quantized electromagnetic field (QEF)
with an infinite number of modes (e.g., QEF in vacuum).
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This similarity allows us to proceed with the intuitively simple quantization of the
electromagnetic field. The trick is to substitute the normal variables with the creation

and annihilation operators, which satisfy the commutation relation
[
âi, â

†
j

]
= δij

with all other commutators vanishing. The above commutation relation reflects the
linear independence of the field modes.

Performing this substitution we arrive at the following expressions for the field
vector potential and the electric and magnetic fields

Â =
∑

i

√
�

2ε0Ωi

(
âi + â∗

i

)
Ui(r),

Ê = i
∑

i

√
�Ωi

2ε0

(
âi − â∗

i

)
Ui(r),

B̂ =
∑

i

√
�

2ε0Ωi

(
âi + â∗

i

)∇ × Ui (r) .

From now on, the electromagnetic field is described with the quantum mechanical
operators Â, Ê, and B̂. Since the creation and annihilation operators entering the
equations above do not commute, these operators do not commute as well. One can
see that after quantization the time dynamics of the electromagnetic field is hidden in
the creation and annihilation operators âi and â

†
i . Recall that before the quantization

procedure the time dependence was defined by the dynamical behaviour of the field
amplitudes Qi.

To finish with the electromagnetic field quantization we should define the Hilbert
space of the field eigenstates. We employ once again the analogy with the quantum
harmonic oscillator and define the vacuum state of any of the electromagnetic field
modes by the requirement âi |0〉 = 0. Due to the independence of field modes we
can construct all other eigenstates as a tensor product

|n1, n2, . . . , nk , . . .〉 = |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nk〉 ⊗ · · · =
⊗

i

(
â†i

)ni

√
ni!

|0〉 ,

where the index i numbers the fieldmodes and ni are the non-negative integers usually
called ‘mode occupation numbers’.

In some cases the number of the field modes in a MC can be infinite and the field
energy should be renormalized by omitting the term which is responsible for the
vacuum state energy in the field Hamiltonian [89–94]. In this case the Hamiltonian
of the QEF reads

HQEF =
∑

i

�Ωi â
†
i âi.
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In our research presented in this chapter we will consider a MC which sustains just
one mode of QEF. In this case the MC field Hamiltonian reads as

HMC = �ωMCâ
†â, (13.12)

whereωMC is theMCmode frequency and we have omitted creation and annihilation
operators indices to simplify notation.

Quantization in a cubic box of volume V

As was discussed above, the set of field modes which is allowed for a particular
problem is fully defined by the geometry of a given MC. In this section we study
a MC with a cubic shape. This case is of significant importance as it allows one to
introduce the plane wave representation for the QEF.

The most natural set of orthonormal functions in a cubic MC is the set of plane
waves given by

fk,α = ek,α exp (ikr)√
V

,

where k is the wave vector and index α represents the wave polarization. The wave
vector k satisfies the dispersion relationωk = kcwith k = |k|. This is a consequence
of the requirement for the plane wave functions to satisfy the Helmholtz equation.
The polarization vectors ek,α are complex numbers normalized to unity.

The next step is to expand the field vector potential introduced in the previous
section in terms of the cubic MC plane waves

Â =
∑

k,α

√
�

2ε0ΩkV

[
ek,α âk,α exp (ikr) + e∗

k,α â
†
k,α exp (−ikr)

]
. (13.13)

In theCoulomb gauge, the field vector potential Â has only the transverse component.
When applied to (13.13) this requirement gives

ek,α · k = e∗
k,α · k = 0.

There are only two linearly independent vectors orthogonal to the wave vector k.
We refer to themwith the index α, which, for a given k, can now take only two values,
α = 1, 2. Real values of the polarization vector represent two linear polarizations of
the electromagnetic field while complex values correspond to two different circular
polarizations.

Finally, to finish with the plane wave representation, we reexpress the boundary
conditions for the electric and magnetic fields inside aMC in terms of the plane wave
functions fk,α .

Using the boundary conditions imposed upon the field modes Ui in the previous
section we obtain the following periodic boundary conditions for fk,α
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fk,α

(
r + ljL

) = fk,α(r),

where L is the length of the MC sides and lj is a set of unit vectors directed along the
MC edges. From this condition it is easy to retrieve quantization rules for k

k = 2π

L
(Nxlx + Nyly + Nzlz),

where Nx, Ny, Nz are integer numbers which allow an alternative way to number the
MC plane waves. One should not confuse this numbering with the modes occupation
numbers introduced earlier.

To conclude this sectionwe provide expressions for the quantized electromagnetic
field operators, the electromagnetic field Hamiltonian, and Hamiltonian eigenstates
in the plane wave representation

Ê = i
∑

k,α

√
�Ωk

2ε0V

[
ek,α âk,α exp (ikr) − e∗

k,α â
†
k,α exp (−ikr)

]
, (13.14)

B̂ = i
∑

k,α

√
�Ωk

2ε0V

[(
k × ek,α

)
âk,α exp (ikr) −

(
k × e∗k,α

)
â†k,α

exp (−ikr)
]
, (13.15)

HQEF =
∑

k,α

�Ωk â
†
k,α âk,α , (13.16)

∣∣{nk,α}〉 = ∣∣. . . , nki,αi , . . .
〉 =
⊗

k,α

(
â†k,α

)nk,α

√
nk,α! |0〉 . (13.17)

From (13.14)–(13.16) it is clear that the electric and magnetic field are related by
B̂ =∑

k,α

(k/Ωk) × Êk,α .

13.3.2.2 Two-Level Photon Emitter

In Sect. 13.3.2.1we introduced notation inwhich theQEF is described in the language
of QEF modes occupation numbers. In this notation electric and magnetic fields are
defined in terms of creation and annihilation operators. In this section we show
how fermionic states of a single-photon emitter (SPE) can be described in the same
language.

A single-photon emitter whose excitations obey fermionic statistics can populate
only a finite number of eigenstates, with a maximum of one excitation per eigenstate.
This restriction is known as the Pauli exclusion principle [95]. Considering such a
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system in a general way we denote its eigenstates by |i〉 and the corresponding
eigenenergies by εi.We assume that this set of eigenstates is orthonormal, 〈i|j〉 = δi,j,
and complete,

∑

i
|i〉 〈i| = 1. The eigenstate’s index imay consist of several quantum

numbers.
Instead of the creation and annihilation operators a† and a, the system can be

described with the projector operators

σ
†
ij = |j〉〈i|,

and
σij = |i〉 〈j| .

These projector operators induce promotion from the state i to the state j and from
the state j to the state i by creating an excitation in the system in the same way as
operators a† and a create and annihilate an excitation in a particular mode of the
QEF. The main difference is that the projector operators can be applied only once
as only one excitation is allowed for each of the emitter eigenstates. If εi < εj, the
projector operator σ

†
ij acts as the rising operator while the projector operator σij acts

as the lowering operator, and if εi > εj, projector operators swap their roles.
Using this notation a single-photon emitter Hamiltonian can be defined in the

following way
HSPE =

∑

j

εj |j〉 〈j| =
∑

j

εjσ
†
ijσij. (13.18)

In most practical cases there is only one mode of the QEFwhich interacts with the
single-photon emitter in a MC. This mode is usually tuned to one of the resonances
of the emitter and has a relatively narrow spectral bandwidth. If the other eigenstates
are separated by energy gaps which are much larger than the energy associated with
theMCmode, all eigenstates other than the twowhich are brought into the resonance
can be safely disregarded.

From now on, we assume that the field causes transitions between only two par-
ticular eigenstates of the single-photon emitter. We denote these eigenstates by |g〉
(the ground state) and |e〉 (the excited state). The energy gap between these two
eigenstates we denote byΔ. This approximation to a multi-level quantum emitter we
call the ‘two-level emitter’ (2LE) approximation. It should be noted that such a basic
model works exceptionally well for real systems and gives a good insight into the
quantum phenomena occurring in realistic experimental systems (e.g., see [79–82,
100–102]).

The Hamiltonian given by (13.18) in the ‘two-level emitter’ approximation
reads as

H2LE = Δ |e〉 〈e| = Δσ †σ , (13.19)
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where we chose the zero energy level to coincide with the energy of the ground state
|g〉 and σ † = (σx + iσy

)
/2, σ = (σx − iσy

)
/2 with

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

being the Pauli matrices acting in the space of the emitter ground |g〉 and excited |e〉
states.

13.3.2.3 Field-Emitter Coupling

Coupling of the QEF to SPE is the key phenomenon which enters all further consid-
erations. Using the analogy with classical electrodynamics we take the interaction
Hamiltonian in the dipole approximation as

HINT = −d · E,

where d is the SPE dipole moment operator and E is the QEF electric field operator
given by (13.14) and taken at the position of the SPE. The interaction Hamiltonian
can be re-expressed in the following way

HINT = −
∑

k,α

d̂ · (E+
k,α + E−

k,α

)
, (13.20)

where

E+
k,α = i

√
�Ωk

2ε0V

[
ek,αak,α exp (ikrSPE)

]
, (13.21)

and

E−
k,α = −i

√
�Ωk

2ε0V

[
e∗
k,αa

†
k,α exp (−ikrSPE)

]
. (13.22)

Note that in (13.21)–(13.22) the field operators E+
k,α and E−

k,α are taken at the
position of the SPE. We would like to stress once more that the time dynamics of
the QEF is hidden in the creation and annihilation operators. The SPE electric dipole
moment operator is given by

d =
∑

i,j

dij |i〉 〈j| , (13.23)

where dij is the dipole moment operator matrix element calculated between two
different states of the SPE
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dij = 〈i|d |j〉 = e
∫

ψ∗
i (r) rψj (r) dr.

In many cases the emitter eigenfunctions possess the property of parity and thus the
diagonal matrix elements dii = 0. Substituting (13.23) into (13.20) we obtain

HINT = −
∑

k,α

∑

i,j

|i〉 〈j| dij ·
(
E+
k,α + E−

k,α

)
.

In order to show that the above Hamiltonian is Hermitian we open the brackets in the
expression above, swap indices i ↔ j in the second term under summations (since
the second summation is over all possible combinations of (i, j) and the case dii = 0
is allowed), and use the fact that dji = d∗

ij. This results in

HINT = −
∑

k,α

∑

i,j

|i〉 〈j|dij · E+
k,α + |j〉 〈i|d∗

ji · E−
k,α . (13.24)

From this equation it can be clearly seen that HINT is indeed Hermitian. Let us
now transform the interaction Hamiltonian into a form which will be more suitable
for further calculations. For the case of 2LE from (13.24) we immediately get the
following result

HINT =
−
∑

k,α

(
|e〉 〈g|deg · E+

k,α + |g〉 〈e|d∗
ge · E−

k,α + |e〉 〈g|d∗
eg · E−

k,α + |g〉 〈e|dge · E+
k,α

)
.

(13.25)

In the expression above there are four terms under summation. We discuss each of
them separately:

• The first term corresponds to the transition from the ground state |g〉 to the excited
state |e〉. As expected, a photon is absorbed as a result of this transition (due to the
presence of the anihilation operator in the expression for E+

k,α).• The second term corresponds to the transition from the excited state |e〉 to the
ground state |g〉. As expected, a photon is emitted as a result of this transition (due
to the presence of the creation operator in the expression for E−

k,α).• The third term corresponds to the transition from the ground state |g〉 to the excited
state |e〉. We expect a photon to be absorbed. Contrary to this expectation, the pho-
ton is in fact created (due to the presence of the creation operator in the expression
for E−

k,α).• The forth term corresponds to the transition from the excited state |e〉 to the ground
state |g〉. We expect a photon to be emitted. Contrary to this expectation, the
photon is in fact annihilated (due to the presence of the annihilation operator in
the expression for E+

k,α).
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One can see that the third and forth terms are nonresonant, these terms do not sat-
isfy the energy conservation law. This fact allows one to neglect these terms in the
interaction Hamiltonian given by (13.24). Another argument which supports this
approximation comes from time-dependent perturbation theory. It is well-known
that non-resonant transitions have negligibly small probabilities. This approxima-
tion is called the ‘rotating wave approximation’ (the name originates from the form
of the interaction Hamiltonian in the reference frame rotating with the frequency of
the electromagnetic field) and is widely used in quantum electrodynamics problems
[89–94]. It can be shown that the neglected terms lead to small corrections called
Bloch-Siegert shifts [103].

Therefore, the final expression for quantized electromagnetic field - two-level
emitter (QEF-2LE) interaction Hamiltonian reads as

HINT = −
∑

k,α

(|e〉 〈g|deg · E+
k,α + |g〉 〈e| d∗

ge · E−
k,α

)
, (13.26)

where the electric field operators E+
k,α and E−

k,α are given by (13.21)–(13.22) from
the previous section.

13.3.2.4 Density Matrix Operator

The most general way to describe a system, whether it is isolated from the external
environment or interacts with it, is based on utilizing the density matrix operator.
In what follows we first introduce the basic concept of the density matrix operator
and then show how using the master equation approach it is possible to calculate
a stationary density matrix of a system in the presence of incoherent pumping and
dissipation processes.

Let us consider an ensemble of N identical emitters in quantum states denoted
by i and with corresponding wave functions Ψ i. An average value of an observable
O can be calculated for each of these emitters using corresponding operator Ô. The
statistic average over the whole ensemble is given by

〈O〉 =

N∑

i=1

〈
Ψ i
∣∣ Ô
∣∣Ψ i
〉

N
. (13.27)

The equation above contains two types of averaging—the quantummechanical aver-
aging, which is given by the matrix element, and statistical averaging, which is given
by the sum of the observable value over the ensemble elements divided by the number
of elements.

As all emitters in the ensemble are identical, each of them possess the same set
of eigenstates ϕn. Thus, the total emitter’s states Ψ i can be expanded in terms of the
emitter’s eigenstates ϕn as follows
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∣∣Ψ i
〉 =
∑

n

Ci
n |ϕn〉 , (13.28)

where Ci
n = 〈ϕn|ψ i

〉
and

∑

n

∣∣Ci
n

∣∣2 = 1. Substituting (13.28) into (13.27) one obtains

〈O〉 =
∑

m,n

(∑N
i=1 C

i
n
∗
Ci
m

N

)

Onm =
∑

m,n

ρnmOnm, (13.29)

where we have introduced a new important entity, the density matrix ρnm, which is
given by

ρnm =
N∑

i=1

Ci
n
∗
Ci
m/N = Ci

n
∗Ci

m. (13.30)

The density matrix contains all statistical information about the considered ensemble
of emitters. It is easy to show that the density matrix is normalized

Tr{ρ̂} =
∑

n

ρnn =
N∑

i=1

∑

n

Ci
n
∗
Ci
n/N =

N∑

i=1

1/N = 1.

Using the matrix multiplication rule (13.29) can be written in a shorter and more
convenient form

〈O〉 =
∑

m,n

ρmnOnm =
∑

n

(
ρ̂Ô
)

nn
= Tr{ρ̂Ô}. (13.31)

For instance, for the identity operator 1̂ using (13.31) one straightforwardly obtains

〈1〉 =
∑

n,m

ρmn 〈ϕn| 1̂ |ϕm〉 =
∑

n,m

ρmnδnm = Tr{ρ̂} = 1.

The representation of the density matrix operator in terms of expansion coefficients
Ci
n is only one of many possible expansions. One can see that the final expression

for the average value of an observable O is given by the trace of the density matrix
operator. The trace of an operator is independent of the basis chosen in the Hilbert
space. That means that the density matrix operator can be defined in a more general
way. However, it is convenient to try to define the density matrix operator in terms of
system eigenstates, but independently of any basis in the Hilbert space. One of the
possible definitions is as follows

ρ̂ = 1

N

N∑

i=1

∣∣Ψ i
〉 〈

Ψ i
∣∣ .
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There are no restrictions on the states Ψ i, these states can even be non-orthogonal,
although it is usually not convenient. It is easy to show that if the basis of the
eigenstates ϕn is chosen as the set of system eigenstates, this definition is equivalent
to (13.30).

In order to give a more clear insight into the nature of the density matrix oper-
ator and re-express it in an even more convenient form we introduce the so-called
‘projector operators’ (similar to those discussed in Sect. 13.3.2.2)

π̂χ = |χ〉 〈χ | .

When acting on a state ψ these operators give a projection of the state ψ in the
direction of the state χ . For the expectation value of the projector operator π̂χ in a
state ψ one can easily obtain

〈
π̂χ

〉 = 〈ψ | π̂χ |ψ〉 = 〈ψ |χ〉 〈χ |ψ〉 = |〈χ |ψ〉|2 . (13.32)

Equation (13.32) gives the probability to find the system, which was originally pre-
pared in the state |ψ〉, in the state |χ〉.

Let us now return to the ensemble of emitters. Since the trace of an operator is
independent of the basis in which this operator is defined, for convenience we will
use the basis of the emitters eigenstates ϕn. In this case for the expectation value of
the projector operator π̂χ one obtains

〈
π̂χ

〉 = Tr{π̂χ ρ̂} =
∑

n

〈ϕn|χ〉 〈χ ∣∣ρ̂∣∣ϕn
〉 =
∑

n

〈
χ
∣∣ρ̂
∣∣ϕn
〉 〈ϕn|χ〉 = 〈χ ∣∣ρ̂∣∣χ 〉 .

(13.33)

One can see that the probability of finding the ensemble of emitters in the state |χ〉
is given by a diagonal element of the density matrix operator.

Now it is possible to make some generalization of the density matrix operator.
Instead of defining the density matrix operator as a sum over all emitters states Ψ i

one can to use the sum over all states accessible to the ensemble elements

ρ̂ =
∑

j

∣∣ψ j
〉
P (j)

〈
ψ j
∣∣ . (13.34)

Here P (j) are the statistical weights which satisfy the requirement
∑

j
P (j) = 1.

A few paragraphs later, we explain the physical meaning of these coefficients inmore
details.

Using (13.33) and (13.34) we obtain the probability of finding the system in one
of the states ψ j which were used for the density matrix operator basis

〈ψα| ρ̂ |ψα〉 =
∑

j

〈
ψα|ψ j

〉
P (j)

〈
ψ j|ψα

〉 =
∑

j

P (j)
∣∣〈ψα|ψ j

〉∣∣2 . (13.35)
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If the set of states
∣∣ψ j
〉
is orthonormal, (13.35) can be simplified in the following way

〈ψα| ρ̂ |ψα〉 =
∑

j

P (j) δαj = P (α) . (13.36)

From the (13.36) one can see that the statistical weight P (α), in fact, defines the
population of the state |ψα〉 (i.e., probability that the state is occupied).

If the set
∣∣ψ j
〉
is not orthonormal, it is clearly not possible to obtain any simple

relation between probabilities 〈ψα| ρ̂ |ψα〉 and statistical weights P (α).

13.3.2.5 Equation of Motion for the Density Matrix

Coherent coupling: the von Neumann equation for the density matrix

In Sect. 13.3.2.4 it was demonstrated that an average value of an observable O in
an ensemble of emitters can be calculated using the system density matrix operator
ρ̂.

In the Schrödinger picture, all operators are time-independent and thus the time
dynamics of the average should be hidden in the time dependence of the density
matrix operator

〈OS〉t = Tr{ρ̂ (t) ÔS},

where the index ‘S’ refers to the Schrödinger representation. It is clear that in order
to be able to predict time dynamics of the system, an equation of motion for the
density matrix operator is needed. Such an equation can be derived from the fact that
the physical contents should not depend on whether the Schrödinger or Heisenberg
picture is chosen for describing the system.

The density matrix operator ρ̂ is defined as a sum of projections on a given set of
states. In the Heisenberg picture the states are time-independent, though operators
are time-dependent. In this case one can expect the density matrix operator to be
defined by the initial state of the system. Comparing expressions for the observable
averages in the Schrödinger and Heisenberg quantum mechanics descriptions we
obtain

〈OS〉t = Tr{ρ̂ (t) ÔS} = 〈OH (t)〉 = Tr{ρ̂ (t0) ÔH (t)}, (13.37)

where the index “H” refers to the Heisenberg representation. The evolution of oper-
ators in the Heisenberg picture can be related to the operators representation in the
Schrödinger picture in the following way

ÔH (t) = U † (t, t0) ÔSU (t, t0) . (13.38)

In (13.38) U (t, t0) is the evolution operator given by

U (t, t0) = exp
[
−iĤ (t, t0) /�

]
,
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where Ĥ is the system Hamiltonian. Substitution of (13.38) into (13.37) results in

Tr{ρ̂ (t) ÔS} = Tr{ρ̂ (t0)U
† (t, t0) ÔSU (t, t0)}.

Using the cycling property of the trace operation the equation above can be rewrit-
ten as

Tr{ρ̂ (t) ÔS} = Tr{U (t, t0) ρ̂ (t0)U
† (t, t0) ÔS}. (13.39)

From (13.39) one can easily obtain the following expression for the density matrix
operator time evolution

ρ̂ (t) = U (t, t0) ρ̂ (t0)U
† (t, t0) . (13.40)

Differentiation of (13.40) results in

i�
∂ρ̂ (t)

∂t
=
[
i�

∂U (t, t0)

∂t

]
ρ̂ (t0)U

† (t, t0) −U (t, t0) ρ̂ (t0)

[
−i�

∂U † (t, t0)

∂t

]
.

(13.41)

We simplify (13.41) using the fact that the evolution operator U (t, t0) satisfies the
Schrödinger equation and obtain

i�
∂ρ̂ (t)

∂t
= ĤU (t, t0) ρ̂ (t0)U

† (t, t0) −U (t, t0) ρ̂ (t0) ĤU† (t, t0) = Ĥ ρ̂ (t) − ρ̂ (t) Ĥ .

(13.42)

Here (13.40) was used for the last step of the simplification. This equation of motion
for the density matrix operator (mixed state) is called the ‘von Neumann equa-
tion’ [104]. It is an equivalent of the Schrödinger equation for the state vector (a pure
state). The von Neumann equation can be written in a more compact form

∂ρ̂ (t)

∂t
= i

�

[
ρ̂ (t) , Ĥ

]
. (13.43)

It should be stressed that the von Neumann equation corresponds to the Schrödinger
quantum mechanics description, where all operators are time-independent. In the
Heisenberg quantum mechanics description, the density operator does not depend
on time and is defined by the initial conditions.

Incoherent processes: the Master Equation with the Linblad terms

A correct description of a system which interacts with the external environment
should include decoherence processes such as dissipation (decay) of particles to an
external reservoir and income (pump) of particles from an external reservoir. In the
case of the coupled 2LE-MC system these particles are either theMC photons, which
can be supplied into the system, for instance, by the optical pumping, but eventually
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leak out, or the 2LE excitations, which can experience nonradioactive transitions
from the excited to the ground state.

The leaking out photons not only cause decoherence in the system, but also pro-
vide an external observer with valuable information about the field-matter interaction
inside the MC. This stresses once more the importance of considering the decoher-
ence processes.

In order to account for the described processes the equation of motion for the
density matrix operator should be upgraded from the von Neumann equation [104]
to the master equation in the Lindblad form [105]

∂ρ

∂t
= i

�
[ρ,HJC] + L MC

P ρ + L MC
γ ρ + L 2LE

γ ρ, (13.44)

In (13.44) HJC = HMC + H2LE + HINT is the full Hamiltonian of the coupled 2LE-
MC system first introduced by Jaynes and Cummings [106] and now commonly
called ‘Jaynes-Cummings Hamiltonian’ with HMC given by (13.12), H2lE given by
(13.19), and HINT given by (13.26). The operators L MC

P , L MC
γ , and L 2LE

γ are the
so-called Lindblad terms. In the explicit form these three terms are given by

L MC
P ρ = PMC

2
(2a†ρa − aa†ρ − ρaa† + 2aρa† − a†aρ − ρa†a),

L MC
γ ρ = γMC

2
(2aρa† − a†aρ − ρa†a),

and
L 2LE

γ ρ = γ2LE

2
(2σρσ † − σ †σρ − ρσ †σ),

where PMC is the intensity of the MC pumping, γMC , γ2LE are the decaying rates
of the MC and 2LE excitation, a†, a are MC creation and annihilation operators
(the same that enter HMC , see (13.12)), and σ †, σ are 2LE creation and annihilation
operators (the same that enter H2LE , see (13.19)).

In the scope of this chapter we are not interested in particular pumping and dis-
sipation mechanisms which are present in various experimental systems. We only
note that different pumping and dissipation process were studied by a number of
authors, see, e.g., [107, 108]. For our further considerations only the fact that all
such processes are well-described by the introduced master equation with Lindblad
terms is important.

Mainly, there are two different derivations of the Lindblad terms in (13.44) which
can be found in the literature. The first derivation is based on a microscopic study
of the system coupling to an external reservoir, which is represented as a bath of
oscillators [94, 109]. The second procedure utilizes the Monte-Carlo method and
quantum jumps. This approach is preferred in [89, 90] as it is closer to the quantum
information and measurement theories. In this case, the time evolution of the system
is understood as a sequence of coherent periods of the Hamiltonian dynamics and
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incoherent events taking place with some probability. In this picture the microscopic
origin of the incoherent processes is not considered and they are just assumed to be
present with a given probability.

All together, the Lindblad terms L MC
P , L MC

γ , and L 2LE
γ can be put in the form

of a total superoperator L
∂ρ

∂t
= i

�
[ρ,H ] + L ρ.

Due to the balance between the pump and decay, after some time a steady state is
established. We denote the density matrix which describes such steady state by ρSS .
Throughout this chapter we consider only such values of the parameters PMC , γMC ,
and γ2LE which lead to establishing of some steady state with non-divergent popula-
tions. We do not discuss exact experimental conditions which result in a particular
combination of these parameters and only note that all the considered values of PMC ,
γMC , and γ2LE correspond to attainable experimental systems.

13.3.3 Calculating Optical Transitions: Electric Dipole
Approximation

Let us consider a system described by the full Hamiltonian H (t) = H 0 + H ′ (t)
whereH 0 is the stationary (time-independent) Hamiltonian with eigenfunctions

∣∣ψj
〉

satisfying
H 0
∣∣ψj
〉 = εj

∣∣ψj
〉
,

with εj = �ωj, and H ′ (t) is the time-dependant perturbation given by

H ′ (t) = H̃ ′e−iωt ,

where ω is the frequency of the exciting radiation. If perturbation is weak, it only
causes transitions between the states

∣∣ψj
〉
. According to the first order time-dependant

perturbation theory the rate of transitions between two different states |ψi〉 (initial
state) and

∣∣ψf
〉
(final state) is given by

Tif = 1

�2

∣∣〈ψf

∣∣H ′ (t) |ψi〉
∣∣2 sin

2
[

τ
2

(
ωf − ωi − ω

)]

τ
[
1
2

(
ωf − ωi − ω

)]2 .

Here τ is the time which corresponds to the broadening of the optical transitions
and which can be defined as τ ≥ 2π/Δω where Δω is the linewith of the excitation
radiation. If Δω is small, τ becomes large and using

δ(ξ) = lim
x→0

x

π

sin2 (ξ/x)

ξ 2
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we obtain the rate of transitions between the system eigenstates |ψi〉 and
∣∣ψf
〉
given

by Fermi’s golden rule

Tif = 2π

�

∣∣〈ψf

∣∣H ′ (t) |ψi〉
∣∣2 δ(εf − εi − �ω). (13.45)

The Hamiltonian operator of an electron interacting with electromagnetic field is
given by

H = 1

2m
(p + q

c
A)2 = H 0 + q

2mc
(A · p + p · A) + 1

2m

(q
c

)2
A · A, (13.46)

where H 0 = p/2m is the Hamiltonian of the unperturbed system, m is the electron
mass, p is the electron momentum operator, andA is the electromagnetic field vector
potential.

The vector potential of a plane electromagnetic wave, hitting the sample at normal
incidence, can be chosen as

A = A0cos(Qr − ωt),

whereQ is the field wave vector and r is the position vector. The electric field of the
perturbing radiation is calculated as the time derivative of the vector potential

E(r, t) = 1

c

∂A(r, t)
∂t

.

In the Coulomb gauge the vector potential of a sourceless electromagnetic field in
vacuum satisfied ∇ · A = 0 and therefore

[A,p] = i�∇ · A = 0.

The ratio of the third to the second term in (13.46) can be written in the following
way

e

c

A

p
= eE

ωp
≈ e

ωp

(
8πS

c

)1/2

(13.47)

where E is the magnitude of the electric field associated with the perturbing radiation
and S is the Poynting vector, which gives energy flux density of the electromagnetic
field (energy per time per unit area). Expression in (13.47) is much less than unity for
the values of S up to 1012 W/m2. For most material such field intensities are higher
than the material damage threshold. Thus, the third term in (13.46) can be safely
neglected

H = H 0 + q

mc
(A · p) + 1

2m

(q
c

)2
A · A ≈ H 0 + q

mc
(A · p).
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The second term in this equation can be easily expressed as H+e−iωt + H−eiωt with
H± given by

H± = q

2mc
e±iQrA0 · p = q

2mc
|A0| e±iQr (e · p) ,

where we have introduced the radiation polarization vector e and the vector r is taken
at the position of the electron.

To simplify calculations we use the dipole approximation, which assumes that
Qr  1 and thus e±iQr ≈ 1. Within this approximation H± becomes

H± = q

2mc
|A0| (e · p) . (13.48)

Substituting (13.48) into (13.45) (the Fermi’s golden rule) we get the final expres-
sion for the rate of optical transitions between the states |ψi〉 and

∣∣ψf
〉
caused by the

perturbing electromagnetic field

Tif = 2π

�

( q

2mc

)2 |A0|2
∣∣〈ψf

∣∣ e · p |ψi〉
∣∣2 δ(εf − εi − �ω).

13.4 Quantum Rings in Classical Electromagnetic Fields.
Electric Dipole Moment Oscillations and Terahertz
Transitions in Aharonov-Bohm Quantum Rings

13.4.1 Introduction

Recently a lot of attention has been turned towards non-simply-connected nanostruc-
tures, quantum rings, which have been obtained in various semiconductor systems [9,
10, 17]. The fascination in quantum rings is partially caused by a wide variety of
purely quantum mechanical effects, which are observed in ring-like nanostructures.
The star amongst them is the Aharonov-Bohm effect [1, 39], in which a charged
particle is influenced by a magnetic field away from the particle’s trajectory, result-
ing in magnetic-flux-dependent oscillations of the ring-confined particle energy. The
oscillations of the single-particle energy are strongly suppressed by distortion of
the ring shape or by applying an in-plane (lateral) electric field, thus reducing the
symmetry of the system [110, 111] (see Fig. 13.1). However, there are other physical
quantities, which might have even more pronounced magneto-oscillations when the
symmetry of the ring is reduced. For example, in the presence of a lateral electric field
exceeding a particular threshold it is possible to switch the ground state of an exciton
in an Aharonov-Bohm ring from being optically active (bright) to optically inactive
(dark) [18, 62]. Another hitherto overlooked phenomenon is the flux-periodic change
of an electric dipole moment of a quantum ring, which is the main subject of this
work.
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Fig. 13.1 An
Aharonov-Bohm quantum
ring pierced by a magnetic
flux and subjected to a lateral
electric field (from [3])

This section is organized as follows. In Sect. 13.4.2 we calculate the single-
electron energy spectrum of an infinitely-narrow Aharonov-Bohm ring subjected
to a lateral electric field. In Sect. 13.4.3 we consider magneto-oscillations of the
ring’s electric dipole moment and study their electric field and temperature depen-
dence. Matrix elements of the dipole moment calculated between different states
define selection rules for optical transitions. For experimentally attainable quantum
rings these transitions occur at THz frequencies. In Sect. 13.4.4 we discuss optical
selection rules for intraband optical transitions and show how the polarization prop-
erties of the associated THz radiation can be tuned by external electric and magnetic
fields. Section13.4.5 contains a brief discussion of the potential applications of the
predicted phenomena.

13.4.2 Energy Spectrum of an Infinitely-Narrow
Quantum Ring

13.4.2.1 Magneto-Oscillations of the Quantum Ring Eigenenergies

The Hamiltonian of an electron confined in an infinitely narrow QR pierced by
magnetic flux Φ depends only on the polar coordinate ϕ

HΦ = − �
2

2MeR2

∂2

∂ϕ2
− i�e

2π

Φ

MeR2

∂

∂ϕ
+ e2Φ2

8π2MeR2
, (13.49)

where Me is the electron effective mass and R is the QR radius. The 2π -periodic
eigenfunctions of the Hamiltonian defined by (13.49) are

ψm (ϕ) = eimϕ

√
2π

, (13.50)

and the corresponding eigenvalues are given by

εm(f ) = �
2 (m + f )2

2MeR2
= (m + f )2 ε1(0) . (13.51)
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(a) (b)

Fig. 13.2 a The energy spectrum of an infinitely narrow quantum ring pierced by amagnetic fluxΦ.
Each parabola corresponds to a particular value of the electron angular momentum m. The electron
energies ε are plotted versus the number of flux quantaΦ/Φ0. b Expanded view on a smaller energy
scale (from [3])

Here m = 0,±1,±2 . . . is the angular momentum quantum number, and f = Φ/Φ0

is the number of flux quanta piercing the QR (Φ0 = h/e). The electron energy spec-
trum defined by (13.51) is plotted in Fig. 13.2. It exhibits oscillations in magnetic
flux with the period equal to Φ0, known as Aharonov-Bohm oscillations [1, 9].
One can see intersections (degeneracy) of the energy levels with different angular
momenta, when Φ is equal to an integer number of Φ0/2. Optical selection rules
allow transitions between states with angular momentum quantum numbers differ-
ent by unity (Δm = ±1). For typical nanoscale rings [9, 10] the energy scale of
the inter-level separation, ε1(0) = �

2/2MeR2, is in the THz range. When Φ exceeds
Φ0/2 the electron possesses a non-zero angular momentum in the ground state.

13.4.2.2 Energy Spectrum in the Presence of a Lateral Electric Field

Applying an in-plane electric field E removes the circular symmetry of the system.
An additional term corresponding to the electric field appears in the Hamiltonian
[2, 3], which acquires a form

H = HΦ + eER cosϕ. (13.52)

Now the angle ϕ is counted from the direction of the electric field (geometry of the
problem is shown in Fig. 13.3). The field mixes electron states with different angular
momentum, which is not a good quantum number anymore. An eigenfunction of the
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Fig. 13.3 Relative
directions of the external
electric field E and the
electron position vector R
(from [3])

Hamiltonian (13.52), which maintains the 2π -periodicity in ϕ, can be written as a
linear combination of the wavefunctions (13.50)

Ψn (ϕ) =
∑

m

cnme
imϕ . (13.53)

Substituting the wavefunction (13.53) into the Schrödinger equation with the Hamil-
tonian (13.52), multiplying the resulting expression by e−imϕ and integrating with
respect to ϕ leads to an infinite system of linear equations for the coefficients cnm

[
(m + f )2 − λn

]
cnm + β

(
cnm+1 + cnm−1

) = 0 , (13.54)

where β = eER/2ε1(0) and λn = εn/ε1(0), with εn being the nth eigenvalue of the
Hamiltonian (13.52). It is apparent from (13.54) that all the properties of the ring
are periodic in magnetic flux. Therefore, it is sufficient to consider 0 ≤ f ≤ 1/2,
whereas the calculations for other values of f can be performed by shifting m in
(13.54) by an integer number. Interestingly, exactly the same analysis is applicable
to a nanohelix subjected to an electric field normal to its axis [112–114]. For a helix
the role of magnetic flux is played by the electron momentum along the helical line.

It should be emphasized that we consider a single-electron problem and we are
interested only in a few low-energy states. This treatment is relevant to nanoscale-
sized semiconductor QRs or type-II QDs discussed in [9, 10, 17, 18, 36, 62] and
neglects the many-body effects which are known to influence Aharonov-Bohm oscil-
lations in mesoscopic rings [34, 35]. The energy levels εn as well as the coefficients
cnm can be found by cutting off the sum in (13.53) at a particular value of |m|. The
results of the numerical diagonalization of the matrix corresponding to the system
of linear equations (13.54), with a cut-off value of |m| = 11, are plotted in Fig. 13.4.
The same cut-off value was chosen in all numerical calculations presented in this
section, since a further increase of the matrix size does not lead to any noticeable
change in the results for the three lowest-energy states, which we are interested in.

In small electric fields, eER  �
2/2MeR2, a significant change in the QR energy

spectrum occurs only for the ground and two lowest excited states, when Φ is close
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(a) (b)

Fig. 13.4 a The energy spectrum of an infinitely narrow quantum rings of radius R pierced by a
magnetic flux Φ and subjected to an in-plane electric field E = 0.2ε1(0)/eR. The electron energies
ε are plotted versus the number of flux quanta Φ/Φ0. b Expanded view on a smaller energy scale
(from [3])

to an integer number of Φ0/2 (the points of degeneracy in the absence of the elec-
tric field). The most prominent change is associated with the linear in electric field
splitting between the ground and first excited states for half-integer f . The less pro-
nounced quadratic in electric field splitting between the first and second excited
states occurs for integer f . These splittings can be easily understood with the help of
perturbation theory, as there is a non-zero matrix element of eER cos ϕ between the
ground and the first excited state, whereas the two excited states are only repelled in
the second order via the ground state. It is shown in Appendix 13.6.2, these essential
features of the low-energy spectrum are fully captured by considering small-size
matrices, which allow an analytical treatment: a two-by-two matrix for half-integer
f and a three-by-three matrix for integer f .

As one can see from Fig. 13.4, energy oscillations in the ground state are strongly
suppressed even for eER = 0.2�

2/2MeR2. This suppression is a major source of
difficulty in spectroscopic detection of Aharonov-Bohm oscillations. However, as
we show in the next two sections, apart from the ground-state energy there are other
physical quantities, such as a dipole moment of the QR and polarization properties
of the inter-level transitions, which have highly-pronounced magneto-oscillations
when the symmetry of the ring is reduced.
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13.4.3 Magneto-Oscillations of the Quantum Ring Electric
Dipole Moment

In this section we consider Aharonov-Bohm oscillations of the QR electric dipole
moment. If an electron occupies the nth state of the neutral single-electron QR with
a uniform positive background, or if a positive charge +e is placed at the center of
the QR (geometry of the problem is shown in Fig. 13.3), the projection of the dipole
moment on the direction of the lateral electric field [2, 3] is given by

Pn = eR
∫

|Ψn|2 cosϕ dϕ. (13.55)

Substituting the wavefunction (13.53) into (13.55) yields the following expression
for Pn

Pn = eR

2

∑

m

cnm
(
cnm−1 + cnm+1

)
, (13.56)

where the coefficients cnm can be found from the system of linear equations (13.54).
In the absence of an electric field, each of the electron states is characterized by a par-
ticular value of angular momentum. The electron charge density is spread uniformly
over the ring and there is no net dipolemoment. The same result is given by (13.56)—
all the products cnmc

n
m±1 entering (13.56) vanish for any value of n resulting in the QR

dipole moment being equal to zero. Let us now consider what happens to the ground
state’s dipole moment in the presence of a weak electric field, eER  �

2/2MeR2.
For Φ = 0, the ground state is a practically pure m = 0 state with a tiny admixture
of m �= 0 wavefunctions. However, the situation changes drastically near the points
of degeneracy when the magnetic flux through the QR is equal to any odd integer
of Φ0/2. For a half-integer flux, even an infinitely small field modifies entirely the
wavefunction of the ground state. As shown in Appendix 13.6.2, when f = 1/2
the ground state wavefunction angular dependence is well-described by sin (ϕ/2).
Thus, the ground state electron density distribution becomes shifted to one side of
the ring, in the opposite direction to the applied electric field. Such a shift is ener-
getically favorable and results in the value of the dipole moment being close to eR.
Simultaneously, the first excited state wavefunction angular dependence becomes
well-described by cos (ϕ/2). For the excited state, the electron is localized near the
opposite side of the ring resulting in a dipole moment of the same magnitude as for
the ground state but with the opposite sign.

The electron density distributions in the ground and first excited states, when
Φ = 0 and Φ = Φ0/2 and the degeneracy is lifted by a weak electric field, is shown
in Fig. 13.5. With changing magnetic flux the ground state density oscillates with
a period Φ0 from an unpolarized to a strongly polarized distribution, resulting in
the corresponding dipole moment oscillations. However, the oscillations of the total
dipole moment of the QR should be partially compensated if the first excited state,
which carries a dipole moment opposite to the ground state’s dipole moment for a
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(a) (b)

(c) (d)

Fig. 13.5 A polar plot of the electron density distribution in a single-electron quantum ring pierced
by themagnetic fluxΦ = 0 (top row) andΦ = Φ0/2 (bottom row) and subjected to a weak in-plane
electric field, E  ε1(0)/eR: a and c for the electron ground state; b and d for the first excited state
(from [3])

flux equal to an odd number of Φ0/2, is also occupied due to a finite temperature.
The effect of temperature T can be taken into account by thermal averaging over all
states

〈P〉 =
∑

n Pn exp (−εn/kBT )
∑

n exp (−εn/kBT )
. (13.57)

The results of numerical calculations, using (13.57), for several temperature values
are shown in Fig. 13.6. The dipole moment oscillations, which are well-pronounced
for kBT  eER, become suppressed when the temperature increases.

In this work we consider the limit of weak electric field only. Higher fields,
eER > �

2/2MeR2, localize the ground state electron near one side of the ring even
in the absence of a magnetic field and the change of magnetic flux through the QR
can no longer influence the electron density distribution. For all values of Φ the
ground state wavefunction consists of a mixture of functions with different angular
momenta, ensuring that this state is always strongly polarized. The suppression of
the dipole moment oscillations with increasing electric field can be seen in Fig. 13.7
where the upper curves, corresponding to higher electric fields and higher dipole
moments, exhibit less pronounced oscillations. The energy oscillations for several
lowest states are known to be completely suppressed in strong electric fields [111].
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Fig. 13.6 Magneto-
oscillations of the dipole
moment of a ring at various
temperatures for
E = 0.2ε1(0)/eR. Different
curves correspond to
different temperatures in the
range from
T = 0.01ε1(0)/kB to
T = 0.41ε1(0)/kB with the
increment 0.1ε1(0)/kB. The
upper curve corresponds to
T = 0.01ε1(0)/kB (from
[3])

Fig. 13.7 Magneto-
oscillations of the dipole
moment of a ring at various
magnitudes of the in-plane
electric field for
T = 0.01ε1(0)/kB. Different
curves correspond to
different magnitudes of the
electric field in the range
from E = 0.2ε1(0)/eR to
E = 1.0ε1(0)/eR with the
increment 0.2ε1(0)/eR. The
upper curve corresponds to
E = 1.0ε1(0)/eR (from [3])

At this point it is instructive to discuss conditions needed for an experimental
observation of electric dipole moment magneto-oscillations in QRs. A typical radius
for experimentally attainable QRs [9, 10, 17] is R � 20 nm. This gives the charac-
teristic energy scale of the inter-level separation ε1(0) � 2meV (corresponding to
0.5THz) for an electron of effective massMe = 0.05me. For a ring with R = 20 nm,
the magnitude of a magnetic field producing a flux Φ = Φ0 is B � 3T. Therefore,
a further decrease of the QR radius would require magnetic fields which are hard to
achieve. A typical electric field needed for pronounced dipole moment oscillations is
E = 0.1ε1(0)/eR � 104 V/m, which can be easily created. By far the most difficult
condition to be satisfied is the requirement on the temperature regime, T < eER/kB.
For the discussed electric field and ring radius this condition becomes T < 2K. In
principle such temperatures can be achieved in laboratory experiments and magneto-
oscillations can be detected, for example, in capacitance measurements. However,
for practical device applications, such as quantum-ring-basedmagnetometery, higher
temperatures are desirable. In the next section we consider a process, which is less
sensitive to the temperature-induced occupation of excited states.
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Fig. 13.8 Relative
directions of the external
electric field E and the
projection e of the THz
radiation polarization vector
onto the quantum ring’s
plane (from [3])

13.4.4 Terahertz Transitions and Optical Anisotropy
in Quantum Rings

In this section we study the influence of the in-plane electric field on polarization
properties of radiative inter-level transitions in Aharonov-Bohm QRs. We restrict
our consideration to linearly-polarized radiation and dipole optical transitions only.1

The case of circular polarization is briefly discussed at the end of the section.
The transition rateTif between the initial (i) andfinal (f ) electron states is governed

by the matrix element Pif = 〈f |eP̂|i〉 , where P̂ is the dipole moment operator and
e is the projection of the radiation polarization vector onto the plane of the QR. For
the model of an infinitely-narrow QR

Pif (θ) = eR
∫

Ψ ∗
f Ψi cos (θ − ϕ) dϕ, (13.58)

where θ is the angle between the vector e and the in-plane electric field E. The
geometry of the problem is shown in Fig. 13.8.

Substituting the electron wavefunctions Ψi and Ψf , given by (13.53), into (13.58)
yields

Tif ∼ P2
if (θ) = P−

if
2 + P+

if
2 − 2P−

if P
+
if cos 2θ , (13.59)

where

P−
if = eR

2

∣∣∣∣∣

∑

m

cfmc
i
m−1

∣∣∣∣∣
(13.60)

and

P+
if = eR

2

∣∣∣∣∣

∑

m

cfmc
i
m+1

∣∣∣∣∣
. (13.61)

1For the theoretical background on the electric dipole approximation for optical transitions please
see Sect. 13.3.3 of this chapter.
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The double angle 2θ entering (13.59) ensures that the transition rate does not depend
on the sign of e.

Let us consider transitions between the ground state and the first excited state
of the Aharonov-Bohm QR in the limit of a weak in-plane electric field, eER 
�
2/2MeR2. Away from the points of degeneracy the ground and the first excited

states are characterized by a particular value of m and either P−
if or P+

if given by
(13.60)–(13.61) vanishes. As a result, the angular dependence in (13.59) disappears
and the transitions have no linear polarization. The picture changes drastically when
Φ is equal to an integer number of Φ0/2. Then P−

if = P+
if and therefore the rate of

transitions induced by the radiation polarized parallel to the direction of the in-plane
electric field (θ = 0) is equal to zero, Tif = T‖ = 0. Simultaneously T⊥, the rate of
transitions induced by the light polarized perpendicular to the direction of the in-
plane electric field (θ = π/2), reaches its maximum possible value. This leads to the
strong optical anisotropy of the system. The results of the calculations for the whole
range of Φ are shown in Fig. 13.9. Very sharp peaks at Φ equal to an integer number
ofΦ0 are the result of splitting between the first and second excited states, whichwere
degeneratewith energy ε1(0) in the absence of an external electric field (seeFig. 13.4).
This splitting occurs in the second order in eER and the spectacular sharpness of the
peaks is due to the very fast change in the electron first and second excited states
wavefunctions when one moves away from the point of degeneracy (for details see
Appendix 13.6.2). The optical transitions between the electron ground and second
excited states are also linearly polarized, but with θ = 0, so that the polarization
of these transitions is normal to the polarization of transitions between the electron
ground and first excited states. Because these two peaks are very closely separated
for Φ = 0, the polarization effects are strongly suppressed if the finite linewidth of
the radiation is taken into account.

In the case of circularly polarized light, the degree of polarizationoscillates aswell.
Inter-level transitions between the ‘pure’ states, characterized by the definite angular
momentum values differing by one, are either right-hand or left-hand polarized.
However, one can easily see that transitions involving the states, which are strongly

Fig. 13.9 Magneto-
oscillations of the degree of
polarization for the
transitions between the
ground state and the first
excited state. Here T‖ and T⊥
correspond to the intensities
of transitions polarized
parallel (e ‖ E) and
perpendicular (e ⊥ E) to the
direction of the in-plane
electric field, respectively
(from [3])
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‘mixed’ when the flux is an integer number of Φ0/2, have the same probabilities
for both circular polarizations. Thus, the magnetic-field-induced optical chirality of
QRs oscillates with the flux.

The total probabilities of the inter-level transitions indeed depend on the pop-
ulations of the states involved. However, the discussed oscillations of the degree
of polarization do not depend on temperature as the selection rules for the optical
transitions are temperature-independent. This effect allows Aharonov-Bohm rings
to be used as room-temperature polarization-sensitive detectors of THz radiation or
optical magnetometers.

13.4.5 Results and Discussion

It is demonstrated that a lateral electric field, which is known to suppress Aharonov-
Bohm oscillations in the ground state energy spectrum of a QR, results in strong
oscillations of other physical characteristics of the system. Namely, the electric-field-
induced dipole moment oscillates as a function of the magnetic flux piercing the QR,
with pronounced maxima when the flux is equal to an odd number of one half of the
flux quantum. This effect is caused by lifting the degeneracy of states with different
angular momentum by arbitrary small electric fields. It should be emphasized that
the discussed effect is not an artifice of the infinitely-narrow ring model used in the
calculations, but it persists in finite-width rings in a uniform magnetic field. Indeed,
the essential feature required for this effect is the degeneracy of the states with the
angular momenta differing by one at certain magnetic field values, which is known
to take place for finite-width rings as well [57–60, 115].

Future observation of the dipolemomentmagneto-oscillationswould require care-
ful tailoring of the QR parameters and experiment conditions. For example, the size
of the QR should not exceed the electron mean free path but should be large enough
so that, for experimentally attainable magnetic fields, the flux through the ring is
near the flux quantum. The electric field should not be too large to avoid polarizing
the QR strongly in the absence of a magnetic field, but it should be large enough to
achieve a splitting between the ground and first excited states exceeding kBT . Esti-
mates presented in this section show that all these conditions can be met in existing
QR systems. However, the temperature constraint constitutes the major obstacle for
any potential applications outside the low-temperature laboratory.

The temperature restrictions are less essential for another predicted effect—giant
magneto-oscillations of the polarization degree of radiation associated with inter-
level transitions in Aharonov-Bohm QRs. Notably, these transitions for the QRs
satisfying the remaining constraints should occur at THz frequencies. Creating reli-
able, portable and tunable sources of THz radiation is one of the most formidable
problems of contemporary applied physics. The unique position of the THz range
in between the frequencies covered by existing electronic or optical mass-produced
devices results in an unprecedented variety of ideas aiming to bridge the so-called
‘THz gap’. For example, the proposed methods of down-conversion of optical exci-
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tation range from creating ultra-fast saturable absorbers [116] to utilizing magnetic-
field-induced energy gap in metallic carbon nanotubes [117–120] to recent proposals
of exciting THz transitions between exciton-polariton branches in semiconductor
microcavities [121–123]. Arguably, the use of QRs for THz generation and detec-
tion has its merits, since their electronic properties can be easily tuned by external
fields. The following scheme for using Aharonov-Bohm QRs as tuneable THz emit-
ters can be proposed. Inversion of population in semiconductor QRs or type II QDs
can be created by optical excitation across the semiconductor gap. Angular momen-
tum and spin conservation rules do not forbid the creation of an electron in the first
excited state as long as the total selection rules for the whole system, consisting of an
electron-hole pair and a photon causing this transition, are satisfied. Terahertz radia-
tion will be emitted when the electron undergoes a transition from the excited to the
ground state of the QR. As was shown in the previous sections both the frequency
and polarization properties of this transition can be controlled by external magnetic
and electric fields.

Other potential applications of the discussed effects are in the burgeoning areas
of quantum computing and cryptography. The discussed mixing of the two states,
which are degenerate in the absence of electric field, is completely controlled by the
angle between the in-plane field and a fixed axis. This brings the potential possibility
for creating nanoring-based qubits, which do not require weak spin-orbit coupling
between the electric field and electron spin. Arrays of the Aharonov-Bohm QRs can
also be used for polarization sensitive single-photon detection, which is essential for
quantum cryptography.

13.5 Quantum Rings in Quantized Electromagnetic Fields.
Aharonov-Bohm Quantum Rings Embedded into
High-Quality Terahertz Microcavities

13.5.1 Introduction

Progress in nanolithography and epitaxial techniques has resulted in burgeoning
developments in the fabrication of micro-scale optical resonators, known as optical
microcavities. If the quality factor of a cavity is sufficiently large, the formation of
hybrid light-matter excitations occurs. Being first observed two decades ago [124],
the strong coupling regime is now routinely achieved in different kinds of microcav-
ities [125]. From the point of view of fundamental physics, this regime is interesting
for investigation of various collective phenomena in condensed matter systems such
as the high-temperature Bose-Einstein condensation (BEC) [126, 127] and super-
fluidity [128]. From the viewpoint of applications it opens a way towards to the
realization of optoelectronic devices of the next generation [129]: room-temperature
polariton lasers [130], polarization-controlled optical gates, [131], effective sources
of THz radiation [121, 123, 132], and others.
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Fig. 13.10 An
Aharonov-Bohm quantum
ring embedded into a
single-mode THz
microcavity (from [5])

Several applications of the strong coupling regime were also proposed for quan-
tum information processing [133–135]. In this case one should be able to tune the
number of emitted photons in a controllable way. This is hard to achieve in pla-
nar microcavities, where the number of elementary excitations is macroscopically
large, but is possible in microcavities containing single quantum dots, where the
quantum dot exciton can be coupled to a confined electromagnetic mode provided
by a micropillar (etched planar cavity) [80], a defect of the photonic crystal [79],
or a whispering gallery mode [81, 136]. That is why the strongly coupled systems
based on quantum dots have attracted particular attention recently. In the strong cou-
pling regime the system possesses a rich multiplet structure, which maps transitions
between quantized dressed states of the light-matter coupling Hamiltonian [79–82,
102, 137–140].

In this section we examine a single-mode THz microcavity [141–144] with an
embedded Aharonov-Bohm quantum ring, which is pierced by a magnetic flux and
subjected to a lateral electric field. We restrict our analysis to linearly polarized
microcavity radiation only. The geometry of the system is shown in Fig. 13.10. The
emission properties of such a system under continuous incoherent pumping are stud-
ied theoretically. We calculate the luminescence spectrum of the system using the
master equation techniques for several combinations of the applied external electric
and magnetic fields. We demonstrate that the resonance which is best for exploring
quantum features of the system [138] can be achieved by means of tuning the mag-
nitude of the lateral electric field. An additional degree of control can be achieved
by changing the angle between the polarization plane of the optical pump and the
lateral electric field. As we show, the quantum ring-microcavity coupling strength
depends strongly on the above mentioned angle.

13.5.2 Quantum Rings in High-Quality Terahertz
Microcavities

13.5.2.1 Aharonov-Bohm Quantum Rings as Two-Level Photon
Emitters

In this section we briefly revise the energy spectrum and optical properties of a
single-electron Aharonov-Bohm QR pierced by a magnetic flux Φ and subjected to
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a lateral electric field E, which were studied in Sect. 13.4. We then show how the
single-electron Aharonov-Bohm QR can be utilized as a two-level, single-photon
emitter.

In the absence of the external electric field the eigenfunctions of an infinitely
narrow Aharonov-Bohm QR of a radius R are given by

ψm (ϕ) = eimϕ/
√
2π , (13.62)

where ϕ is the polar angle coordinate and m = 0,±1,±2 . . . is the angular momen-
tum quantum number. The corresponding eigenvalues are defined by

εm (f ) = εQR (m + f )2 ,

where εQR = �
2/2MeR2 is the energy scale of the interlevel separation in the QR,Me

is the electron effective mass and f = Φ/Φ0 is the number of flux quanta piercing
the QR (Φ0 = h/e). For experimentally attainable QRs, εQR corresponds to the THz
frequency range.

When the lateral electric field is applied, the modified electron eigenfunctions can
be expressed as a linear combination of the unperturbed wave functions (13.62):

Ψn (ϕ) =
∑

m

cnme
imϕ . (13.63)

Substituting the wave function (13.63) into the Schrödinger equation with the Hamil-
tonian containing a term which describes the presence of the lateral electric field,
multiplying the resulting expression by e−imϕ , and integrating with respect to the
angle ϕ results in an infinite system of linear equations for the coefficients cnm (for
details see Sect. 13.4.2)

[
(m + f )2 − λn

]
cnm + β

(
cnm+1 + cnm−1

) = 0 , (13.64)

where β = eER/2εQR is the normalized strength of the lateral electric field and
λn is an energy eigenvalue normalized by εQR. It can be seen from the system of
equations (13.64) that all the QR quantities are periodic in the magnetic flux Φ

with the period equal to Φ0. There is also an apparent symmetry with respect to the
change of the sign of Φ. Therefore, in what follows we will consider only the case
of 0 ≤ Φ ≤ Φ0/2.

It it shown in Appendix 13.6.2 that in the limit of a weak in-plane electric field,
eER  εQR, all essential features of the first three states of the QR are fully captured
by the following 3 × 3 system of linear equations:

⎛

⎝
(f + 1)2 β 0

β f 2 β

0 β (f − 1)2

⎞

⎠

⎛

⎝
cn+1
cn0
cn−1

⎞

⎠ = λn

⎛

⎝
cn+1
cn0
cn−1

⎞

⎠ . (13.65)
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Fig. 13.11 The normalized
energy spectrum for the
electron ground and the first
excited states in the quantum
ring as a function of
dimensionless parameter f
for β = 0.1 (from [5])

In what follows we will be interested in the transitions between the ground and the
first excited states in the QR only. However, in order to obtain accurate ground and
first excited states eigenenergies and eigenfunctions all three listed states should be
considered. The system of linear equations (13.65) can be reduced to a cubic equation
for λn, which yields the following eigenvalues λ1 < λ2 < λ3:

λ1 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3) + f 2 + 2/3, (13.66)

λ2 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3 − 2π/3) + f 2 + 2/3, (13.67)

λ3 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3 + 2π/3) + f 2 + 2/3, (13.68)

where

cosα = 1 − 36f 2 + 9β2

(
1 + 12f 2 + 6β2

)3/2 .

The set of corresponding eigenvectors (non-normalized) is given by substituting
appropriate values of λn into

⎛

⎝
cn+1
cn0
cn−1

⎞

⎠ =
⎛

⎝

[
λn − (f − 1)2

] (
λn − f 2

)− β2
[
λn − (f − 1)2

]
β

β2

⎞

⎠ . (13.69)

The energy spectrum for the electron ground and the first excited states defined by
(13.66) and (13.67) respectively forβ = 0.1 and 0 ≤ f ≤ 1/2 is plotted in Fig. 13.11.
Notably, the 3 × 3 system of equations (13.65) provides a very good accuracy for
the ground and the first excited states when β � 1 (i.e. eER � εQR). A numerical
check shows that the further increase in the system of linear equations, (13.64), does
not provide any noticeable change in the results. A similar analysis is applicable to
a nanohelix with an electric field applied normal to its axis. For a helix, the role of
magnetic flux in the absence of a magnetic field is played by the electron momentum
along the helical line [112–114, 145].
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The QR can be represented as a two-level system with the energy gap between
the ground state |g〉 (n = 1) and the excited state |e〉 (n = 2) denoted by Δ. From
(13.66)–(13.67), it is clear thatΔ depends on both the external electric fieldE, applied
in the QR plane, and themagnetic fluxΦ, piercing the QR. In particular, whenΦ = 0
(Φ = Φ0/2), one obtains Δ/εQR = 1 + 2β2 (Δ/εQR = 2β).

Another quantity, which is needed for further calculations, is the product of the

light polarization vector e and the matrix element d =
〈
e
∣∣∣d̂
∣∣∣ g
〉
=
〈
g
∣∣∣d̂
∣∣∣ e
〉
of the

dipole moment calculated between the ground state |g〉 and the excited state |e〉. For
linearly polarized light this product is given by the following integral:

d · e = eR

2π∫

0

ΨeΨg cos (θ − ϕ) dϕ, (13.70)

where Ψg , Ψe are the ground and the first excited state wave functions defined by
(13.63) and θ is the angle between e and E.

Substituting eigenfunctions Ψg , Ψe given by (13.63) into (13.70) and performing
the integration with respect to the angle ϕ we obtain

d · e = (d2
− + d2

+ − 2d−d+ cos 2θ
)1/2

, (13.71)

where

d− = eR

2

∣∣ce0c
g
−1 + ce+1c

g
0

∣∣ , (13.72)

and

d+ = eR

2

∣∣ce−1c
g
0 + ce0c

g
+1

∣∣ . (13.73)

Later in this work we use (13.71)–(13.73) with coefficients ce, cg obtained from
(13.69) to calculate the QR-MC coupling strength. A detailed analysis of (13.69)
and (13.72)–(13.73) shows that a noticeable θ -dependence in (13.71) occurs only
when f = 0 or f = 1/2, as d− vanishes otherwise.

13.5.2.2 The Jaynes-Cummings Hamiltonian and the Master Equation

The full Hamiltonian describing the system of a QR coupled to a single-mode THz
MC is the Jaynes-Cummings [106]2

HJC = Δσ †σ + �ωMCa
†a + G

(
σ †a + σa†

)
, (13.74)

2For more details on MC-2LE interaction Hamiltonian, i.e. the Jaynes-Cummings Hamiltonian,
please refer to Sects. 13.3.2.1–13.3.2.3 of this chapter.
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where ωMC is the MC eigenfrequency, G is the QR-MC coupling constant, a† is the
MC photon creation operator, a is the MC photon annihilation operator, σ † = (σx +
iσy)/2 is the QR electron creation operator, σ = (σx − iσy)/2 is the QR electron
annihilation operator, and σx, σy are the Pauli matrices acting in the space of |g〉 and
|e〉 states. The frequency of theMCmode and the frequency of the transition between
the QR states are assumed to be close enough to allow the use of the rotating wave
approximation [146, 147]. If the MC mode is linearly polarized, G is given by

G = − (d · e)√�ωMC/2ε0V , (13.75)

where d · e is given by (13.71), ε0 is the vacuum dielectric permittivity, V is the quan-
tization volume, which can be estimated as V ≈ (λMC/2)3, and λMC = 2πc/ωMC is
the MC characteristic wavelength. When the magnetic flux piercing the QR is equal
to an integer number of half-flux quanta, G strongly depends on the angle θ between
the projection of the radiation polarization vector onto the QR plane and the applied
lateral electric field.

The eigenvalues of the Hamiltonian (13.74) are the same as in the case of a single-
mode MC with embedded QD, whose excitations obey fermionic statistics [138,
146].

E±
N = �ωMC (N − 1/2) + Δ/2 ±

√
(�ωMC − Δ)2 /4 + NG 2, (13.76)

where N is the total number of electron-photon excitations in the system, i.e. the
number of photons inside the MC if the electron is in the ground state. The corre-
sponding eigenfunctions X ±

N can be expressed as a linear combination of the com-
bined electron-photon states |g,N 〉 = |g〉 ⊗ |N 〉 and |e,N − 1〉 = |e〉 ⊗ |N − 1〉,
which define both the QR state and the MC photon occupation number. Using this
basis we solve a 2 × 2 system of linear equations which corresponds to the Hamil-
tonian (13.74) and obtain

X ±
N = K±

g,N |g,N 〉 + K±
e,N |e,N − 1〉 , (13.77)

where

K±
g,N =

√
NG

√(
E±
N − N�ωMC

)2 + NG 2
, (13.78)

and

K±
e,N = E±

N − N�ωMC√(
E±
N − N�ωMC

)2 + N�G 2
. (13.79)

The main advantage of using a QR instead of a QD is the opportunity to control both
the energy gap Δ between the first two states of the QR and the QR-MC coupling
constant G by changing the external electric and magnetic fields. These fields can
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Fig. 13.12 Schematic diagram of the energy and emission spectra of the coupled QR-MC system
in the resonant case Δ = �ωMC : a the “Jaynes-Cummings ladder”; b the Mollow triplet; c the Rabi
doublet

be used to achieve the resonant condition Δ = �ωMC and provide easy means of
performing a transition from the strong to the weak coupling regime within the same
system [138].

The eigenvalues E±
N defined by (13.76) form the so-called “Jaynes-Cummings

ladder” and the emission spectrum of the system, which is observed outside of the
MC, is defined by optical transitions between the states with total number of electron-
photon excitations N different by unity (see Fig. 13.12). Inside a non-ideal MC, a
photon has a limited lifetime and when the photon leaks out, one can measure its
frequency. This provides a direct access to the quantized coupled electron-photon
states of the system.

In order to describe any realistic experiment measuring the QR-MC emission
spectrum one should introduce pump and decay in the system. We model the system
dynamics under incoherentMC pumping and account for dissipation processes using
the master equation approach for the full density matrix of the system ρ (see, e.g.,
[146, 147]).3 The master equation reads

∂ρ

∂t
= i

�
[ρ,HJC] + L MC

P ρ + L MC
γ ρ + L QR

γ ρ, (13.80)

where L MC
P , L MC

γ are the Lindblad terms, which account for the MC pump and

decay, and the Lindblad term L
QR
γ describes non-radiative transitions of the QR

electron from the excited state |e〉 to the ground state |g〉. In the explicit form these
three terms are given by

3For more details on the master equation approach for the full density matrix of a general MC-2LE
system please see Sects. 13.3.2.4–13.3.2.5 of this chapter.
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L MC
P ρ = PMC

2
(2a†ρa − aa†ρ − ρaa† + 2aρa† − a†aρ − ρa†a),

L MC
γ ρ = γMC

2
(2aρa† − a†aρ − ρa†a),

L QR
γ ρ = γQR

2
(2σρσ † − σ †σρ − ρσ †σ),

where PMC is the intensity of the incoherent MC pumping and γMC , γQR are the
lifetimes of the photonic and the QR excitations respectively. Due to the balance
between the pump and the decay, after some time a steady state is established. We
denote the corresponding density matrix as ρSS . The steady state density matrix
can be found by solving numerically (13.80) with all the matrices truncated. When
performing the truncation, all the states which can be excited as a result of the
pumping should be accounted for.

13.5.2.3 Emission Spectrum of the System Under Incoherent Pumping

In the presence of the pump and the decay and after establishing an equilibrium, the
system is in amixed state, which is characterized by the full densitymatrix ρSS . If ρSS

is written in the basis of eigenfunctions (13.77), the density matrix diagonal element
ρSS
II gives the probability of the system to be in the I th state. At low pumping,

PMC  G , and in the case of a high-Q system, γMC, γQR  G , which is the best
regime to elucidate quantum coupling effects [138], the emission spectrum can be
calculated using the so-called manifold method, which has been proved to provide
qualitatively accurate results avoiding heavy numerical calculations (see, e.g., [138,
140, 148]). In this approximation the QR and MC emission spectra are given by

SQR (ω) ≈ 1

π

∑

I ,F

∣∣∣MQR
IF

∣∣∣
2
ρSS
II ΓIF

(�ΩIF − �ω)2 + Γ 2
IF

, (13.81)

SMC (ω) ≈ 1

π

∑

I ,F

∣∣MMC
IF

∣∣2 ρSS
II ΓIF

(�ΩIF − �ω)2 + Γ 2
IF

, (13.82)

where
∣∣MQR

IF

∣∣2 = |〈XF , | σ |XI 〉|2,
∣∣MMC

IF

∣∣2 = |〈XF |a|XI 〉|2,�ΩIF = EI − EF ,Xi

andXf are the QR-MC initial and final states eigenfunctions defined by (13.77), Ei

and Ef are the QR-MC initial and final states eigenenergies defined by (13.76), and
ΓIF is given by
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ΓIF = γQR

2

∑

J

(∣∣MQR
JI

∣∣2 + ∣∣MQR
JF

∣∣2
)

+ γMC

2

∑

J

(∣∣MMC
JI

∣∣2 + ∣∣MMC
JF

∣∣2
)

+PMC

2

∑

J

(∣∣MMC
JI

∣∣2 + ∣∣MMC
JF

∣∣2 + ∣∣MMC
IJ

∣∣2 + ∣∣MMC
FJ

∣∣2
)
.

In (13.81)–(13.82) SQR and SMC correspond to photons of two different origins,
which can be detected outside of theMC by an external observer: the direct emission
of the QR and the leaking MC photons. In the first case a photon outside of the MC
is created as a result of the QR electron transition from the excited state |e〉 to the
ground state |g〉 and in the second case the photon is created due to annihilation of
a MC photon. Substituting X ±

N from (13.77) into the expressions for
∣∣MIF

∣∣2 yields

∣∣MQR
IF

∣∣2 =
∣∣∣K±

g,NF
K±
e,NI

∣∣∣
2
δNF ,NI−1,

∣∣MMC
IF

∣∣2 =
∣∣∣
√
NIK

±
g,NF

K±
g,NI

+√NFK
±
e,NF

K±
e,NI

∣∣∣
2
δNF ,NI−1.

It should be noted that only the transitions between the coupled electron-photon
states with the total number of excitations differing by unity are allowed.

In the resonant case Δ = ωMC , for transitions from the N th state to the (N − 1)th
state we obtain ∣∣∣MQR

±→∓
∣∣∣
2 = 1/4, (13.83)

∣∣∣MQR
±→±

∣∣∣
2 = 1/4, (13.84)

and ∣∣MMC
±→∓

∣∣2 =
∣∣∣
√
N − √

N − 1
∣∣∣
2
/4, (13.85)

∣∣MMC
±→±

∣∣2 =
∣∣∣
√
N + √

N − 1
∣∣∣
2
/4, (13.86)

with corresponding eigenfrequencies given by

Ω±→∓ = ωMC ± G
(√

N + √
N − 1

)
/�, (13.87)

Ω±→± = ωMC ± G
(√

N − √
N − 1

)
/�. (13.88)

One can see that the observed emission spectrum consists of two symmetric inner
peaks at frequencies (13.88) and two symmetric outer peaks at frequencies (13.87).
Together, these peaks form the so-called “Jaynes-Cummings fork”. From (13.83)–
(13.86) it follows that when the total number of electron-photon excitations in the ini-
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tial stateN = 1, both SQR and SMC have a shape of the Rabi doublet (see Fig. 13.12c),
and in the case of large excitation numbers, N � 1, SQR is in the form of the Mollow
triplet (see Fig. 13.12b) while SMC collapses into a single lasing peak.

13.5.3 Results and Discussion

In this section we use the formalism which was developed in the previous sections to
calculate emission spectra of the QR-MC system in the presence of a magnetic flux
Φ piercing the QR and a lateral electric field E. The QR-MC system has apparent
advantages for exploring the quantum nature of light-matter coupling in nanostruc-
tured systems compared to the well-studied QD-based setup. Namely, the parameters
of the system can bemore easily tuned by external fields. Between all possible combi-
nations of the applied magnetic and electric fields there are two cases of considerable
interest: (a) Φ = 0, e ⊥ E and (b) Φ = Φ0/2, e ⊥ E. In both cases, the energy gap
between the QR states is tunable by the strength of the lateral electric field. From
(13.66)–(13.67) we get Δ/εQR = 1 − 2β2 (Δ/εQR = 2β) for Φ = 0 (Φ = Φ0/2).
Thus, the energy gap Δ can be easily adjusted to coincide with the energy of the
MCmode �ωMC . From (13.71)–(13.73) and (13.75) one can see that when Φ = 0 or
Φ = Φ0/2 theQR-MC coupling constantG strongly depends on the angle θ between
the direction of the external electric field and the projection of theMCmode polariza-
tion vector onto theQRplane. If e ⊥ E, the coupling constantG reaches itsmaximum
possible value, and if e ‖ E, the MC mode and the QR are completely uncoupled.
By changing the direction of the lateral electric field one acquires additional means
of control of the emission spectrum of the system.

The quantum structure of the Jaynes-Cummings states discussed in the previous
section is known to be observed only in the low dissipation regime [138]. Therefore, it
is natural to consider aQR embedded into a high-QTHzMCunder aweak incoherent
pumping. Similar to [138], we choose a MC with the decay rate γMC/G = 0.1 and
a QR with the decay rate γQR/G = 0.01. The QR decay rate is chosen to be much
smaller than theMC decay rate, as is the case in most experimental systems [80, 82].
In all the calculations we chose either PMC/G = 0.005 or PMC/G = 0.095. These
conditions satisfy the applicability criteria of the manifold method for modelling the
emission spectrum of the systems.

In order to estimate experimental conditions for the observation of the predicted
emission spectrawe use the following values of the other systemparameters: a typical
radius of experimentally attainable [9, 10, 17]QRs,R = 20nm and the electron effec-
tive mass M = 0.05me. This gives the energy scale of the QR interlevel separation
εQR � 2meV and the magnitude of the magnetic field, which produces a magnetic
flux through the QR equal to a half of the flux quantum, B � 2T. Unless specified
otherwise, all the calculations are made in the presence of a weak lateral electric
field E ⊥ e with the magnitude E = 0.1εQR/eR = 2 × 104V/m. The QR-MC cou-
pling constant can now be estimated using (13.75). we obtain G = 8.3 × 10−4 meV
(G = 1.2 × 10−3 meV) for Φ = 0 (Φ = Φ0/2) which results in the MC Q-factor
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requirement Q = �ωMC/γMC ≈ 16,000 (Q ≈ 5000). THz microcavities with the Q-
factor of this order of magnitude have already been achieved [142].

We start with calculations of the emission spectrum of the system for PMC/G =
0.005 andPMC/G = 0.095 in the resonant case,�ωMC = Δ. Themagnetic flux pierc-
ing the QR is either Φ = 0 or Φ = Φ0/2. Results of these calculations are shown
in Fig. 13.13. Both the direct QR emission spectrum, SQR, and the MC emission
spectrum SMC are plotted. When PMC/G = 0.005, there are two dominant peaks (the
linear Rabi doublet) in SQR and SMC at the frequenciesω = ±G /�, which correspond
to the transitions between the two N = 1 states and the ground N = 0 state. With
increasing pumping, PMC/G = 0.095, the higher, N > 1, states are excited. The
intensity of the Rabi doublet is decreased while the quadruplet peaks correspond-
ing to the transitions between the N = 2 and N = 1 states emerge. Only the inner
quadruplet peaks in SQR and SMC can be seen in the selected energy range. It should
be mentioned that the outer peaks in the MC emission spectrum, SMC , become sup-
pressed with increasing N , as can be seen from the expression for the corresponding
matrix elements, (13.85).

A different type of emission spectrum can be observed away from the resonance.
This can be achieved for the same system by changing the magnitude of the lateral
electric field. In Figs. 13.14 and 13.15 we plot SMC and SQR whenΔ �= �ωMC for sev-
eral values of E. Figure13.14 corresponds toΦ = 0, whereas Fig. 13.15 corresponds
to Φ = Φ0/2. Due to the fact that there are non-zero probabilities of finding the sys-
tem in states with different N , the emission spectrum has a pronounced multiplet
structure. TheMC pumping rate is taken as PMC/G = 0.095. One can clearly see the
avoided crossings in the plotted emission spectra, manifesting that the system is in
the strong coupling regime.WhenΦ = Φ0/2 and the detuning betweenΔ and �ωMC

is of the order of G , the direct QR emission spectrum has the most intensive peaks
at the frequencies close to ω = Δ/�. This indicates that the QR is almost uncoupled
from the MC. The more pronounced changes in the emission spectra in Fig. 13.15
compared to Fig. 13.14 can be explained by different dependences of the energy gap
Δ on the magnitude of the lateral electric field E: when Φ = Φ0/2 the dependence
is linear in E and when Φ = 0 the dependence is quadratic in E.

For a nearly zero flux through the QR, a small change of the flux results in
significant changes in SMC and SQR, as the presence of a weak magnetic field affects
strongly both the QR gapΔ and the QR-MC coupling constantG . The dependence of
the QR gap Δ on the magnetic flux Φ piercing the QR can be seen from Fig. 13.11,
while the QR-MC coupling constant G magnetic flux dependence can be easily
calculated using (13.71)–(13.73) and (13.75). In Fig. 13.16 we plot SMC and SQR for
several values of Φ near zero. The MC pumping rate is taken as PMC/G0 = 0.095,
where G0 denotes the value of the QR-MC coupling constant for Φ = 0. The plotted
emission spectra incorporate both the anticrossing behaviour due to detuning of
the QR transition energy from the energy of the MC mode and the changes in the
multiplet structure owing to varying the QR-MC coupling strength.

Finally,we calculate the emission spectrumof theQR-microcavity systemaltering
the angle θ between the direction of the applied electric field and the projection of
the microcavity mode polarization vector onto the QR plane. Again, the magnetic
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Fig. 13.13 Emission spectrum of the quantum ring-microcavity system in the presence of a lateral
electric field E = 2.00 × 104 V/m for PMC/G = 0.005 and PMC/G = 0.095. The microcavity
mode is in resonance with the quantum ring transition. The upper row (brown) corresponds to the
microcavity emission and the lower row (red) corresponds to the direct quantum ring emission. The
magnetic flux piercing the quantum ring is either Φ = 0 or Φ = Φ0/2. The emission frequencies
are normalized by the quantum ring-microcavity coupling constant G /� and centred around ωMC
(from [5])

(a) (b)

Fig. 13.14 Anticrossing in the emission spectrum of the quantum ring-microcavity system at
various magnitudes of the external lateral electric field E from 1.98 × 104 V/m to 2.02 × 104 V/m
with the increment 50V/m: a microcavity emission spectrum (brown), b direct quantum ring
emission spectrum (red). The magnetic flux piercing the quantum ring Φ = 0. The resonance case
Δ = �ωMC corresponds to E = 2.00 × 104 V/m. The microcavity pumping rate PMC/G = 0.095.
The emission frequencies are normalized by the quantum ring-microcavity coupling constant G /�

and centred around ωMC (from [5])
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(a) (b)

Fig. 13.15 Anticrossing in the emission spectrum of the quantum ring-microcavity system at
various magnitudes of the external lateral electric field E from 1.98 × 104 V/m to 2.02 × 104 V/m
with the increment 50V/m: a microcavity emission spectrum (brown), b direct quantum ring
emission spectrum (red). The magnetic flux piercing the quantum ring Φ = Φ0/2. The resonance
case Δ = �ωMC corresponds to E = 2.00 × 104V/m. The microcavity pumping rate PMC/G =
0.095. The emission frequencies are normalized by the quantum ring-microcavity coupling constant
G /� and centred around ωMC (from [5])

(a) (b)

Fig. 13.16 Anticrossing in the emission spectrum of the quantum ring-microcavity system at
various magnitudes of the magnetic flux Φ piercing the quantum ring from 0 to 0.004Φ0 with
the increment 5 × 10−4Φ0 and in the presence of the lateral electric field E = 2.00 × 104 V/m:
a microcavity emission spectrum (brown), b direct quantum ring emission spectrum (red). The
resonance case Δ = �ωMC corresponds to Φ = 0. The emission frequencies are normalized by the
value of the quantum ring-microcavity coupling constant calculated for Φ = 0 (G0) and centred
around ωMC . The microcavity pumping rate PMC/G0 = 0.095 (from [5])
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Fig. 13.17 Emission spectrum of the quantum ring-microcavity system when the lateral electric
field E = 2.00 × 104 V/m is rotated. The angle θ is counted between E and the projection of
the microcavity mode polarization vector onto the quantum ring plane e. The upper row (brown)
corresponds to the microcavity emission and the lower row (red) correspond to the direct quantum
ring emission. The system is in resonance, Δ = �ωMC . The emission frequencies are normalized
by the value of the quantum ring-microcavity coupling constant for θ = π/2 (Gπ/2) and centred
around ωMC . The microcavity pumping rate PMC/Gπ/2 = 0.095 (from [5])

flux piercing the QR is either Φ = 0 or Φ = Φ0/2. The system is in the resonance,
Δ = �ωMC . The microcavity pumping rate is taken as PMC/Gπ/2 = 0.005, where
Gπ/2 denotes the value of the QR-microcavity coupling constant for θ = π/2. The
results are plotted in Fig. 13.17. One can see that as the angle θ is changed, the
emission peaks shift towards the microcavity eigenfrequency ωMC , which can be
explained by reducing the coupling strength G . This effect provides an additional
way to control the frequency of the satellite peaks in the QR-microcavity emission
spectrum and allows a purely spectroscopic measurement of the pump polarization.

In this work we dealt exclusively with the QR inter-subband transitions. However,
a similar analysis should be possible for inter-band optical transitions, for which
matrix elements and energies can also be tuned by the external fields more easily
than in the widely studied QD systems.

In conclusion,we have analyzed the emission spectrumof anAharonov-BohmQR
placed into a single-mode quantumMC.Wehave shown that the emission spectrum in
the strong coupling regime has a multiplet structure and can be tuned by the variation
of the magnetic field piercing the QR and by changing the strength and direction of
the applied lateral electric field. Thus, it is demonstrated that aMCwith an embedded
QR is a promising system for use as a tunable optical modulator in the THz range.
The QR-MC system, which allows manipulation of quantum states with external
fields, might also prove to be useful for investigating dephasing mechanisms and
for engineering and exploring enhanced light-matter interactions for novel quantum
investigations.
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13.6 Conclusions and Outlook. Bridging the THz Gap
with Aharonov-Bohm Quantum Rings

13.6.1 Conclusions

In our work we studied the interaction of Aharonov-Bohm quantum rings with clas-
sical and quantized electromagnetic fields.

In Sect. 13.4 we examined an infinitely-narrow, single-particle quantum ring
pierced by a magnetic flux and subjected to a static lateral electric field [2, 3]. This
model is relevant to nanoscale-sized type-I quantum rings and type-II quantum dots,
such as those studied in [6–32]. We show that the applied electric field, which is
known to suppress magneto-oscillations in the ground state of a single-particle quan-
tum ring [110, 111], results in strong oscillations of the ring electric dipole moment
and selection rules for optical transitions between the ground and first excited states
of the quantum ring. We attribute these phenomena to electric-field induced mixing
of quantum ring states with different angular momenta, which occurs whenmagnetic
flux through the quantum ring is equal to a half-integer of the magnetic flux quantum.
It is shown that even a weak electric field causes this mixing. Most of the results
obtained here for the static in-plane electric field can be easily generalized to the
case of the rotating field by a proper change of the coordinates system [4].

It should be also emphasised that calculated effects are not an artifice of the
infinitely-narrow ring model used in our calculations, but persist in finite-width rings
in a uniform magnetic field. As we have shown, the only feature needed for the
discussed phenomena is the degeneracy of the states with the angular momenta
differing by one at certain magnetic field values, which is known to be present in
quantum rings of finite width [57–60, 115].

In order to establish an understanding of the potential for observation of the
predicted effects in real systems we provide estimates for experimental conditions
essential for measuring these phenomena. While observation of the dipole moment
magneto-oscillations would require a low-temperature laboratory, the oscillations of
selection rules for optical transitions can be potentially observed at room temper-
atures. Indeed, when the ground and the first excited stated are equally occupied
the dipole moment oscillations are completely suppressed while the intensity of the
optical transitions is only four times lower comparing to the case when the ground
state is fully occupied and the first excited state is empty.

For experimentally attainable quantum rings these transitions occur in the THz
frequency range. It provides an opportunity of utilizing Aharonov-Bohm quantum
rings as THz emitters and detectors. Despite significant progress made towards reli-
able and efficient THz sources, such as THz quantum cascade lasers [149–151],
free electron THz lasers [152, 153], and recently proposed microcavity-polaritons
THz lasers [122, 123, 130, 132], bridging of the so-called ‘THz gap’ remains a
formidable task. The range of potential application of THz radiation is both vast and
in high demand. The vibrational modes of many molecules, including molecules of
explosive materials, occur at THz frequencies [154, 155], making THz spectroscopy
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a powerful and non-invasive tool for molecular identification and characterization.
An airport scanner, which detects molecules found in explosives is only one example
of a highly-useful THz device. Other potential applications of the THz spectroscopy
lie in the area of pharmaceutical research and biomedical diagnostics [156].

Arguably, the use of Aharonov-Bohm quantum rings for THz radiation and detec-
tion has its merits as polarization properties and frequencies of THz transitions in
quantum rings are fully controlled by the applied external fields.

In Sect. 13.5 we examined a system of an Aharonov-Bohm quantum ring embed-
ded into a single-mode THz microcavity [5]. It was shown that the discussed pos-
sibility to control optical properties of quantum rings with the external electric and
magnetic fields suggests a new way of regulating the microcavity-emitter coupling
strength. Such easy control was never possible with quantum dots embedded in
microcavities where all main optical properties of the system are predefined at the
growth stage. As a result, one can strongly influence emission spectra of the system
by varying external fields.

We calculate the emission spectra of the system under continuous incoherent
pumpingwhen thequantum ring transitions are both in or out of the resonancewith the
microcavity mode and for various combinations of the applied electric and magnetic
fields. We restrict our analysis to linearly polarized microcavity radiation only. It
is shown that when the system is in resonance and the magnetic flux piercing the
quantum ring is equal to a half-integer of themagnetic flux quantum, a precise control
of the satellite peaks in the emission spectra is possible with (i) pumping intensity and
(ii) the direction of the lateral electric field with respect to the microcavity radiation
polarization vector. This effect can be used for creating the highly demanded THz
electro-optical modulators. In a quantum ring-microcavity-based optical modulator,
modulation of the intensity, frequencies and polarization of the THz radiation would
be realized by periodic variation of the lateral electric field direction. Potentially, such
a device can be indeed created as THz microcavities with high values of Q-factor
based on both Bragg mirrors [157] and photonic crystals [142] have been already
achieved.

The calculated non-resonant emission spectra can be of a great help during the
procedure of modulator adjustment. As we discuss in Sect. 13.5, in order to establish
a resonance in the quantum ring-microcavity system one would tune magnitudes of
the applied electric and magnetic fields. Thus, the calculated non-resonant emission
spectra can serve as a reference pattern.

To conclude, we believe Aharonov-Bohm quantum rings to be promising candi-
dates for creating optical devices operating with radiation at THz frequencies and
hope that our work will stimulate further experimental research in this area.

13.6.2 Outlook

A natural extension of the current work presented in Sect. 13.4 is to repeat our calcu-
lations using a more realistic (and consequently more complicated) 2D model of the
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Fig. 13.18 A finite-width
ring in a magnetic field for
different values of in-plane
electric field strength. The
ring radius r0=100nm and its
width is 20nm

Aharonov-Bohm quantum ring.We chose the samemodel as was utilized in [57–60]
as it allows an analytical treatment. Preliminary results of our calculations are shown
in Fig. 13.18. One can see that, as it was stated, the main feature required for the
predicted effects—degeneracy of the energy levels with angular momenta differing
by unity at certain magnetic field values—is indeed present in this model.

The possible extension of the work presented in Sect. 13.5 is to use the quan-
tum regression theorem [92–94, 146, 158] (together with the Wiener-Khintchine
formula [92–94, 146, 159, 160]) to calculate the emission spectrum of the quantum
ring-microcavity system. Such an approach can potentially reveal non-Lorentzian
emission lineshapes.

Appendix. Analytical Solutions for Small Matrices.

In the limit of weak electric field, β = eER/(�2/MeR2)  1, the electron ground,
first and second excited states are well-described by the following three-by-three
system, which is obtained from (13.54) for |m| ≤ 1

⎛

⎝
(f + 1)2 β 0

β f 2 β

0 β (f − 1)2

⎞

⎠

⎛

⎝
cn+1
cn0
cn−1

⎞

⎠ = λn

⎛

⎝
cn+1
cn0
cn−1

⎞

⎠ . (13.89)

Here f = (Φ − NΦ0)/Φ0 with N integer, so that 0 ≤ f ≤ 1/2. The eigenvalues λn

of the system (13.89) are the roots of the cubic equation

λ3
n − λ2

n

(
3f 2 + 2

)+ λn
(
3f 4 + 1 − 2β2)− f 6 + 2f 4 − f 2 + 2f 2β2 + 2β2 = 0.

(13.90)
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Solving (13.90) we find

λ1 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3) + f 2 + 2/3, (13.91)

λ2 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3 − 2π/3) + f 2 + 2/3, (13.92)

λ3 = −2/3
√
1 + 12f 2 + 6β2 cos (α/3 + 2π/3) + f 2 + 2/3, (13.93)

with

cosα = 1 − 36f 2 + 9β2

(
1 + 12f 2 + 6β2

)3/2 .

Considering β  1 (the limit of weak electric field) we expand (13.91–13.93) into
Taylor series in f to obtain

λ1 = f 2 − 2β2
∞∑

n=0

(2f )2n + O(β4), (13.94)

λ2 = 1 + f 2 + β2

[

1 −
∞∑

n=0

(−1)n (2n)!
(1 − 2n) (n!)2

(
f

β2

)2n
]

+ O(β4), (13.95)

λ3 = 1 + f 2 + β2

[

1 +
∞∑

n=0

(−1)n (2n)!
(1 − 2n) (n!)2

(
f

β2

)2n
]

+ O(β4). (13.96)

It can be shown that (13.95, 13.96) coincidewith the results of the perturbation theory
in eER for quasi-degenerate states [96] if the coupling to the states with |m| > 1 is
neglected.

The energy spectrum given by (13.91–13.93) is plotted in Fig. 13.19. It is nearly
indistinguishable from the energy spectrum, which was obtained by numerical diag-
onalization of the 23 × 23 system in Sect. 13.4 for the same value of β. A small
discrepancy between the plotted energy spectra is noticeable only for the first and
second excited states. The energy spectrum obtained by numerical diagonalization of
the 23 × 23 system is slightly shifted towards the smaller energies. This shift occurs
because the considered 3 × 3matrix does not take into account the coupling between
the m = ±1 and m = ±2 states. For the infinite system and f = 0, perturbation the-
ory up to the second order in β yields

λ1 = −2β2, λ2 = 1 − β2/3, λ3 = 1 + 5β2/3, (13.97)

whereas from (13.94–13.96) one gets

λ1 = −2β2, λ2 = 1, λ3 = 1 + 2β2. (13.98)
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Fig. 13.19 The normalized
energy spectrum as a
function of dimensionless
parameter f for β = 0.1.
Dashed line—the result of
analytical solution of the
3 × 3 system. Solid
line—the result of numerical
diagonalization of the
23 × 23 system. A
horizontal line is shown to
indicate λ = 0 value

The λ2 and λ3 values in (13.97) differ from the values in (13.98) by −β2/3 which
corresponds to the repulsion between the m = ±1 and m = ±2 states calculated
using the second order perturbation theory.

When f = 1/2, and in the absence of a lateral electric field, them = 0 andm = −1
states are degenerate with energy ε1 (0) /4, i.e. λ1 = λ2 = 1/4, whereas them = +1
state energy is nine times larger (λ3 = 9/4). The contribution from this remote state
can be neglected, and the electron ground and first excited states are well-described
by the following two-by-two system, which contains c−1 and c0 coefficients only,

(
f 2 β

β (f − 1)2

)(
cn0
cn−1

)
= λn

(
cn0
cn−1

)
. (13.99)

The eigenvalues λn of the system (13.99) are the roots of the quadratic equation

λ2
n − λn

(
2f 2 − 2f + 1

)+ f 4 − 2f 3 + f 2 − β2 = 0. (13.100)

Solving (13.100) we find

λ1,2 = f 2 − f + 1/2 ∓√f 2 − f + β2 + 1/4, (13.101)

yielding for f = 1/2 the eigenvalue difference λ2 − λ1 = 2β, corresponding to the
energy splitting of eER as expected from the perturbation theory for degenerate
states. The energy spectrum given by (13.101) is plotted in Fig. 13.20 together with
two lowest eigenvalues of the 23 × 23 system demonstrating a spectacular accuracy
of the approximate solution for β = 0.1.

Let us now return to the three-by-three matrix and examine how its eigenvectors
are modified with changing f . Near the point f = 0 it is convenient to write the
eigenvectors of the system (13.89) in the following form

⎛

⎝
cn+1
cn0
cn−1

⎞

⎠ = An

⎛

⎝

[
λn − (f − 1)2

] (
λn − f 2

)− β2
[
λn − (f − 1)2

]
β

β2

⎞

⎠ , (13.102)
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Fig. 13.20 The normalized
energy spectrum as a
function of dimensionless
parameter f for β = 0.1.
Dashed line - the result of
analytical solution of the
2 × 2 system. Solid line - the
result of numerical
diagonalization of the
23 × 23 system. A
horizontal line is shown to
indicate λ = 0 value

where An denotes the normalization constant corresponding to the eigenvalue λn

and (13.102) is valid only for β �= 0. For f = 0 in the limit of weak electric field
(β  1) we obtain

⎛
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(13.105)

From (13.103–13.105) one can see that for f = 0 and β  1 the electron ground
state is almost a pure m = 0 state, whereas the angular dependencies of the wave-
functions of the first and second excited states are well-described by sin ϕ and cosϕ

respectively.
The structure of eigenfunctions near f = 1/2 is best understood from (13.99),

which yields

(
c10
c1−1

)
= A

(
β

1/2 − f −√f 2 − f + β2 + 1/4

)
, (13.106)

(
c20
c2−1

)
= A

(
f − 1/2 +√f 2 − f + β2 + 1/4

β

)
. (13.107)
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Here A is the normalization constant and β �= 0. For f = 1/2 we get

(
c10
c1−1

)
= 1√

2

(
1

−1

)
,

(
c20
c2−1

)
= 1√

2

(
1
1

)
. (13.108)

From (13.108) one can see that for f = 1/2 the angular dependencies of the ground
and first excited states wavefunctions are described by sin (ϕ/2) and cos (ϕ/2)
respectively.

Figure13.21 shows themagnetic fluxdependencies of the coefficients |c0|2, |c−1|2,
and |c+1|2 for the electron ground, first and second excited states. From these plots
one can see that the electron ground state is almost a purem = 0 state in awide region
0 ≤ f � 1/4. An admixture of the m = −1 wavefunction increases smoothly as one
approaches the point of degeneracy f = 1/2. Finally, when f = 1/2, the ground state
wavefunction is expressed as a difference of the m = −1 and m = 0 wavefunctions.
The first and the second excited states behave differently. In a small region near
the point f = 0 the electron first and second excited states wavefunctions consist
of a strong mixture of the m = −1 and m = +1 functions with a tiny admixture
of the m = 0 function. In particular, when f = 0 the first and second excited states
eigenfunctions with good accuracy can be expressed as the difference and the sum of
the m = −1 and m = +1 functions respectively. Optical transitions between these
states and the ground state are only allowed if the polarization of the associated

(a) (b)

(c)

Fig. 13.21 Magnetic flux dependence of the wavefunction coefficients |c0|2 (solid line), |c−1|2
(dotted line), and |c+1|2 (dashed line): a for the ground state; b for the first excited state; c for the
second excited state
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optical excitations is either perpendicular (for the first excited state) or parallel (for
the second excited state) to the direction of the applied in-plane electric field. Away
from the f = 0 region, only the coefficient c−1 (in the case of the first excited state)
or c+1 (in the case of the second excited state) remains in the (13.102), which now
describes almost pure m = +1 and m = −1 states. When f exceeds 1/4 the first
excited state starts to contain a noticeable ad-mixture ofm = 0 function, as discussed
above, and for f = 1/2 the first excited state eigenfunction is expressed as a sum
of the m = −1 and m = 0 wavefunctions in equal proportions, whereas the second
excited state remains an almost pure m = +1 state.

The same trend in the evolution of wavefunctions of the three lowest energy states
with changing the flux through the ring can be seen from perturbation theory. For
f = 0, the degeneracy between the first and second excited states is removed in the
second order in eER only. Nevertheless, as a result of the degeneracy, the introduction
of any weak perturbation drastically modifies the wavefunctions corresponding to
these states, turning them from the eigenstates of the angular momentum operator
to the sine and cosine functions. With a slight increase of f , so that f > β2, the
first and the second excited states, which are not degenerate anymore for f �= 0,
become governed mainly by the diagonal terms of the Hamiltonian, which do not
mix the m = −1 and m = +1 functions. When f = 1/2, the m = −1 and m = 0
states are degenerate in the absence of the electric field. This degeneracy is removed
in the first order in eER. The off-diagonal matrix elements connecting m = −1 and
m = 0 functions remain of the same order of magnitude as the difference between the
diagonal terms of theHamiltonian across a broad range of f values near f = 1/2. This
results in strong mixing of them = −1 andm = 0 components in the eigenfunctions
of the ground and first excited states for 1/4 � f ≤ 1/2.
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Chapter 14
Intense Terahertz Radiation Effect
on Electronic and Intraband Optical
Properties of Semiconductor Quantum
Rings

H.M. Baghramyan, M.G. Barseghyan, A.A. Kirakosyan and D. Laroze

Abstract The current chapter aims to theoretically demonstrate that intense
Terahertz (THz) laser field can be a powerful method for the controlling of electro-
optical properties of quantum rings (QRs). We explore the electronic and impurity
states, charge localization and intraband optical phenomena in GaAs/GaAlAs QRs
irradiated by the intense THz laser field. Single and concentric double QRs, as well
as artificial molecules formed by the laterally aligned QRs are explored. It is demon-
strated how the laser field modifies the energy spectrum and wave functions by
the strong distortion of the original cylindrical geometry of quantum confinement.
Moreover, our findings give an insight on the laser field-affected inter-ring coupling
of concentric double QRs and dissociation of QR molecules. Additionally, the new
way of control of quantum-confining Stark effect with intense THz laser field is
introduced.
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14.1 Introduction

The THz range is known to be from 0.3 to 10 THz, so it bridges the microwave and
infrared regions of electromagnetic radiation. The THz technology can be applied in
numerous areas such as information and communications [1], biology and medical
sciences [2, 3], homeland security [4], nondestructive evaluation [5, 6], environmen-
tal monitoring [7]; astronomy [8], etc. In all these areas the semiconductor nanos-
tructures have a significant role [9], among which a particular place has already been
given to QRs. Indeed, if compared with widely studied quantum dots (QDs), the con-
finement in QRs is stronger owing to the altered andmultiply connected shape, which
can result in a single bound state and be suitable for THz intersublevel detectors with
a strong response in the 1–3 THz range [10]. In addition, the tunneling effect in QRs
is responsible for the intermediate-band in the coupled array of QRs [11], that was
used as an additional path for the electron transitions to the continuum to enhance
the photocurrents for solar cell applications [12, 13] and resonant tunneling devices
as well [14]. Besides that, doubly-connected ring-like geometry is currently used to
form materials with unique properties: in quantum dot-ring nanostructures [15, 16]
wave function engineering [17, 18] demonstrated that THz optical absorption, spin
relaxation times, and conducting properties are highly tunable by means of the con-
finement; the core-shell nano-ring structure of α − Fe2O3@Carbon leads to much
improved specific capacity, cycling stability and rate capability compared with that
of bare nano-ring α − Fe2O3 [19]; the electrical properties of a p-type semiconductor
can be mimicked by a metamaterial solely made up of an n-type semiconductor ZnO
rings [20]; etc.

Besides that, research on the electronics and optical response of intense THz
radiation excited QRs is very interesting, if compared with the studies done under
with solid-state lasers [13, 21]. High-power THz radiation of CO2 or free electron
lasers creates a variety of nonlinear effects that considerably differ from the rele-
vant effects at visible and infrared ranges [22]. The point is that the semiclassical
description of electron interaction with the radiation changes to completely quan-
tized limit at THz frequencies. Certainly, it is manifested by the pioneering works
like the dynamical Franz-Keldysh effect [23–25] or the photon drag effect in bulk
[26, 27] and low-dimensional semiconductors [28, 29]. In this context, the recent
observations also should be considered such as the photon drag effect in promising
topological insulators [30], the photon-mediated tunneling in single-C60-molecule
transistors [31], the high-order-sideband generation in In0.06Ga0.94As/Al0.3Ga0.7As
quantum wells (QWs) caused by the electron-hole recollisions [32], or the saturation
of the photoresponse to intense THz radiation in AlGaN/GaN high electron mobility
transistors [33].

This chapter dwells upon the theoretical investigations of electronic states influ-
enced by intense THz laser field and related intraband optical processes in quantum
rings of various configurations adopting the high-frequency approximationofFloquet
theory. In addition, the effects of laser field are discussed considering a homogeneous
electric field and hydrogenic impurity effects.
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14.2 Laser-Dressed States in High-Frequency
Approximation

We consider two-dimensional GaAs/GaAlAs QRs, since the heights of the QRs can
be 10 times smaller than the radial sizes [34]. Under the laser field with vector
potential A⊥(r, t) the time-dependent Schrödinger equation of the system is given
by [

1

2m

(̂
p⊥ − e

c
A⊥(r, t)

)2 + V (r⊥)

]
�(r⊥, t) = i�

∂

∂t
�(r⊥, t), (14.1)

wherem = 0.067m0 is the effective mass in GaAs [40],m0 is the free-electronmass,
p̂⊥ is the momentum operator, e is the electron charge and V (r⊥) is the confining
potential. The dipole approximation is considered [35, 36], so the vector potential is
independent on spacial parameters - A⊥(r, t) ≈ A(t) = A0cos(2πνt )̂ex . Here êx is
the unit vector of polarization of linearly polarized laser field and A0 = cE0/(2πν)

is defined by the E0 electric field strength and ν frequency. Laser field is taken
nonresonant with the bandgap of GaAs following the ν < EGaAs

gap /(2π�) ≈ 367THz
condition [37].

Under dipole approximation the Kramers-Henneberger [38, 39] unitary transfor-
mation can be used:

�(r⊥, t) = exp

[(
i

�

)
α · p̂⊥

]
× exp

[
i

�

e2

2mc2

∫ t

A2(t ′)dt ′
]

�(r⊥, t), (14.2)

where

α(t) = − e

mc

∫ t

A(τ )dτ. (14.3)

Now, after Kramers-Henneberger transformation, the confining potential depends
on time and not the vector potential, that is equivalent to moving from the laboratory
to accelerated frame of reference, that follows the quiver motion α(t):

[
p̂2⊥
2m

+ V (r⊥ + α(t))

]
�(r⊥, t) = i�

∂

∂t
�(r⊥, t). (14.4)

From (14.3) we have α(t) = α0sin(2πνt), α0 = −
(
e
/ (

mε
1/4
h ν2

))√
I
/ (

2cπ3
)

parameter that considers laser field effect, comprises both the intensity I and fre-
quency ν of laser field. The latters can be chosen in a broad range in units of kW/cm2

and THz correspondingly [22], and εh = 10.9 is the high-frequency dielectric con-
stant of GaAs [40].

Equation (14.4) is solved using the nonperturbative Floquet method [41], that is
used for linear partial differential equations with periodic coefficients. Originally,
Floquet method was applied for atoms affected by intense laser radiation [36], then
for semiconductor low-dimensional structures [35, 42–45]. Following the Floquet
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theory, the solution of (14.4) is sought by expanding�(r⊥, t) and confining potential
V (r⊥ + α(t)) to an infinite Fourier series:

�(r⊥, t) = exp (−i(E/�)t)
n=∞∑
n=−∞

exp (−2iπnνt) φn(r⊥), (14.5)

and

V (r⊥ + α(t)) =
n=∞∑
n=−∞

exp (−2iπnνt) Vn(r⊥, α0), (14.6)

where

Vn(r⊥, α0) = 1

T

∫ T

0
exp (2iπnντ) V (r⊥ + α(τ )) dτ, (14.7)

with T being the laser field period. Substituting (14.5) and (14.6) expressions
into (14.4), the following infinite system of time-independent coupled equations
is obtained:

[
p̂2⊥
2m

+ V0(r⊥, α0) − (E + 2πνn)

]
φn(r⊥) = −

m=∞∑
m=−∞
m �=n

Vn−m(r⊥, α0)φm(r⊥). (14.8)

This system of equations is solved employing the iteration procedure, the detailed
description of which is given in [36]. We study the stationary states, that appear if the
Floquet method is applied in high-frequency approximation [35, 45, 46]. Namely, it
is assumed that the laser field frequency ν is very high, so the electron feels only the
time-averaged laser-dressed confining potential. High values of (ν, I ) always can be
manipulated, at the same time remaining in the range for the dipole approximation
and nonresonant laser field requirements to be fulfilled [35]: for GaAs/GaAlAs the
intensity can be taken up to the MW/cm2 [47]. In high-frequency approximation
only the zeroth-order solution of (14.8) contributes, leading to the following time-
independent Schrödinger [36]:

[
p̂2⊥
2m

+ Vd(r⊥, α0)

]
�d(r⊥) = Ed�d(r⊥). (14.9)

Here �d(r⊥) = φ0(r⊥) and Ed define correspondingly the laser-dressed Floquet
eigenstates and eigenvalues. Equation (14.9) can be interpreted as one-electron sta-
tionary problem in Vd(r⊥, α0) dressed confining potential:

Vd(r⊥, α0) = 1

T

∫ T

0
V (r⊥ + α(τ )) dτ = 1

T

∫ T

0
V (x + α(τ), y) dτ. (14.10)
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The developed above theoretical model is used in the subsequent sections as a
basis for the study of laser-dressed electronic states and intraband optical properties
in QRs with various geometry.

14.3 Intense Terahertz Radiation Effect on a Single
Quantum Ring

The dressing effect of intense laser field stronglymodifies the confined states in semi-
conductor nanostructures. In fact, laser field can change the density of states profile
of QWs to a profile characteristic to quantum wires [42] and the density of states
profile of quantum wires to a profile typical to QDs [44, 45] and a single QW can be
reformed to double QW by the appropriate manipulation with laser field parameters
[35]. Moreover, research on the intense laser field assisted transport phenomena in
semiconductor nanostructures were performed [48–50]. In this connection, it was
demonstrated that the dressing field immensely increases the conductivity of two-
dimensional electron gas in GaAs QWs [49]. Also, the theory of spin-dependent
transport developed in [50] demonstrates that the high-frequency laser field induces
the renormalization of spin-orbit coupling constants that modify the conductivity of
a Datta-and-Das spin transistor. Furthermore, the studies of laser fields with different
polarizations, showed that a circular polarization can lead to a monotonic reducing
of the isotropic conductivity of graphene, while a linear polarization augments the
huge anisotropy of conductivity if laser field intensity is incremented [51].

This section begins the study of the laser-dressed states in QRs considering a sin-
gle GaAs/GaAlAs QR [52, 53]. We demonstrate and give a detailed description of
the effects induced by the laser field reformation of the confining potential, an analyt-
ical expression of which is obtained. Eventually, intraband transitions are explored
considering the interplay of laser and homogeneous electric fields.

14.3.1 Laser-Dressed States

In Fig. 14.1 the schematic view of a single QR structure is presented. The inner and
outer radii, as well as the direction of laser field polarization and propagation, are
shown.

As a V (r⊥) confining potential in (14.1) for a single QR a finite square-type well
is taken:

V (x, y) =
{
0, if R1 ≤ √

x2 + y2 ≤ R2,

V0, if
√
x2 + y2 < R1, or

√
x2 + y2 > R2.

(14.11)
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Fig. 14.1 The schematic
view of a single QR
heterostructure. R1 and R2
are the inner and outer radii,
respectively. The directions
of the laser beam
propagation and its
polarization are presented as
well (reprinted from [52]
with the permission of AIP
Publishing)

For the particular potential function given by (14.11), laser-dressed potential in
(14.10) may be analytically integrated into the closed form:

Vd(r⊥, α0) = V0
π
Re

[
π−
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))
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+x
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arccos
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arccos
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Re
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−x
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+
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R2
2 − y2

))
arccos

(
Re

(√
R2
2−y2

)
−x

α0

)]
,

(14.12)

where θ(u) is the Heaviside unit-step function.
In Sects. 14.3 and 14.4 the laser-dressed energy eigenvalues and eigenfunctions

are calculated by solving (14.9) with a two-dimensional diagonalization technique
[54–56]. The �d(x, y) are linearly expanded in terms of the eigenfunctions of a
rectangle with dimensions Lx × Ly and quantum numbers (n,m) [57].

The numerical calculations are carried out for V0 = 228meV. The Fig. 14.2
presents the wave functions of the first three laser-dressed states for various val-
ues of the parameter α0. The upper panel of Fig. 14.2 demonstrates that the laser
field destroys the cylindrical symmetry, resulting in the ground state wave function
localized along the direction (y-axis) perpendicular to the laser field polarization.
The further increase of the laser parameter α0 strengthens the confinement of the
effective potential and the probability density of the ground state increases along the
y-axis. At the same time, the peaks of the wave function for j = 2 and j = 3 become
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α mn3 =0α 0 =0 α mn5 =0

j =
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j =
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j =
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x

y

Fig. 14.2 The wave functions of the first three ( j = 1, 2, 3) laser-dressed states for different values
of the laser field parameter α0. The results are presented for R1 = 5 nm and R2 = 25 nm (reprinted
from [53] under a CC BY license)

j = 5j = 2 j = 3j = 1 j = 4

(a) (b) (c)

Fig. 14.3 The first five dressed energy levels of the electron as a function of the laser field parameter
α0. The results are presented for fixed inner radius R1 = 5 nm. Several values of outer radius R2
are considered (reprinted from [52] with permission of AIP Publishing)

exactly positioned along y- and x-axes, respectively. Thereby, the laser field totally
destroys the axial symmetry and the cylindrical QR is transformed into a QR with
an elliptic cross-section.

In Fig. 14.3a–c the dependencies of the first five laser-dressed low energy levels of
the confined electron on the laser parameter α0 are presented for different values of
outer radius R2.As it is clearly observed, the first two excited levels are twice degener-
ated in the absence of the laser field (α0 = 0). The laser field removes this degeneracy
as a result of a broken axial symmetry. Comparing the curves in Fig. 14.3a–c, one
can observe that the increment of the outer radius lowers the energy levels for all
values of the laser field parameter, due to the weakening of the size quantization for
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the electron. Note, that the influence of the laser field-induced deformation of the
confining potential of the electronic states is stronger for smaller values of the outer
radius R2. For example, in a case with R2 = 15 nm, an increase in α0 from 0 to 5 nm
produces an increase of the ground state energy of 13.56meV,while for R2 = 25 nm,
the ground state energy changes onlywith 3.3meV.On the other hand, the splitting of
the first and second excited energy levels for different values of the laser field param-
eter also can be clearly inferred from Fig. 14.3. This is a result of some delay of the
broken symmetry influence on the electron for higher energy levels. For instance, if
R2 = 25 nm (Fig. 14.3c), the splitting of the first excited state starts approximately
at α0 = 0.5 nm, while the second excited state splitting starts at α0 = 3 nm.

Now let us commence to study the impact of external static homogeneous electric
field on laser-dressed states.

14.3.2 Electric Field Influence on Laser-Dressed States

The influence of electric field in (14.1) is considered by adding the potential term
−eF · r⊥, where F is the strength of the homogeneous electric field. We remark that
since the dependence of −eF · r⊥ on r⊥ is linear after the time-averaging integra-
tion (similar to the one for the confining potential in (14.10)) this potential remains
unchanged. Considering this, the Schrödinger equation takes the following form:

[
p̂2⊥
2m

+ Vd(r⊥, α0) − eF · r⊥
]

�d(r⊥) = Ed�d(r⊥), (14.13)

where Vd(r⊥, α0) is defined by (14.10).
It should be recalled that for any finite barrier potential well influenced by the

electric field there is no veritable electron bound state. Every energy level associ-
ated with a quantum state has a nonzero linewidth correlated with the mean time of
tunneling out from the biased structure [58]. As the static electric field increases,
the electron energies start to descend (quantum confined Stark effect), the tunneling
time of a given state becomes smaller, and the energy linewidth of the level aug-
ments [59]. However, this could be a real theoretical problem only for highly excited
states which become unsteady at high enough values of the electric field. The lower
electronic states are quasi-bound since the associated tunneling time is much longer
than any characteristic time involved in the intraband or interband transitions [58].
Later on, a simple criterion will be established in order to consider an excited state
as a quasi-bound one.

Figure14.4 presents the biased laser-dressed confinement potential of the QR.
The direction of electric field is fixed along the x-axis. Let us further consider as the
interior of the unbiased dressed potential well all points having the potential smaller
than V0. We will denote by Rx and Ry the effective radii (the effective radius is
defined as the half of the maximum confinement length on some particular direction)
of the potential well on the direction of the electric field and the transverse direction
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Fig. 14.4 a Confinement potential of the QR modified by simultaneous actions of the laser and
electric fields. The effective radius Rx in the field direction depends on the laser field parameter. b
Axial section of the confinement potential along the x-axis. The grey area symbolizes the stability
zone of the electron bound states (reprinted from [53] under a CC BY license)

Fig. 14.5 The first three
undressed (α0 = 0) energy
levels of the electron as
function of the electric field
strength F . The results are
presented for R1 = 5 nm and
R2 = 25 nm (reprinted from
[53] under a CC BY license)

y, respectively. Figure14.4b shows the cross-section of the confinement potential
along the y = 0 direction. One may observe that the right edge of the potential
well at Rx = R2 + α0 is the lowest point of the confinement zone. Our approximate
criterion of energy level stability is based on the assumption that any electronic state
j in the well which energy E j

d is still far below the lowest point of confinement
may be considered as quasi-bound: E j

d 	 V0 − eF(R2 + α0). As an example, for
R2 = 25 nm, and α0 = 5 nm the lowest energy of confinement is 78meV. Thus,
only excited states with considerably smaller energies should be considered in the
calculations.

In Fig. 14.5 the dependencies of the first three undressed energy levels of the
confined electron on the electric field strength F are presented. Similar to the results
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Fig. 14.6 The first three
dressed energy levels of the
electron as function of the
laser field parameter α0. The
results are presented for
R1 = 5 nm and R2 = 25 nm.
Several values of the electric
field strength F are
considered (reprinted from
[53] under a CC BY license)

(b)(a)

in Fig. 14.3, the excited state is twice degenerated in the absence of both fields. The
electric field (like the laser field in Fig. 14.3) removes this degeneracy as a result of
broken axial symmetry. With the increase of the electric field strength, the ground
state energy only decreases due to the lowering of the bottom of the confinement
potential, which is the analog of the quantum confined Stark effect in QWs [60]. On
the other hand, the second excited level increases a bit at the smaller values of F ,
that can be clearly seen in the inset figure of a smaller scale. Additionally, the inset
shows that the derivative of ground state energy is zero at F = 0 [61]

In Fig. 14.6a, b the dependencies of first three dressed energy levels of the confined
electron on the laser field parameter α0 are presented for different values of electric
field strength F . In all the investigated cases the laser field brings the increment of the
dressed energies, similar to the scenario in Fig. 14.3. On the other hand, as expected
in all the regions of the α0 variation, the increment of the electric field strength
moves the energy levels down. Besides that, the influence of the laser field on the
ground state energy is stronger for bigger values of the electric field strength. The
aforementioned effect finds its explanation with the help of the laser field-dressed
wave functions in the absence (Fig. 14.2) and presence (Fig. 14.7) of the electric field.
In the absence of laser field for F = 0 and F = 30 kV/cm cases the effect of electric
field on the electron distribution in the structure is equivalent to an increase of the
spatial confinement. At F = 0, the localization probability is uniformly distributed
in the ring and the electron is less confined. At F = 30 kV/cm, the electron is strongly
pushed against the right side of the QR and is more confined. Thus, the electron has
an additional spatial confinement induced by the electric field. For example, in the
case with F = 0, an increase in the laser field parameter from 0 to 5 nm produces an
increase of the ground state energy of 3.3meV, while in the case with F = 15 and
F = 30 kV/cm the ground state energies changes are 9.3 and 10.4meV, respectively.

On the other hand, the Fig. 14.7 shows that like the laser field, the presence of the
electric field eliminates the degeneracy. For all the first three states, the peaks of the
electronic wave functions are forced to be in the tilted part of the confinement poten-
tial (see Fig. 14.4). This is clearly visible in Fig. 14.7 where the localization proba-
bility is almost zero in the left part of the QR, for j = 1, 2, 3. The further increase
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Fig. 14.7 The wave
functions of the first three
dressed states of the electron
( j = 1, 2, 3) depending on
the laser field parameter. The
results are presented for
R1 = 5 nm, R2 = 25 nm and
F = 30 kV/cm (reprinted
from [53] under a CC BY
license)

y

x

of laser parameter has little effect on the wave function spatial configuration, but its
effect is visible on the energies.

14.3.3 Intraband Absorption in a Single Quantum Ring

Before discussing the intraband absorption, it is important to overview the symmetry
of the wave functions.

Figure14.2 demonstrates that for α0 = 0 and F = 0 both the ground and the
double-degenerated excited states have wave functions with defined parity with
respect to any direction in the QR plane (ground state is even, excited state is
odd). If α0 �= 0 the cylindrical symmetry is reduced down to Cartesian symme-
try with respect to x-polarization direction of the laser field and transverse y-axis:
�1

d (−x, y)= �1
d (x, y),�

1
d (x,−y) = �1

d (x, y),�
2
d (−x, y) = �2

d (x, y),�
2
d (x,−y)

= −�2
d (x, y), �3

d (−x, y) = −�3
d (x, y), �3

d (x,−y) = �3
d (x, y). Finally, Fig. 14.7

demonstrates that if F > 0 there is no symmetry with respect to y−axis, so there
will be no defined parity of the wave functions in x variable; first and third states
have even wave functions in y variable, while second state has an odd wave function
in y: �1

d (x,−y) = �1
d (x, y), �

2
d (x,−y) = −�2

d (x, y), �
3
d (x,−y) = �3

d (x, y).
The oscillator strength Oi f depicted in Fig. 14.8 is an important physical quantity

for the study of the optical properties of electronic dipole-allowed transitions. It is
expressed as follows [62]:

Oi f = 2m

�
�i f

∣∣Mi f

∣∣2 , (14.14)

where �i f = E f
d − Ei

d is the energy difference between the final ( f ) and initial
(i) states and Mi f denotes the matrix element. The dependence of the oscillator
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Fig. 14.8 Oscillator strength as a function of laser field parameter (with F = 0) and electric field
strength (with α0 = 0), respectively. Figure insets show the absolute value of the matrix elements
|Mi f | as functions of the α0 and F . The results are presented for R1 = 5 nm and R2 = 25 nm.
Different light polarizations are considered (reprinted from [53] under a CC BY lincese) (Color
figure online)

strength on the laser field parameter α0 and electric field strength F are presented
in Fig. 14.8a and b respectively. The incident light is linearly polarized and different
directions of it are considered. The insets in Fig. 14.8a and b show the absolute value
of matrix elements of the allowed transitions as a function of α0 and F respectively.
For nonzero values of α0 and F different selection rules are obtained. In the case of
x-polarization, transitions from the ground state j = 1 to the second excited state
j = 3 are allowed (see the red lines in Fig. 14.8) and in the case of y-polarization
the 1 → 2 transitions are allowed (see blue lines in Fig. 14.8).

The obtained selection rules can be explained in the following manner. If the
initial (i) and final (f) states have different but defined parity with respect to an axis,
the transition matrix element is nonzero for a light wave polarized on that axis:
for α0 = 0 and F = 0 (i) is even and (f) is odd, independent on the polarization
of the absorbed light; therefore, it is expected that the transition matrix element is
nonzero and invariant to the light polarization, which is confirmed by the numerical
calculations shown in Fig. 14.8a. For α0 > 0 and F = 0 the transition 1 → 2 is
forbidden for x-polarization since �1

d and �2
d are even functions with respect to x

variable, so that the associated matrix element is zero at all nonzero values of the
laser parameter; similarly, the transition 1 → 3 will be forbidden for y- polarization
of the light, since �1

d and �3
d are both even functions of variable y; these remarks

are confirmed by the numerical calculation of the matrix elements in the inset of
Fig. 14.8a; similarly, for F �= 0 transitions 1 → 2 (in the case of x- polarization)
and 1 → 3 (in the case of y- polarization) are forbidden by the parities of the wave
functions, as illustrated in Fig. 14.7 and confirmed by the calculations in the inset of
Fig. 14.8b.

The physics behind the behaviors of the matrix elements can be explained using
the wave function distributions of corresponding states [63]: As seen from Fig. 14.7,
with the increase of α0, overlapping of j = 1 and j = 2 states decreases, while the
overlapping of j = 1 and j = 3 states increases. Therefore, the matrix elements
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|M12| and |M13| augment and diminish, respectively. The opposite behavior has the
oscillator strength of mentioned transitions, which can be explained by the simulta-
neous variations of energy difference and squared matrix elements.

The absorption coefficient for the intraband transitions from the ground state to
the excited states can be cast in the form [64, 65]:

α() = ζ · �
∑
f

Ni f

∣∣Mi f

∣∣2 �(
� − �i f

)2 + �2
, (14.15)

where Ni f = Ni − N f is the occupation difference between the initial and final
states and Ni f = 1 because the final state is always vacant and the initial one is occu-
pied by one electron. In current calculations the Lorentzian parameter � is taken as
� = 0.4meV, and ζ contains all the other factors [52, 53].

As mentioned before, the laser field results in the anisotropy in the confining
potential, by destroying the cylindrical symmetry of it. Therefore, changes in the
light polarization direction must also lead to changes in the intraband absorption
spectrum. Figure14.9a and b present the intraband optical absorption coefficient for
several values of the laser field parameter α0. In case that α0 > α0min , where α0min

is the minimal value of the laser field parameter when the cylindrical symmetry
is destroyed, different selection rules are obtained. In the case of x- polarization,
transitions between the ground state j = 1 to the second excited state j = 3 are
allowed. If laser field has y- polarization, the 1 → 2 transitions are allowed. In the

Fig. 14.9 The dependence of the intraband absorption coefficient (in arbitrary units) of 1 → 2 and
1 → 3 transitions on incident photon energy. The results in (a) and (b) are for fixed R1 = 5 nm and
R2 = 25 nm and varying α0, and in (c) and (d) for fixed R1 = 5 nm and α0 = 2.5 nm and varying
R2. x- and y- polarizations of incident light are considered (reprinted from [52] with permission
of AIP Publishing)
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absence of laser field, confining potential has cylindrical symmetry and �l = ±1
condition on l angular quantum number defines the permitted transitions for both
polarizations. Accordingly, if α0 = 0 absorption coefficients of 1 → 2 and 1 → 3
transitions ideally overlap for x- and y- polarized light (see the black curves in
Fig. 14.9a and b). The strengthening of the laser field yields a blueshift in the absorp-
tion spectrum by incrementing the energy distance of j = 1 and j = 3 levels and
an increase of the absorption peak value when light is x-polarized (Fig. 14.9a). In
contrary, with y-polarized light the increase of α0 results in a redshift in the absorp-
tion spectrum (Fig. 14.9b) and a weakening of the peak value. In addition, for fixed
R1 = 5 nmandα0 = 2.5 nm the increment of the outer radius brings to theweakening
of the size quantization and hence to the decrease of the energy distances between
the ground and both excited state energy levels. Correspondingly, only a redshift
in the absorption spectrum is observed in Fig. 14.9c and d. Besides that, the aug-
mentation of R2 reduces the peak value of α() if the light is x-axis polarized and
respectively increases it for y-polarization.

In Fig. 14.10 the dependence of the intraband absorption coefficient on the incident
photon energy is presented considering several values of the laser field parameter
(Fig. 14.10a–c) and electric field strength (Fig. 14.10d–f). The simultaneous influ-
ences of intense laser field and lateral electric field affect the intraband absorption
spectrum in the following ways:

(a) (d)

(b) (e)

(c) (f)

Fig. 14.10 The dependence of the intraband absorption coefficient on the incident photon energy
in QR. The results are presented for R1 = 5 nm and R2 = 25 nm. x- and y- polarizations of light
are considered for several values of laser field parameter α0 and electric field strength F (reprinted
from [52] permission of AIP Publishing and from [53] under CC BY)
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1. For both directions of polarization the increment of the electric field results
in a blueshift of the spectrum induced by the increment of the energy dis-
tances between the ground and excited energy levels. On the other hand, with
x-polarized light a increase of the peak value is observed, and y-polarization
results in the decrease of it. These observations are the consequence of the cor-
responding variations of the oscillator strength for x- and y-polarizations shown
in Fig. 14.8b.

2. If the electric field is absent and the incident light is x-polarized, the augmen-
tation of α0 enlarges the energy distance between j = 1 and j = 3 levels and,
correspondingly, the blueshift is observed. Alternatively, the strengthening of
the laser field decreases the energy distance between the j = 1 and j = 2 states,
thus, leading to the redshift. Finally, in the presence of electric field the incre-
ment of α0 creates the redshifts in the spectrum. The variations of the peak values
result from the appropriate behavior of the oscillator strengths demonstrated in
Fig. 14.8a.

14.4 Laser-Dressed Impurity States in a Single
Quantum Ring

The hydrogenic impurity problem is a helpful task to grasp the electronic and optical
properties of semiconductor nanostructures. It is explained by the vast possibilities
of purposeful manipulation of the impurity binding energy by means of external
influences, which in turn can be used for the controlling means of functional opto-
electronic devices based on such heterostructures [66]. The impurity states in semi-
conductor nanostructures under the action of intense laser field are studied theoreti-
cally using two major approaches based on the effective mass approximation. In the
first approach, the variational method for both laser-dressed confining and Coulomb
potentials is realized [67, 68]. In the second technique, the Schrödinger equation
with the laser-dressed potential is solved numerically [69], while the problem with
the Coulomb potential is treated by the variational method [70].

In this section, we address the effect of electron-impurity interaction on energy
levels and far-infrared absorption in semiconductor QR under the action of intense
laser and lateral electric fields [71–73].

14.4.1 Impurity States

Laser-dressed impurity states in high-frequency approximation in a single QR are
considered via time-averaged Schrödinger (14.9) by adding the laser-dressed hydro-
genic donor impurity potential Vd(x, y, α0) in Ehlotzky [74] approximation:
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Vc(r⊥) = − e2

2ε

⎡
⎣ 1√

�2+ + y2
+ 1√

�2− + y2

⎤
⎦ , (14.16)

where ε is the dielectric constant of the material, which, for simplicity, is taken the
same inside and outside the QR and �2± = (x − x0 ± α0)

2, where x0 is the impurity
coordinate. The final time-averaged Schrödinger equation takes the following form:

[
p̂2⊥
2m

+ Vd(r⊥, α0) + Vc(r⊥)

]
�c

d(r⊥) = Ed�
c
d(r⊥). (14.17)

The localization probability density in QR is depicted in Fig. 14.11. Figure14.11a
demonstrates that the electron cloud of the ground state is no longer ring-shaped as
it must be in the absence of the impurity (see Fig. 14.2), but tightly centered around
the impurity. In addition, since for inner and outer border impurity positions the
electron cloud is more spread out, the lowest ground state energy is expected to be
obtained for x0 = (R1 + R2)/2. The laser dressing visibly reduces the electron cloud
compression by the impurity. Thus, the increment of all energies with the increasing
of laser parameter is predictable. The first excited state is addressed in Fig. 14.11b.
The p-type orbital is oriented along the x-axis and is much less aggregated around
the impurity position, if compared with the results for the ground state. The latter
effect is slightly reduced if the laser field is turned on. Besides that, the strongest
effect of impurity on the electronic cloud is observed for x0 = (R1 + R2)/2. p-type
orbital in Fig. 14.11c presents the second excited state, which is now oriented along
the y-axis. The impurity induces a strong dissymmetry of the electron cloud, which
is only attenuated by the laser dressing effect.

Figure14.12 shows the electron energies of the first five impurity states in a QR as
functions of α0. In this figure and in the further results of this section radii are fixed
to R1 = 5 nm and R2 = 25 nm. Figure14.12a considers an impurity located at the
half distance between inner and outer energy barriers of the ring: x0 = (R1 + R2)/2.

x0 = (R )/21 2+R x0 = R1 x R0 2=

x

y

x0 = (R )/21 2+R x0 = R1 x R0 2= x0 = (R )/21 2+R x0 = R1 x R0 2=

0 = 2.5nm
0 = 0

0 = 5nm

0 = 2.5nm
0 = 0

0 = 5nm

0 = 2.5nm
0 = 0

0 = 5nm

(a) (c)(b)

Fig. 14.11 Electron localization probability in QR for different impurity positions (reprinted from
[71] Copyright 2017 with permission from Elsevier)
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(a) (b) (c)

Fig. 14.12 The dependence of the electron energy levels onα0 of the first five laser-dressed impurity
states. The following impurity coordinates are considered: (a): x0 = (R1 + R2)/2; (b): x0 = R1;
(c): x0 = R2 (reprinted from [71] Copyright 2017 with permission from Elsevier)

It is worth to compare the current results with those in Fig. 14.3a. In the presence of
electron−impurity interaction electronic states are more localized and sensitive to
laser field and, thus, the energy levels are lower. Certainly, especially the energy of the
ground state has noticeable deep values. In addition, ground state energy of impurity
increases rapidly with laser parameter: from−18meV to−1meV if α0 is varied from
0 to 5 nm,while for the same interval ofα0 Fig. 14.3a gives only 3.3meVof increment.
The other four energy levels have an increase of 5meV, at most. Considering the
different speed of variation of the ground and excited energies, one may expect a
strong dependence of the ground state-related intraband optical transitions on the
laser field intensity. On the other hand, the panels (b) and (c) present the energies
calculated for impurities located at the inner border of the QR x0 = R1 and the outer
border x0 = R2, respectively. It can be noted, that the dependencies on the laser
parameter are qualitatively similar. Nevertheless, the ground state energy remains
more sensitive to laser field-affected deformation of the confining potential, because
the electron probability is shifted from the QR center, as confirmed by Fig. 14.11.
It is remarkable, that Fig. 14.12c demonstrates an accidental degeneracy, as the first
and second excited levels cross at α0 = 2.5 nm.

14.4.2 Impurity-Related Intraband Transitions

Now we consider the intraband transition induced by the radiation, that is linearly
polarized along the x- or y-axes. To begin with, in Fig. 14.13 the threshold energies
of the 1 → 2 (blue line) and 1 → 3 (red line) transitions are explored affected by
the variation of the parameter α0. As it is pointed out in the discussion of Fig. 14.12,
the energy of the ground state bends steeper than that of the excited states result-
ing in the decreasing variation on α0 of threshold energies. On the other hand, in
x0 = (R1 + R2)/2 case, the excited levels are very close at the beginning of α0 vari-
ation, but if α0 reaches 2 nm value the levels become visibly separated. Resulting
from this, the curves of threshold energies almost coincide only until α0 = 2 nm.
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Fig. 14.13 The dependencies of the threshold energies between the ground and first two excited
states on α0 (reprinted from [73] Copyright 2017 with permission from Elsevier)

(a) (b) (c)

Fig. 14.14 Thematrix elements as functions ofα0. x and y directions of polarizations are considered
(reprinted from [73] Copyright 2017 with permission from Elsevier) (Color figure online)

For x0 = R1 laser field again affects the separation and if x0 = R2 leads to the cross-
ing of threshold energies.

In Fig. 14.11 we saw that the presence of impurity and intense laser field creates
a space of the electron cloud distribution thus, the polarization-dependent selection
rules of intraband transitions are expected. Indeed the results for the dipole matrix
elements in Fig. 14.14 demonstrate that, if the light is polarized along x-axis, the
transition from the ground state j = 1 to the second excited state j = 3 is allowed
(red lines in Fig. 14.14) and in the case of y-polarization, transition to the first j = 3
excited state is allowed (blue lines in Fig. 14.14). Therefore, the scenario is similar
to the intraband transitions in undoped QRs considered in Sect. 14.3.3. Besides that,
the dependence of matrix elements on α0 monotonically increases, and the lowest
values of them are obtained in x0 = (R1 + R2)/2, dictated by the distributions of the
wave functions of corresponding states.

The combined modifications of threshold energy and matrix element are vividly
demonstrated by the absorption curves in Fig. 14.15. It is interesting to compare the
current curves of the absorption with a QR without impurity given by Fig. 14.9a and
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(a) (b) (c)

(d) (e) (f)

Fig. 14.15 The dependence of intraband absorption coefficient (in arbitrary units) on the incident
photon energy for different values ofα0. x and y directions of polarizations are considered (reprinted
from [73] Copyright 2017 with permission from Elsevier)

b: a doped QR manifest, interestingly, only the redshift of the absorption with the
increment of α0, and this redshift is now independent on the direction of the incident
light polarization direction.

14.4.3 Electric Field Influence on Impurity States and
Related Intraband Absorption

Finally, in this section, we explore the static x-axis-directed electric field influence
on the laser-dressed impurity states and related intraband transitions. Considering
the electric field contribution, time-averaged Schrödinger equation (14.17) takes the
following form:
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x

y

j =
 3

j =
 1

j =
 2

α0 = 0 α0 = 3nm α0 = 5nm

Fig. 14.16 The influence of laser and F = 30 kV/cm electric fields on the wave functions of the
first three dressed states of the electron ( j = 1, 2, 3) (reprinted from [72] Copyright 2017 with
permission from Elsevier)

(a) (b) (c)

Fig. 14.17 The dependencies of the low-lying energy levels on α0 for several values of the electric
field strength (reprinted from [72] Copyright 2017 with permission from Elsevier)

[
p̂2⊥
2m

+ Vd(r⊥, α0) + Vc(x, y) − eF · r⊥
]

�c
d(r⊥) = Ed�

c
d(r⊥). (14.18)

The calculations aremade for fixed radii R1 = 5 nm and R2 = 25 nm and impurity
position x0 = (R1 + R2)/2. Figure14.16 presents the wave functions of the first
three j = 1, 2, 3 laser-dressed impurity states. Now, (compare with Fig. 14.11) the
presence of electric field forces the electron wave function to the left part of the QR,
so there is almost zero localization around the impurity site. In addition, the impurity
does not destroy the symmetry of the wave functions, which keep the same parity as
in the undoped case presented in Fig. 14.7. The obtained wave functions share the
light to understand the dependencies of the laser-dressed energy levels onα0 explored
by Fig. 14.17a–c. As obtained for the unbiased QR in Fig. 14.12, the dependence of
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the ground state energy drastically differs from the excited ones. Now the shifting of
the wave functions by the electric field diminishes the electron−impurity interaction.
As a result, the laser field influence prevails, and the energy levels show quite similar
behavior. As expected, the stronger is the electric field, the clearer is the observed
phenomenon. Additionally, the energies are decreasing as the electric field takes
greater values.

The symmetry of the wave functions again allows the 1 → 3 intraband transitions
with the x-polarized light, and the 1 → 2 ones with y-polarization. In Fig. 14.18a
matrix elements for both transitions are increasing with laser field being strength-
ened. On the contrary, the strengthening of the electric field leads to the augmenting
elements for the 1 → 2 transitions, and decreasing ones in case of 1 → 3 transitions.
In addition, thematrix elements become less sensitive toα0 variation once the electric
field is increased. The obtained numerical results have a physical explanation. For
example, on the grounds that the laser field has a small impact on the wave functions
of a QR biased by F = 30kV/cm electric field (see Fig. 14.16), the matrix element
exhibit small alternation.

At the end of this section, we explore the absorption of a linearly polarized light.
Unlike the results in Fig. 14.15a and d with F = 0, where only the redshift was
observed, now Fig. 14.19 demonstrates that with F = 15kV/cm the increment of α0

can also yield the blueshift. Truly, if the incident light is y-polarized the same redshift
is obtained, but if x-polarized light is considered the spectrum gets both red- and
blueshifts. Besides that, the comparison with the data in Fig. 14.10 shows that the
presence of the impurity does not affect the spectrum shift direction: if α0 is kept
fixed the strengthening of F brings the blueshift of the spectrum.

(a) (b) (c)

Fig. 14.18 The dependence of the absolute value of the matrix elements Mi f on α0. Different
directions of the light polarization and different values of electric field strength F are considered
(reprinted from [72] Copyright 2017 with permission from Elsevier)
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Fig. 14.19 The dependence of the intraband optical absorption coefficient on incident photon
energy in a single nanoring. The results are presented for x-polarization of the incident light and
laser field parameter α0 is considered from 0 (bottom) to 5 nm (top) with a 1 nm step (reprinted
from [72] Copyright 2017 with permission from Elsevier)

14.5 Quantum-Confined Stark Effect in the Laser-Dressed
Concentric Quantum Rings

The effects on optical spectra when an external electric field is applied, known in
atomic physics as the Stark effect, evolved very rapidly with the invention and devel-
opment of semiconductor nanostructures. The effects of interaction of the confined
carriers with the field give rise to a new phenomenon known as the quantum-confined
Stark effect. First reported in QWs by Miller et al. [60, 75], the quantum-confined
Stark effect is still the subject of a high interest [76, 77]. From the point of view of
applications in optoelectronic and tunneling devices based on QRs, it is essential to
investigate the effects of an electric field on the electronic and impurity states. For
that reason in the past decade, a number of works were devoted to the theoretical
investigation of the influence of electric fields on the electronic and optical properties
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of QR nanostructures [78–82]. Very recently, the influence of lateral electric field on
one-electron states and intraband absorption in two-dimensional concentric double
quantum rings (CDQR) is investigated [83].

In this section, the rendering of different shapes of a single sample of a CDQR is
demonstrated realizable with a THz laser field, that in turn, allows the manipulation
of electronic and optical properties of a sample [84].

The CDQRs consists of GaAs QRs (well material) separated by GaAlAs (barrier
material). Laser-dressed states of the biased CDQRs are defined by the (14.13) and in
the expression (14.10) the confining potential in the absence of laser field is modeled
according to:

V (r⊥) =
{
0, if r⊥ ∈ [

Rin
1 , Rin

2

] ∪ [
Rout
1 , Rout

2

]
V0, elsewhere,

, (14.19)

where V0 = 257meV is the height of the potential, Rin
1 , Rin

2 , Rout
1 , and Rout

2 are corre-
spondingly inner (subscript “1”) and outer (subscript “2”) radii of inner (superscript
“in”) and outer (superscript “out”) rings. Figure14.20 depicts the effective potential
V F
d (r⊥) for α0 = 3 nm and electric field is absent in Fig. 14.20a and F = 3kV/cm in

Fig. 14.20b. The impact of laser field contracts the lower part of the potential along
the x-axis and enlarges the upper part. Thereby, we can expect that the electric field
direction variation will strongly influence the dressed energies.

The finite element method is applied using COMSOL Multiphysics to calcu-
late laser-dressed eigenvalues Ed and eigenvectors ψd(r⊥) [85]. Triangular ele-
ments and Lagrangian shape functions are used for meshing [86]. In order to
evade having eigenfunction values out of computational domain that is taken in
a form of a square the side of it is taken as L = 2.8Rout

2 . Figure14.21a shows
the mesh in the absence of laser and electric fields, while Fig. 14.21b depicts the
finer mesh used for α0 = 3 nm and F = 3kV/cm. The values of radii are fixed to

(a) (b)

Fig. 14.20 The laser-dressed confining potential in the absence of electric field (a) and consid-
ering F = 3 kV/cm electric field applied along the x-axis (b). The parameter α0 is fixed to 3nm
(reproduced from [84] under a Creative Commons Attribution 4.0 International License)

http://creativecommons.org/licenses/by/4.0/
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L = 2.8

α0 = 0, F = 0 α0 = 3 nm, F = 3 kV/cm

in
2R out

1R

out
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in
1R

out
2R

(a) (b)

Fig. 14.21 Numerical mesh used in the calculations

Rin
1 = 10 nm, Rin

2 = 20 nm, Rout
1 = 30 nm, Rout

2 = 40 nm. In the absence of laser and
electric fields, correct wave functions are obtained considering the following mesh-
ing style: the square is divided into two triangles via the diagonal, one of the triangles
is meshed and then that mesh is copied into the other triangle. Using this method one
can be confident that the eigenfunctions are symmetric or antisymmetric with respect
to the diagonal of the square, that is decisive to obtain any physical characteristic
of a CDQR system, for example, the intraband absorption coefficient. In the case of
nonzero laser and electric fields, the mesh is created by copying the mesh from one
of the rectangles in Fig. 14.21b to another one to follow the new symmetry enforced
by fields. If the fields are not zero the fourth order Lagrangian shape functions are
used and the domain is meshed with “Extremely fine” option of “General physics”
calibration node. If the fields are absent, the third order Lagrangian shape functions
and “Extra fine” option [85] are used.

Figure14.22 presents the energy spectrum dependence on electric field direction,
by varying the β = ∠ (̂u, êx ) angle, with û being the unit vector of electric field
direction and êx of laser field polarization direction (polarization direction is kept
fixed). In case of an electric field parallel to laser field (β = 0◦ case considered in
Figs. 14.22a, d) a quadratic Stark effect [61] is obtained. Besides that, the energies
decline caused by the tilting of effective confining potential shown in Fig. 14.20b.
Moreover, electric field direction is symmetric for the confining potential that is
influenced only by laser field (see frame (a) of Fig. 14.20). Because of that, the
corresponding wave functions are either symmetric or antisymmetric with respect to
the x-axis, and, in turn, energy levels present both crossing and anti-crossing points.
If β = 45◦ (see Fig. 14.22b, e), then û does not fit with the symmetry of Vd(r⊥)

potential. This signifies that wave functions are neither symmetric nor antisymmetric
and the energies cannot cross and only anti-crossing is observed. If the electric field
is applied perpendicular to laser field (β = 90◦ case considered in Fig. 14.22c, f)
then energies demonstrate linear behavior on F . This effect is more evident if the
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N = 1 N = 10N = 9N = 8N = 6N = 5N = 4N = 3N = 2 N = 7

(a) (b) (c)

(f)(e)(d)

Fig. 14.22 Stark effect on laser-dressed energy levels. α0 and β parameters are considered as
follows: (a) α0 = 1.5 nm, β = 0◦; (b) α0 = 1.5 nm, β = 45◦; (c) α0 = 1.5 nm, β = 90◦; (d) α0 =
3 nm, β = 0◦; (e) α0 = 3 nm, β = 45◦ and (f) α0 = 3 nm, β = 90◦ (reproduced from [84] under
a Creative Commons Attribution 4.0 International License)

laser field influence is greater with α0 = 3 nm parameter value. Alike effect has been
recently discussed in [87], where the quadratic and linear Stark effectswere attributed
to the effective mass anisotropy. Our results show that these different Stark effects
can be attributed to the anisotropy created by THz laser field.

But the electric field can also be a potential tool to control the optical properties
of CDQR. The structure is irradiated by circularly polarized light that is propagat-
ing along the z-axis. In the presence of electric field all the transitions are allowed,
becauseMif matrix element cannot be zero. The oscillator strengths of themost inten-
sive transitions are presented in Fig. 14.23. 1 → 2 transition has the biggest probabil-
ity if β = 0◦, but if β is nonzero the situation is different. If α0 = 1.5 nm and β = 45◦
O12 is the biggest at F = 0 value (Fig. 14.23b), but in [0.25kV/cm, 1.25kV/cm] inter-
val other transitions are more probable. Further increase of F makes O12 again the
biggest as shown in Fig. 14.23b. If againβ = 45◦ value is taken but greaterα0 = 3 nm
is considered (Fig. 14.23e), then O13, O14 and O15 are the biggest in [0, 2kV/cm]
range, and, thus, the corresponding transitions are themost probable. Finally, the case
of an electric field that is perpendicular (β = 90◦) to êx is addressed in Fig. 14.23c,
f. Now 1 → 5 has the biggest probability, and only if the electric field is zero 1 → 2
transitions are the most intensive.

http://creativecommons.org/licenses/by/4.0/
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(a) (b) (c)

(d) (e) (f)

N = 1 N = 10N = 9N = 8N = 6N = 5N = 4N = 3N = 2 N = 7

Fig. 14.23 The oscillator strengths of the most intensive intraband transitions. α0 and β param-
eters are considered as follows: (a) α0 = 1.5 nm, β = 0◦; (b) α0 = 1.5 nm, β = 45◦; (c) α0 =
1.5 nm, β = 90◦; (d) α0 = 3 nm, β = 0◦; (e) α0 = 3 nm, β = 45◦ and (f) α0 = 3 nm, β = 90◦
(reproduced from [84] under a Creative Commons Attribution 4.0 International License)

14.6 Molecular Spectrum of Laterally Coupled Quantum
Rings Under Intense Terahertz Radiation and Lateral
Electric Field

For application purposes, a great interest is also given to the coupled arrays of QRs.
Arrays of magnetic nanorings have potential for random access memory, record-
ing, and other spintronic applications [88, 89]. In addition, scattering studies at
microwaves showed that QR metamaterials can manifest negative refractive index
[90, 91]. Also, the vertically aligned layers of QRs can strengthen the single-mode
operation of laser diods [21]. Thereby, coupled semiconductor QRs can be consid-
ered as artificial molecules similar to the chain of molecules of benzene rings [92,
93]: in fact, in laterally coupled molecules of QRs of different radii the electron
charge can be shifted between the rings by magnetic field [94]. Besides that, cou-
pling in a two-dimensional array of QRs is a cause of decreased persistent currents
and magnetic dipole moments [95] and Aharonov-Bohm oscillations were observed
in QR molecules although the total magnetic flux was absent [96].

This section is devoted to the study of the influence intense THz laser field and
electric field on molecular states and intraband optical properties of laterally coupled
quantum rings [97].

http://creativecommons.org/licenses/by/4.0/
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14.6.1 Decoupling of a Quantum Ring Molecule and 2-Fold
Degeneracy

An artificial molecule is modeled by two laterally aligned GaAs/GaAlAs QRs. The
Hamiltonian of laser field dressed and electric field biased molecule is defined by
(14.13). V (r⊥) confining potential without laser field influence is taken 0 in Rin <√

(x ± d/2)2 + y2 < Rout («−»if x > 0 half plane and «+»if x ≤ 0) and is 257meV
elsewhere, with Rin being the inner and Rout the outer radii, and d is the distance
between the centers of the rings. Radii are taken as follows: Rin = 10 nm and Rout =
50 nm [34]. In Fig. 14.24 Vd dressed confining potential is depicted considering
different values of α0 and F = 0 condition for electric field. The greater values of α0

bring a bigger splitting of the bottom part of Vd , resulting from the decreasing sizes
of QRs. The (14.13) is numerically solved in COMSOL Multiphysics [85].

The splitting of the confining potential leads to the decoupled QRs, or in other
words, to the dissociated molecule. In Fig. 14.25a the dissociation effect is demon-
strated by a phase diagram of α0 and overlapping w = 2Rout − d (as depicted in
Fig. 14.24) parameter values for the ground state. The calculations showed that the
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Fig. 14.24 Laser-dressed confining potential for varying α0 and zero electric field (reproduced
from [97] under a Creative Commons Attribution 4.0 International License)
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Fig. 14.25 a w − α0 phase diagram of the coupled-decoupled transition and b the ground state
probability density for varying w and α0 (reproduced from [97] under a Creative Commons Attri-
bution 4.0 International License)
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coupled states become decoupled states that are localized in QRs at points that form
a line with a slope k = 2. The related probability densities are given in Fig. 14.25b.
It is worth to point out, that the coupling can be done by laser field, even when w is
fixed. In the remaining part of this section w = 5 nm value is used.

Figure14.26 exhibits the dependence of the energy levels of the first ten dressed
states on α0 and the wave functions for α0 = 0 and α0 = 5 nm, and electric field is
absent in frame (a) and is taken 1kV/cm in frame (b). It can be observed that the
influence of laser field results in the rearranging of energy spectrum. Indeed, the
augmented α0 affects the energies of the ground and first excited states in a way,
that they form a single 2-fold degenerated eigenvalue. This degeneracy is a result
of the decoupling that forces the ground and first excited states to have probability
densities that are very similar. Nevertheless, the parity values for the ground state are
Px = 1 and Py = 1 (with respect to x- and y-axis) and for the excited state Px = −1
and Py = 1. Considering the form of wave functions the ground and first excited
states can be treated as bonding and antibonding ones respectively. Another pairs of
bonding and antibonding states are third and sixth, fourth and fifth, seventh and tenth,
eighth and ninth. Besides that, the dependence of the first, third, and seventh energy
levels on α0 is different from that of the other levels. This phenomenon is induced by
the laser field that by localizing the electron in the rings, strengthens the confinement.
On the other hand, other states have energies that are nearly linear functions of α0,
because these states are localized in the rings even if the laser field is not turned on.
In the presence of x-axis directed electric field considered in Fig. 14.26b the laser
field induced degeneracy is no longer present, because under electric field influence
the only possible parity is Py = ±1. In addition, in biased structure all the levels
undergo decreasing, with exception of 9th and 10th levels that increase.
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Fig. 14.26 The dependence of the first ten energy levels on α0 and the electric field is absent in
Fig. 14.26a and 1kV/cm in Fig. 14.26b. The wave functions in the left and right sides of the frames
are for α0 = 0 and α0 = 5 nm respectively (reproduced from [97] under a Creative Commons
Attribution 4.0 International License)
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14.6.2 Intraband Absorption in a Quantum Ring Molecule

The qualitative estimation of the coupling of the dressed states can be inferred from
the study of related additive absorption coefficient given by (14.15), where � =
0.1meV. The �i f dependence on α0 is presented in Fig. 14.27a, c, in which the
area of the circles is proportional to the respective square of the modulus of the
matrix element -

∣∣Mi f

∣∣2. The transitions are considered only from the ground state
to excited states and the light is circularly polarized and propagates along the z-axis.
The corresponding absorption coefficient are depicted in Fig. 14.27b and d. If the
electric field is absent then transitions are permitted only to the second, fourth, sixth,
eighth and tenth states. The parities of these states are not the same as it can be
understood from Fig. 14.26a: Px = −1 and Py = 1 for the second, sixth and tenth
states, Px = 1 and Py = −1 for the fourth and eighth states. The 1 → 2 transition is

(a) (b)

(d)
(c)

Fig. 14.27 The �i f energy difference dependence on α0 (a) and (c): the area of the circles is

proportional to the respective
∣∣Mi f

∣∣2, and the absorption coefficient (in arbitrary units) dependence
on incident photon energy � for different values of α0 (b) and (d). The electric field is absent in (a)
and (b) and has 1kV/cm strength in (c) and (d) (reproduced from [97] under a Creative Commons
Attribution 4.0 International License)
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the most probable, but, the magnitude of absorption coefficient is not defined only by
that probability. 1 → 4 transition is evidently less probable than 1 → 2, but 1 → 4
transition related absorption coefficient is bigger, caused by the multiplication with
 in (14.15). Alike effect is observed for α0 values that are near to 5 nm: 1 → 4 is
more probable than 1 → 6 transition but results in a smaller absorption coefficient.
Moreover, only 1 → 6 transition has the absorption spectrum that undergoes both
redshift and blueshift; for other transitions the spectrum has only the redshift. The
absorption related with 1 → 10 transition, even though allowed, is not observable,
since is has very small probability. Electric field with strength 1 kV/cm removes
the symmetry with respect to the y-axis, and permits all the transitions. Certainly,
Fig. 14.27c demonstrates that the 1 → 2 transition is the most probable. At the same
time, the absorption coefficient related to 1 → 9 transition exhibits values of the
same order than absorption related to 1 → 2. Now, the absorption spectrum shown
in Fig. 14.27d reveals redshift in transitions to the second, third, fourth states, and
blueshift in 1 → 5, 1 → 9 and 1 → 10 transitions. Transitions to sixth, seventh, and
eighth states have much less values for the absorption coefficient.

Figure14.28 considers the situation when the angle β between laser and electric
field is changing. Magnitudes of electric field strength and laser field parameter are
fixed to F = 0.5 kV/cm and α0 = 2.5 nm correspondingly and the laser field polar-
ization êx is fixed. Figure14.28 reveals that the energy levels exhibit oscillations,
caused by the distributions of wave functions with β variation. In addition, ener-
gies are symmetric with respect to β = 90◦ value, since the Vd(r⊥, α0) potential is
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Fig. 14.28 The dependence of the first ten energy levels on the electric field direction at fixed
F = 0.5kV/cm and α0 = 2.5 nm. Figures14.28 (1) and 14.28 (2) demonstrate energy behavior
around the anti-crossing-like points (reproduced from [97] under a Creative Commons Attribution
4.0 International License)
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symmetric with respect to x- and y- axis. It is also worth to mention the appearance
of anti-crossing-like points, caused by the angle variation. Mostly, an anti-crossing
point is a point where the energy levels are very closely positioned, and the respective
wave functions have the same symmetry [98]. Therefore, we consider that at anti-
crossing-like points the energies again are very close and but the shapes of respective
wave functions is similar. Figure14.28 (1) and (2) present energy variation around
three anti-crossing-like points. An interesting and unexpected observation is that the
anti-crossing-like appear when the direction of electric field does not coincide with
x- and y- axis. Alike investigationwas done in [99] where the study of impurity states
demonstrated anti-crossings while the nanocrystal radius was increased. The authors
attributed this effect to the spatial motion of charge carriers that is influenced by the
Coulomb potential of the impurity ion and the confining potential of the nanocrystal.
In our case, the anti-crossing-like points appear when the electric field is rotating but
the polarization and α0 parameter of laser field are fixed.

The related energy difference �i f and absorption coefficients are depicted in
Fig. 14.29a and b correspondingly. As expected from the symmetric behavior of
energy levels in Fig. 14.28 �i f energies and absorption coefficients are symmetric
as well. F = 0.5kV/cm electric field permits all the transitions similar to the situa-
tion in Fig. 14.27d. The absorption spectrum demonstrates redshift and blueshift in
[0◦, 90◦] and [90◦, 180◦] intervals correspondingly, but the following exceptions
should be considered (see Fig. 14.29a): blue(red)shift in [0◦, 60◦] ([120◦, 180◦])
for 1 → 2, [0◦, 40◦] ([140◦, 180◦]) for 1 → 5, [45◦, 60◦] ([120◦, 135◦]) for 1 → 6,
[70◦, 90◦] ([90◦, 110◦]) for 1 → 8 and [20◦, 45◦] ([135◦, 160◦]) for 1 → 10. Since
�i f is oscillating and anti-crossing-like points appear, the absorption coefficient

(a)
(b)

Fig. 14.29 �i f energy difference dependence on β angle (a) and absorption coefficient (b) (in
arbitrary units) dependence on incident photon energy � for different directions of F = 0.5 kV/cm
electric field defined by β and for α0 = 2.5 nm. The area of the circles in (a) is proportional to the
respective

∣∣Mi f
∣∣2 (reproduced from [97] under a Creative Commons Attribution 4.0 International

License)

http://creativecommons.org/licenses/by/4.0/


442 H.M. Baghramyan et al.

peaks are dispersed in a much more complex way, if compared with Fig. 14.27a
and b. However, the biggest values of absorption coefficient are observed in 1 → 2,
1 → 3, and 1 → 4 transitions.

14.7 Final Remarks

In conclusion, we studied the influence of intense THz laser field influence on
electronic states and related intraband optical response of various configurations
of GaAs/GaAlAs semiconductor QRs. Here we give a short synopsis of the main
results. The external homogeneous electric field and hydrogenic-like donor impurity
presence were also considered. The strengthening of laser field influence resulted in
the increased confinement energies and strongly affected the impact of the electric
field in all the configurations. The absorption of the linearly polarized light in single
laser-dressed QR demonstrated dependence on the polarization direction in its spec-
trum.On the other hand, the addition of an impurity in a singleQR resulted in the only
in the redshift of the absorption spectrum, independent on the change of polarization
direction from x-axis to y-axis. In CDQRs both linear and nonlinear quantum con-
fined Stark effects were observed, caused by the distortion of confinement potential
by a laser field. In addition, the dissociation of a molecule modeled by a laterally
aligned couple of QRs was demonstrated only by the increment of laser intensity,
thereby the internal intervention such as the changes of the sizes of the structure or
material composition can be bypassed. Besides, the unexpected oscillations in the
energy spectrum dependence on the electric field were presented in QR molecules.

Overall, the obtained results demonstrated a significant influence of intense radi-
ation in QRs, manifested by the modified energy spectrum and optical response. We
consider the findings useful to understand the laser-dressed states in semiconductor
nanostructures with a ring-like geometry. Finally, we hope that our studies made
another step to prove the potential of QRs in optoelectronic applications.
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6, 29887 (2016)
19. Yan-Hui Sun, Shan Liu, Feng-Chen Zhou, Jun-Min Nan, Appl. Surf. Sci. 390, 175 (2016)
20. C. Kern, M. Kadic, M. Wegener, Phys. Rev. Lett. 118, 016601 (2017)
21. W. Ouerghui, J. Martinez-Pastor, J. Gomis, M.A. Maaref, D. Granados, J.M. García, Eur. Phys.

J. B 54, 217 (2006)
22. S.D. Ganichev, W. Prettl (eds.), Intense Terahertz Excitation of Semiconductors (Oxford Uni-

versity Press, Oxford, 2006)
23. Y. Yakoby, Phys. Rev. 169, 610 (1968)
24. A.H. Chin, J.M. Bakker, J. Kono, Phys. Rev. Lett. 85, 3293 (2000)
25. A. Srivastava, R. Srivastava, J. Wang, J. Kono, Phys. Rev. Lett. 93, 157401 (2004)
26. A.M. Danishevskı̆, A.A. Kastal’skı̆, S.M. Ryvkin, I.D. Yaroshetskı̆, Zh. Eksp., Teor. Fiz. 58,

544 (1970). [Sov. Phys. JETP 31, 292 (1970)
27. A.F. Gibson, M.F. Kimmit, A.C. Walker, Appl. Phys. Lett. 17, 75 (1970)
28. A.F. Kravchenko, A.M. Palkin, V.N. Sozinov, O.A. Shegaı̆, Pis’ma. Zh. Eksp. Teor. Fiz. 38,

328 (1983). [JETP Lett. 38, 393 (1983)]
29. A.D. Wieck, H. Sigg, K. Ploog, Phys. Rev. Lett. 64, 463 (1990)
30. H. Plank, L.E. Golub, S. Bauer, V.V. Bel’kov, T. Herrmann, P. Olbrich, M. Eschbach, L. Plucin-

ski, C.M. Schneider, J. Kampmeier, M. Lanius, G. Mussler, D. Grützmacher, S.D. Ganichev,
Phys. Rev. B 93, 125434 (2016)

31. K. Yoshida, K. Shibata, K. Hirakawa, Phys. Rev. Lett. 115, 138302 (2015)
32. B. Zaks, R.B. Liu, M.S. Sherwin, Nature 483, 580 (2012)
33. N. Dyakonova, P. Faltermeier, D.B. But, D. Coquillat, S.D. Ganichev,W. Knap, K. Szkudlarek,

G. Cywinski, J. Appl. Phys. 120, 164507 (2016)
34. T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai, T. Tateno, J. Kim, T. Noda, M. Kawabe, K.

Sakoda, G. Kido, N. Koguchi, Nano Lett. 5, 425 (2005)
35. F.M.S. Lima,M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. da Silva, J. Appl.

Phys. 105, 123111 (2009)
36. M. Gavrila, Atoms in Intense Laser Fields, vol. 1, Advances in atomic, molecular, and optical

physics (Academic Press, Boston, 1992)



444 H.M. Baghramyan et al.

37. C. Bosio, J.L. Staehli, M. Guzzi, G. Burri, R.A. Logan, Phys. Rev. B 38, 3263 (1988)
38. H. A. Kramers, Collected Scientific Papers (North-Holland, 1956)
39. W.C. Henneberger, Phys. Rev. Lett. 21, 838 (1968)
40. O. Madelung, U. Rössler, M. Schulz (eds.), Group IV Elements (IV-IV and III-V Compounds.

Part a - Lattice Properties, Landolt-Börnstein - Group III Condensed Matter (Springer, Berlin
Heidelberg, 2001)

41. P.A. Kuchment, Floquet Theory for Partial Differential Equations, 1st edn. (Birkhäuser, Basel,
1993)

42. B.G. Enders, F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, D.A. Agrello, F. Qu, E.F. da Silva
Jr., V.N. Freire, Phys. Rev. B 70, 035307 (2004)

43. Q. Fanyao, A.L.A. Fonseca, O.A.C. Nunes, Phys. Stat. Sol. (b) 197, 349 (1996)
44. F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, M.A. Amato, E.F. da Silva Jr., Semicond. Sci.

Technol. 23, 125038 (2008)
45. C.P. Lima, F.M.S. Lima, A.L.A. Fonseca, O.A.C. Nunes, New J. Phys. 13, 073005 (2011)
46. M.G. Barseghyan, C.A. Duque, E.C. Niculescu, A. Radu, Superlattices Microstruct. 66, 10

(2014)
47. S.D. Ganichev, S.N. Danilov, V.V. Bel’kov, E.L. Ivchenko, M. Bichler, W. Wegscheider, D.

Weiss, W. Prettl, Phys. Rev. Lett. 88, 057401 (2002)
48. G. Platero, R. Aguado, Phys. Rep. 395, 1 (2004)
49. S. Morina, O.V. Kibis, A.A. Pervishko, I.A. Shelykh, Phys. Rev. B 91, 155312 (2015)
50. A.S. Sheremet, O.V. Kibis, A.V. Kavokin, I.A. Shelykh, Phys. Rev. B 93, 165307 (2016)
51. K. Kristinsson, O.V. Kibis, S. Morina, I.A. Shelykh, Sci. Rep. 6, 20082 (2016)
52. A. Radu, A.A. Kirakosyan, D. Laroze, H.M. Baghramyan, M.G. Barseghyan, J. Appl. Phys.

116, 093101 (2014)
53. A. Radu, A.A. Kirakosyan, D. Laroze, M.G. Barseghyan, Semicond. Sci. Technol. 30, 045006

(2015)
54. T. Chakraborty, P. Pietiläinen, Phys. Rev. B 50, 8460 (1994)
55. B. Szafran, F.M. Peeters, Phys. Rev. B 72, 155316 (2005)
56. J. Simonin, C.R. Proetto, M. Pacheco, Z. Barticevic, Phys. Rev. B 89, 075304 (2014)
57. S. Gangopadhyay, B.R. Nag, Phys. Stat. Sol. (b) 195, 123 (1996)
58. E.C. Niculescu, A. Radu, Eur. Phys. J. B 80, 73 (2011)
59. W.L. Bloss, J. Appl. Phys. 66, 3639 (1989)
60. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A.

Burrus, Phys. Rev. Lett. 53, 2173 (1984)
61. G.Bastard,WaveMechanicsApplied to SemiconductorHeterostructures (Editions dePhysique,

Paris, 1990)
62. S. Liang, W. Xie, H.A. Sarkisyan, A.V. Meliksetyan, H. Shen, J. Phys.: Condens. Matter 23,

415302 (2011)
63. R.C. Iotti, L.C. Andreani, Phys. Rev. B 56, 3922 (1997)
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Chapter 15
Electron-Phonon Interaction
in Ring-Like Nanostructures

C. Trallero-Giner, Darío G. Santiago-Pérez, Leonor Chico
and R. Pérez-Álvarez

Abstract General expressions of the electron-phonon Hamiltonians in ring-like
nanostructures are settled. A unified macroscopic continuum approach for the treat-
ment of acoustical and optical phonon modes in semiconductor core-shell nanowires
is established. A basis for the space of solutions is derived, and by applying the
appropriate boundary conditions, the dispersion relation curves, as well as the dis-
placement fields and the electrostatic potential for non-polar and polar optical modes
are reported. Employing the methods of quantum field theory, the electron- and hole-
zone-center optical phonon deformation potential and optical long-range as well
as electron-acoustical phonon Hamiltonians are deduced in a systematic way. The
results are valid for the study of polar and non-polar semiconductor based core-shell
nanowires and to analyze the role of intrinsic strain and the geometric factors on the
electron-phonon coupling strengths. Special emphasis is placed on the importance
of the cylindrical symmetry in the interaction Hamiltonians.
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15.1 Introduction: Phonons in Ring-Like Geometries

The development of growth techniques has allowed for the fabrication of high qual-
ity semiconductor nanowires (NWs). These systems are of the utmost importance
for the progress of the nanoscale devices. In particular, the core-shell architecture
is of great interest [1]: a cylindrical core of a semiconductor material is surrounded
by a shell of a different semiconductor. They constitute unique systems to explore
novel low-dimensional phenomena with great basic interest [2–4]. Employing larger
bandgap semiconductors provides NWs for direct applications as waveguide or cav-
ity for optoelectronic devices. Different pairs of core-shell materials have been syn-
thesized such as GaAs-GaAsP [5], InAs-GaAs [6], GaN-GaP [7], GaP-GaN [7],
GaAs-GaP [8], AlN-GaN [9], GaAsP-GaP [10], GaAs-AlGaAs [11] CdSe/CdS [12],
and Si-Ge [13]. A great variety of applications for these core-shell nanowires have
appeared, for instance, nanowire lasers [5], nanowire nanosensors [14, 15], photo-
voltaic devices [16], and light emission diodes [17], to name a few. Furthermore,
if the core and shell materials are grown with a lattice mismatch, the strain can be
employed as an additional degree of freedom for band structure engineering. Also,
with the cylindrical geometry it is possible to achieve much higher strains between
the two materials without losing crystalline coherence [18], which can be of interest
to modify the carrier mobility and effective masses in these nanostructures. Sys-
tems composed by Si, Ge and their solid solutions, are among the most studied
and emerging as natural choices for integration with Si-based electronics. The vari-
ety of applications foreseen for these materials has boosted the interest of many
researchers [19–28]. The separation of electron and hole carriers or the dramatic
reduction of the thermal conductivity, are attained in Ge-Si core-shell NWs. The
study of acoustic phonons in strained Si-Ge nanowires and its effect on the lifetimes
of spin qubits has important consequences in the electronic and optical properties [29,
30]. Also, and based onwidespread use of Si nanowires (NWs) linked to thermal con-
ductivity [31], photodetectors [32], and solar cells [33–35], a notable effort has been
addressed to study Si-Ge and Ge-Si core-shell semiconductor NWs [36–39]. A sup-
pression of the thermal conductivity in the core-shell Si-Ge NWs has been reported
in [40–42]. The reduction of the thermal conductivity and the characteristics of the
carrier mobility are directly linked to the confinement effects on the phonon disper-
sion relation [42–46]. Thus, polar optical, non-polar optical and acoustical phonons
and the knowledge of the electron-phonon Hamiltonian (EPH) play an important role
on transport, on carrier scattering rates, on the flow of electric current, on the carrier
mobility, on the thermal flux, on the spectroscopic characterization, on Raman selec-
tion rules of core-shell nanowires of compound semiconductors. To characterize the
electron-phonon Hamiltonian, it is necessary the knowledge of phonon displacement
vectors and their spatial symmetries. Hence, a straightforward explicit expression for
the EPH, as well as the understanding of its physical relevance, represent a central
issue for the investigation of these novel structures.
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It is well-known (see [47]) that in III-V and II-VI semiconductor nanostructures,
the Fröhlich-like long range electrostatic potential is the most relevant interaction.
In non-polar materials, the electrostatic contribution due to the anion-cation atomic
vibrations is absent and consequently, the dominant contribution to the EPH is the
mechanical deformation potential [48]. Polar optical oscillations have been success-
fully studied for different nanostructures applying a long-wavelength approximation,
based on different continuum approaches; see, for example, [49–51] and references
therein. In particular, oscillations in cylindrical systems have been studied in [52–54],
but only for solid nanowires made of a single material, and in some cases neglecting
the dispersion along the nanowire axis. Several works have been devoted to obtain
the acoustic phonon dispersion in wires and core-shell nanowires using both ab
initio calculations [55, 56] and phenomenological continuum approaches (see [30,
57–59] and references therein). The phenomenological approach has also been used
successfully in nanotube structures [60–62]. In addition, studies of electron-phonon
interaction for the conduction band have been reported [63–65].

The chapter is organized as follows: Based on a phenomenological theory,
Sect. 15.2 presents fundamental equations which describe the acoustical, non-polar
and polar oscillation modes, obtaining, for each considered case, a basis of solutions
for the phonon amplitudes with cylindrical symmetry, taking into account the possi-
ble angular and axial dependence the modes may have. We discuss the inclusion of
strain which builds up at the core-shell interface, the matching boundary conditions
and a special emphasis is made on the phonon spectrum calculations, on the role
of the spatial confinement effect, and on the symmetry of the space of solutions.
The macroscopic theoretical treatment of the phonon spatial eigensolutions provides
a powerful tool to tackle the electron-phonon Hamiltonian in cylindrical core-shell
NWs. Thus, in Sect. 15.3 the electron and hole acoustical-phonon interactions is
derived, specifying the properties of symmetry of the conduction and valence bands
on the scattering amplitude. Electron-optical-phonon interaction for the short-range
deformation potential and Pekar-Fröhlich-type Hamiltonians are derived in detail
in Sect. 15.4. Section 15.5 addresses possible implications and manifestations of
electron-phonon Hamiltonians for ring-like geometries. Finally, in the Appendices
the most relevant technical elements in the development of Sects. 15.2–15.4 are
summarized.

15.2 Phonon Dispersion in Core-Shell Nanowires: Effects
of Double-Connectedness

In Fig. 15.1 shows a schematic representation of the NWs under study. An infinite
core-shell with cylindrical cross section, core radius a, shell radius bwith shell thick-
ness Δ = b − a is considered. The z-axis is chosen parallel to the growth direction
and it is assumed that all parameters involved in the present model are piece-wise
functions of r, that is, all parameters of the core and shell materials are isotropic.
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Fig. 15.1 Schematic representation of the core-shell nanowire under study. a and b are the core
and shell radii, respectively. Longitudinal, uL, and transverse, uT1, and uT2 vibrational phonon
amplitudes are indicated

15.2.1 Acoustical Phonons

In order to derive the dependence of the phonon displacement vector, u, as well as the
acoustical phonon dispersion relations, ω(kz), on the cylindrical spatial geometry,
the elastic continuum approach is followed, where the equation of motion for the
displacement u takes the form [66]

ρω2u − ∇ · σ = 0. (15.1)

Here ρ is the mass density, σ = C · ε is the mechanical stress tensor with C the
elastic stiffness tensor and ε the strain tensor. It will be useful to rewrite the tensor σ

and the strain tensor in terms of the displacement vector u = (ur, uθ , uz) in cylindri-
cal coordinates r = (r, θ, z). Assuming cubic crystal symmetry, all the coordinate
axes are fourfold symmetry axes and the tensors have three independent nonzero
components. Thus, in cylindrical coordinates the relation between stress and strain
tensors can be written as

⎛
⎜⎜⎜⎜⎜⎜⎝

σrr

σθθ

σzz

σrθ

σrz

σθz

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
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⎟⎟⎟⎟⎟⎟⎠
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⎜⎜⎜⎜⎜⎜⎝

εrr
εθθ

εzz
2εrθ
2εrz
2εθz

⎞
⎟⎟⎟⎟⎟⎟⎠

, (15.2)

where the Cij are the elastic stiffness coefficients. Considering isotropic bulk materi-
als, the tensor C has three non-zero components [67] and it is given by two indepen-
dent parameters C11 = ρv2

L
, C44 = ρv2

T
and C12 = ρv2

L
− 2ρv2

T
with vT and vL the

transverse and longitudinal sound velocities. In consequence, the acoustic phonon
branches at Γ are degenerate. In Appendix 1, the relation between the componentes
of the stress tensor ε as a function of the displacement vector components (ur, uθ , uz)
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is summarized. Thus, employing (15.71) it follows immediately that the stress tensor
takes the form

σ = ρ(v2
L
− 2v2

T
)(∇ · u)I + 2ρv2

T
(∇u), (15.3)

with I the identity matrix. According to (15.1) and (15.3) the equation of motion for
the acoustic phonon can be cast as

ρω2u = ∇(ρv2
L
∇ · u) − ∇ × (ρv2

T
∇ × u). (15.4)

In the case of bulk semiconductors, (15.4) can be split into two independent equations.
One for the longitudinal solution where ∇ × uL = 0 but ∇ · uL �= 0, whereas the
second equation for the description of the two transverse oscillations fulfills the
conditions ∇ × uT �= 0 and ∇ · uT = 0. Due to the presence of interfaces in a core-
shell nanostructure with cylindrical geometry, neither the displacement vectors uT ,
nor uL represent eigenmodes for the description of phonon modes.

The solution of (15.4) can be written as a linear combination of the basis vectors
uL, uT1 and uT2 as given in Appendix 2, (15.86), i.e.

u = ALuL + AT1uT1 + AT2uT2, (15.5)

whose coefficients are determined by imposing the appropriate boundary conditions.
Since the system is not homogeneous, the acoustic dispersion relations for the L and
T branches are not independent and the normal modes become a hybrid combination
of L, T1 and T2 phonon vibrational motions.

15.2.1.1 Core-Shell Ge-Si and Si-Ge Nanowires

In order to determine the eigenfrequencies it is necessary to impose appropriate
boundary conditions. For a core-shell nanowire with free boundaries, the mechani-
cal stress should vanish at the shell surface r = b, σ · er|r=b = 0. Besides, it follows
directly from (15.4) that the mechanical displacement vector and the normal compo-
nent of the stress tensor should be continuous at the core-shell interface r = a [49,
68], i.e., u|r=a− = u|r=a+ and σ · er|r=a− = σ · er|r=a+ .

Strains at the interface play an important role on the phonon frequencies (see [69,
70]). For the acoustic phonons, the effects of lattice mismatch between Ge and Si
are taken into account through the continuity of the normal component of the stress
tensor.

As stated above, the phonon displacement vector u has all three components (uT1,
uT2 and uL), since neither of the coefficients AL, AT1 and AT2 are zero, therefore, it
cannot be decoupled into independent motions and it is not possible to characterize
the modes as pure torsional, dilatational, or flexural modes. Nevertheless, from the
symmetry of general basis (15.86) as given in Appendix 2, the following results
emerge:
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Fig. 15.2 Frequencies ωL of the first five breathing modes as a function of the ratio a/b. In the
calculation it is fixed the shell b = 5 nm. Si-Ge (left panel) and Ge-Si (right panel) NWs grown
along the [110] crystallographic direction. The limits of Ge and Si nanowires are shown by circles
and diamonds, respectively (after [70])

(i) Phonons with kz = 0

Forn = 0 and kz = 0, there are three independentL,T1andT2uncoupledmodeswith
amplitude ur , uz and uθ , respectively. The longitudinalmodes correspond to the radial
breathing mode (RBM) and their eigenfrequencies are ruled by the secular equation
(15.87) (see Appendix 2). Preliminary studies of RBM modes have been carried out
in [71–74]. Here, the focus is on the relevance of these particular modes in Ge-Si
and Si-Ge core-shell nanowires. The frequencies of the RBM modes are strongly
dependent on the material composition, λL = vLc

/vLs
and size ratio, γ = b/a.

Figure15.2 shows the frequency dependence on the core-shell ratio a/b. The limit
cases a = 0 and a = b of Ge and Si homogeneous NWs are indicated by circles and
diamonds, respectively. The data of Table15.1 for Si and Ge bulk semiconductors
are employed in the calculations. It is important to remark that the equation of
motion (15.4) for r < a or a < r < b corresponds to an isotropic model. Along the
[110] crystallographic direction the transversal phonon velocities are not degenerate,
with two different sound velocities vT1 and vT2. Here, the average velocity vT =
(vT1 + vT2)/2 is assumed.

The oscillations observed in Fig. 15.2 of ωL as a function of the ratio a/b can
be explained by the interference between shell and core structures. Thus, for small
values of the ratio a/b, the influence of the shell on the core phonon amplitude
becomes stronger, enhancing the number of oscillations.Moreover, the lower phonon
frequencies are less affected, showing almost a flat dispersion ona/b, while the higher
excited modes are more sensitive with pronounced oscillations.
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Table 15.1 Bulk parameters for Ge and Si

vL(105 cm s−1) vT1(105 cm s−1) vT2(105 cm s−1) vT (105 cm s−1) ρ(g cm−3)

Gea 5.39 3.84 2.76 3.30 5.32

Sia 9.36 5.84 4.67 5.25 2.33
aReference [75]
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Fig. 15.3 The same as Fig. 15.2 for the uncoupled L, T1 and T2 phonon modes as a function of
2π/a, for fixed shell thickness Δ = b − a = 5 nm (after [70])

The confined eigenfrequencies, ωT2, for the transversal T2 modes are obtained
by solving (15.88) taking kz = 0 in Appendix 2. Figure15.3 displays the dependence
on 2π/a of the uncoupled L, T1 and T2 phonon frequencies for fixed shell thickness
Δ = b − a. In the limit of a → ∞ the pure Si and Ge NWs wires are recovered. As
a → ∞, it is found that the phonon frequency resembles the typical linear acoustic
bulk phonon dispersion on the phonon wavevector. The effect of the spatial phonon
confinement is to renormalize the sound velocity and, for large values of a, the fre-
quency can be written as ω

(j)
L,T = (2π/a)v(j)

L,T (j = 1, 2, ...) with different slopes v
(j)
L,T

for each particular mode. Also, Fig. 15.3 emphasizes that the cylindrical symmetry
breaks the T1 and T2 degeneracy, and two different sound velocities, v(j)

T1 and v
(j)
T2,

appear.

(ii) Phonons dispersion with kz �= 0

For n = 0 and kz �= 0, the longitudinal, L, and transverse, T1, motions, L − T1, are
coupled, while the T2 vibrational mode remains uncoupled. Following the secular
equation (15.88) deduced in Appendix 2, we display in Fig. 15.3 the pure confined
transverse T2 phonon dispersion. The bulk phonon dispersions, ωGe(kz) and ωSi(kz),
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are represented by blue and red dashed lines, respectively. Figure15.3 shows a strong
modification of the Si and Ge bulk phonon group velocities which depend on the
surrounding material. If the shell is composed of a softer or harder material than
the core semiconductor, the resulting group velocity has lower or higher values. In
Ge-Si core-shell NWs the Si shell compresses the Ge core lattice, while for Si-Ge
NWs the Ge shell is compressed by the Si core [57]. In the case of Ge-Si, if the
set of the values (ω, kz) lies in the region ωGe(kz) < ω < ωSi(kz), the parameter xc =
a
√

(ω/vTc)
2 − k2z is real while xs = a

√
(ω/vTs)

2 − k2z becomes a complex number.
Accordingly, in (15.88) the function Pnm(xs) ⇒ Pnm(|xs|) and

Pnm(|xs|) = In(|xs|)Km(γ |xs|) − Im(γ |xs|)Kn(|xs|), (15.6)

where In [Kn] is the order-n Infield [MacDonald] cylindrical function. Thus, for
small values of the phonon wave vector kz from (15.88) and using the asymptotic
behavior J1(xc) ≈ xc/2, P12(γ, |xs|) ≈ 1/(γ 2 |xs|), P22(γ, |xs|) ≈ (

1 − γ 4
)
/(4γ 2)

and J2(xc) ≈ x2c/8, it follows the analytical dispersion relation valid for Ge-Si (xc
real and xs is a complex number)

ω = vTc

√
1 +

(
λ2
T − 1

)
(γ 4 − 1)ρr

(γ 4 − 1)ρr + 1
kz = vT kz. (15.7)

A similar equation is achieved for the Si-Ge NWs, where xc is a complex number
and xs is real. Equation (15.7) shows that for kz ⇒ 0, the acoustical phonon modes
present a renormalized sound velocity vT that takes into account the parameters of
the materials: the ratio of the shell and core radius, as well as the densities, ρr , and
transverse velocities, λT [30]. Equation (15.7) suggests the way to modify the sound
velocity as a function of the geometric factors ranging between the values of vGe

T and
vSi
T
. In the domain of (ω, kz) where the phonon are confined (xc and xs are both real

functions), (15.88) provides the dispersion relation for small values of kz,

ωT2(kz) = ωT2(0) + 1

2

v2
Ts

ω2
T2(0)

k2z , (15.8)

with ωT2(0) the confined phonon frequency of the core-shell NWs for kz = 0. In
Fig. 15.4 the solutions given by (15.7) and (15.8) are represented by open diamonds.
By comparison with the numerical calculation of (15.88), it can be seen that explicit
expressions (15.7) and (15.8) are good approximations for kz(π/b) ≤ 1.

Figure15.5 is devoted to the phonon dispersion of the mixed L − T1 modes for
γ = 1.25. The longitudinal, L, and transverse, T1, labels are taken from the char-
acter of the modes at kz = 0. For the sake of comparison, the phonon dispersion
for the homogeneous Si and Ge cylindrical wires are shown in Fig. 15.5. Here, the
corresponding longitudinal and transverse modes are represented by red straight and
red dashed-dotted lines, respectively. Solutions for core-shell NWs correspond to the
hybridized longitudinal and transverse motions. Due to the strain effect at the inter-
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face, the phonon frequencies of the Ge-Si NW lie above those of the Ge wire, while
the opposite is obtained for the Si-GeNW,whereωSi are well above the core-shell Si-
Ge phonon frequencies. At kz ⇒ 0, the lower mode presents a linear dependence of
ωL−T1 on the wave number kz , with an effective sound velocity vL−T1 that depends on
the radii a and b. Assuming in (15.4) that L and T motions are decoupled, an assump-
tion not valid even for n = 0, a compact analytical expression for the longitudinal
frequency ωL is obtained as a function of the wave number kz [30].

On the same basis of (15.4), Fomin and Balandin [59] studied the phonon dis-
persions of hollow multishell QWs and the influence of the number of shells on
the sound velocities, vT , for GaAs and InAs. In the case of two shells, the torsional
mode, uz, ur = 0 and uθ �= 0, is very similar to the results of Fig. (15.4). For the
coupled or nontorsional mode, where the displacement components are uz , ur �= 0
and uθ = 0, the dispersion relations of coupled modes are strongly dependent on the
ratio between the sound speeds of the constituent materials and on the differences
between both types of quantum wires.

The bendings appearing in Fig. 15.5 are a manifestation of the strongest coupling
between L and T1 modes. The mixed character of the states avoids crossing points in
the phonon dispersion relation, i.e., a repulsion between near modes with the same
symmetry occurs. This effect is observed in all the dispersion relations, having an
important consequence in the electron-phonon Hamiltonian He−ph (see discussion
in Sect. 15.3 below). In Fig. 15.5 some anticrossings, associated with the mixing of
L and T1 states, have been indicated by full diamonds. The proximity of the levels
belonging to the same space of solutions or with the same symmetry is avoided by
the repulsion between the phonon states. At the anticrossings, a strong mixing of
the L and T1 states occurs and an exchange of the character of the constants AL and
AT1 is obtained as a function of kz. Figure15.6 shows the behavior of the coefficient
AL as a function of z-component of the phonon wavevector where the exchange of
characters between longitudinal and transverse motions is clearly observed.
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0.8
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Fig. 15.6 Coefficient AL in (15.5) as a function of kz in units of π/b for the phonon modes
l = 2, 3, 4, 5 of Ge-Si NWs as shown in Fig. 15.5. Dashed lines shows the values of kz where the
anticrossings between two nearby modes occur
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The higher excited states for kz ∼ 0 do not present a strong mixing effect and the
phonon dispersion relation can be described by a simple parabolic law, ωL(T1)(kz) =
ωL(T1)(0) + β2

L(T )k
2
z . Here, βL(T ) measures the curvature of the phonon dispersion and

ωL−T1(0) is the NW phonon frequency for kz = 0. The same conclusion is achieved
for the homogeneous Si and Ge cylindrical wires.

(iii) Modes for n �= 0 and kz = 0

Using the general curvilinear basis (15.86) as given in the Appendix 2, it is observed
that the T1 transverse phonon modes, with amplitudes ur, uθ = 0 and uz �= 0, are
independent solutions of (15.4), while the other twomodes,L andT2,with ur, uθ �= 0
and uz = 0, are mixed states.

(iv) Acoustical phonon with n �= 0 and kz �= 0

In this case the various subspaces in (15.86) are not independent and the longitudinal
L and the transverse T1, T2 motions are coupled.

15.2.2 Non-polar Optical Phonons

Here it follows a systematic study of the long-wavelength optical phonons for non-
polar media and cylindrical core-shell geometry. The consequence of the cylindrical
spatial geometry on confined phonon frequencies, the mixing of phonon modes and
their corresponding displacement vector are described by the relatively simple uni-
fied macroscopic continuum theory [76, 77]. Using the equation of motion derived
in [68, 78] from the hydrodynamic phenomenological model for cubic polar semi-
conductors and considering that the polarization and electric field associated with
the atom vibrations are zero, the equations of motion for the optical modes in an
isotropic nonpolar media is given by

ω2u = ω2
0u − ∇ · σ, (15.9)

where ω0 is the bulk optical phonon frequency at Γ point and the tensor components
σ are given by

σ = −(β2
L

− 2β2
T
)(∇ · u)I − 2β2

T
(∇u). (15.10)

Equation (15.10) includes dispersion effects through the terms βL and βT describing
the quadratic dispersions of the LO- and TO-bulk phonon branches of the optical
modes in the long-wave limit, respectively. These are phenomenological parameters
and can be obtained by fitting the bulk phonon dispersion relations. Hence, in the
framework of thismodel the dynamical equations for the opticalmodes in an isotropic
nonpolar media can be cast as

ω2u = ω2
0u + β2

L∇(∇ · u) − β2
T∇ × (∇ × u). (15.11)



458 C. Trallero-Giner et al.

Equation (15.11) is based on the fact that because the bulk optical frequencies
of core and shell materials are very different, it is a valid assumption that the states
are completely confined in the core or in the shell regions. In addition, it is assumed
a large separation between the optical branches of the shell and the host material.
These approaches are fulfilled for several II-VI, III-V, Si and Ge semiconductors.
Applying the Helmholtz’s method of potentials of [79, 80], one can find that (15.86)
with (15.85) is a general basis of solutions for the problem (15.11).

A direct evaluation of (15.11) requires one to obtain the general solution of the
problem. This can be written as a linear combination of the basis vectors (15.86)
given in Appendix 2, whose coefficients are determined by imposing the appropriate
boundary conditions.

For Si and Ge, whose characteristic bulk optical phonon frequencies are 521 cm−1

and 301 cm−1, respectively [81], and assuming a large separation between the optical
branches of shell and the host material, the amplitude of the oscillations should be
zero at the surfaces S (r = a and r = b), i.e., u|r=a = u|r=b = 0.

15.2.2.1 Strain-Induced Shift of Bulk Modes

Core-shell NWs present strain fields as well as the strain-induced frequency shift as
a function of core radius and shell thickness [19]. Assuming an isotropic medium,
the shift in bulk frequencies is proportional to the volume change due to stress
[82, 83]

Δωi(kz) = −γiωi(kz)ΔVc/Vc, (i = LO and TO), (15.12)

where γi is the Grüneisen parameter, ωi the bulk optical phonon frequencies, Vc the
volume of unit cell, andΔVc the volume change due to the latticemismatch. The ratio
ΔVc/Vc = Tr(ε) with Tr(ε) being the trace of the stress tensor. The explicit forms
of Tr(ε) in cylindrical coordinates for the core and shell are displayed in Appendix 1
for the fully strained case. Nevertheless, in core-shell silicon and germanium NWs
the strain depends on the crystallographic direction of the nanowire axis [20, 22]
and the phonon frequency shift can be estimated by solving the phonon dynamic
equations [84] along the desired crystallographic direction.Considering theCartesian
coordinates along the cubic axis of the crystal, it follows the secular equation [85]

⎛
⎝
pε11 + qε̃11 − Δω2 2tε12 2tε13

2tε21 pε22 + qε̃22 − Δω2 2tε23
2tε31 2tε32 pε33 + qε̃33 − Δω2

⎞
⎠
⎛
⎝
U1

U2

U3

⎞
⎠ = 0.

(15.13)

Here, εij (i, j = 1, 2, 3) is the strain components,U = (U1,U2,U3) is the unperturbed
phonon displacement eigenvector in Cartesian coordinates, ε̃ii = Tr{ε} − εii,Δω2 =
ω2 − ω2

0 is the strain-induced frequency shift, and p, q, t are the nonzero components
of the phonon deformation potential tensor in cubic symmetry.



15 Electron-Phonon Interaction in Ring-Like Nanostructures 459

As the NW growth direction is that of the z-axis in cylindrical coordinates, it is
immediate that for [001] case the unperturbed phonon eigenvector U3 is chosen as
U3 → uT1 and the strain tensor ε in cylindrical components is given by

ε =
⎛
⎝

εrr cos2 θ + εθθ sin2 θ −(εrr − εθθ ) sin θ cos θ 0
−(εrr − εθθ ) sin θ cos θ εrr sin2 θ + εθθ cos2 θ 0

0 0 εzz

⎞
⎠ . (15.14)

Thus, the secular equation (15.13) is reduced to

∣∣∣∣∣∣∣

qεzz + ˜ε(P,Q) − Δω2 −t(εrr − εθθ ) sin 2θ 0

−t(εrr − εθθ ) sin 2θ qεzz + ˜ε(Q,P) − Δω2 0
0 0 pεzz + q(εrr + εθθ ) − Δω2

∣∣∣∣∣∣∣
= 0,

(15.15)

with ˜ε(P,Q) = P cos2 θ + Q sin2 θ , P = pεrr + qεθθ and Q = qεrr + pεθθ . The
explicit forms of εrr , εθθ and εzz for the core and shell in cylindrical coordinates
are reported in Appendix 1 and [85] for the fully strained case. From (15.74–15.78)
it can be seen that the strain tensor components at the core depend only on the ratio
γ = b/a, while εs is a function of the coordinate r. The strain-induced frequency
shift, Δω2, solution of (15.13), is

Δω2
L = (p + q)εcrr + qεczz,

Δω2
T1 = 2qεcrr + pεczz,

Δω2
T2 = (p + q)εcrr + qεczz. (15.16)

Likewise, we can also make the correspondence U2 → uT1 for the [011] direction.
Following the same procedure, the frequency shifts for NWs growth along [011]
direction are given by

Δω2
L =

(
3

4
p + 5

4
q + 1

2
t

)
εcrr +

(
1

4
p + 3

4
q − 1

2
t

)
εczz,

Δω2
T1 =

(
1

2
p + 3

2
q − t

)
εcrr +

(
1

2
p + 1

2
q + t

)
εczz,

Δω2
T2 =

(
3

4
p + 5

4
q + 1

2
t

)
εcrr +

(
1

4
p + 3

4
q − 1

2
t

)
εczz. (15.17)

Similarly, in the case of [111] growth direction and choosing U1 → uT1, the shift
for the three modes are
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Δω2
L = 1

3
(p + 2q)(2εcrr + εczz) − 2

3
t(εcrr − εczz),

Δω2
T1 = 1

3
(p + 2q)(2εcrr + εczz) + 4

3
t(εcrr − εczz),

Δω2
T2 = 1

3
(p + 2q)(2εcrr + εczz) − 2

3
t(εcrr − εczz). (15.18)

Raman measurements in core-shell Si-Ge NWs [20] prove that strain is partially
relaxed for core diameters larger than 11 nm. In order to avoid an overestimation
of the strain effects, Singh et al. [20] introduced an axial relaxation parameter ρ0

in the misfit factor, εmisfit = (as − ac)/ac, with ac (as) being the lattice constant of
the core (shell) bulk semiconductor. Thus, the misfit strain is rewritten as εmisfit →
εmisfit(1 − ρ0). This parameter varies between 0 and 1, so that when ρ0 = 0, the
system is fully strained. For the numerical evaluations a relaxation parameter ρ0 =
0.5 is taken, avoiding the unrealistic overestimation of the strain. The results for fully
strained NWs are very similar, save for the larger shift due to strain effects. Once
the phonon bulk frequencies are corrected including strain through the replacement
ω2
0 → ω2

0 + Δω2
i (i = L,T1,T2) in the corresponding expressions for the phonon

wavenumber qL,T as given by (15.85), it is possible to evaluate the phonon dispersion
relations using (15.90).

15.2.2.2 Dispersion Relations for Ge-Si and Si-Ge Core-Shell
Nanowires

This section is devoted to study the core modes in Ge-Si and Si-Ge systems and,
in particular, to analyze the coupling of the phonon modes for different values of n
and kz , as well as the frequency shift due to confinement and interface stress as a
function of the core and shell radii a, b, and the wavevector kz. Table 15.2 shows
the input parameters employed in the calculations. The values given in Table15.2
are assumed to be size-independent, a hypothesis that should not be valid for very
small radii. Dimensionless quadratic curvature parameters for the transversal (β2

T )
and longitudinal (β2

L) bulk optical phonon bands, along the [011] crystallographic
direction are 6.33 × 10−12, 11.53 × 10−12 and 17.59 × 10−12, 31.95 × 10−12 for
Ge and Si respectively. These values have been fitted to the neutron dispersion data
collected in [86–89]. As it is well-known, the transversal optical phonons are non-
degenerate along the [011] crystallographic direction, showing different βT1 and βT2

curvatures. For Si and Ge bulk semiconductors these values are similar. Thus, in the
framework of the isotropic approximation, we have chosen for βT the average values
of βT1 and βT2 fitted by neutron scattering for our calculations.
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Table 15.2 Bulk parameters for Ge and Siwith diamond structure.ω0 is given in cm−1, theYoung’s
modulus E in 1012 dyn/cm2 and the lattice constant a0 in nm

ω0 p/ω2
0 q/ω2

0 t/ω2
0 E ν a0

Ge 301a −1.47b −1.93b −1.11b 1.28c 0.21c 0.566c

Si 521a −1.83b −2.33b −0.71b 1.59b 0.23c 0.543c

aReference [81]
bReference [84]
cReference [75]

The general phonon dispersion relations for the core phonons are obtained by
solving (15.90) in Appendix 2. From the basis function (15.86) and (15.90) the
following symmetry properties are obtained:

(i) Modes with n = 0 and kz = 0

The triple degeneracy of the optical modes is broken and all modes L, T1 and T2
are completely decoupled with three independent subsets of confined modes. The
frequencies of core modes are found to be

ω2
L = ω2

0 − β2
L(μ

(m)
1 )2

a2
+ Δω2

L(γ ),

ω2
T1 = ω2

0 − β2
T (μ

(m)
0 )2

a2
+ Δω2

T1(γ ),

ω2
T2 = ω2

0 − β2
T (μ

(m)
1 )2

a2
+ Δω2

T2(γ ), (15.19)

where μ
(m)
i (i = 0, 1) are the roots of Ji(μ

(m)
i ) = 0, with m = 1, 2, . . .. The second

term in the right hand side of (15.19) gives the effect of confinement, producing a
downshift of the modes proportional to 1/a2. The third term is the effect of strain,
Δω2

i , (i = L,T1,T2)which depends on the ratioγ and the crystallographic direction.
Figure15.7 shows the core modes as a function of the core radius a in a core-

shell system for fixed shell thickness. The left panel presents the Ge-Si case, and the
right panel depicts results for the Si-Ge nanowire. Recall that the role of the shell is
essential to obtain the shift of the core bulk frequency, as explained in Sect. 15.2.2.1
but, besides that, it does not play any role for the coremodes, because of the boundary
condition of complete confinement. There is an overall increase of the core mode
frequencies in the left panel of Fig. 15.7, in which Ge is the core material (Ge bulk
frequency ω0 = 301 cm−1), while the modes are downshifted (for Si ω0 = 521 cm−1)
in the right panel of Fig. 15.7, where Si is the core medium. This is related to the
difference of lattice constants of Si and Ge; as it can be seen in Table15.2, the lattice
constant of Si is smaller than that of Ge, thus the strain always produces a redshift
in the Si part of the wire, and a blueshift in the Ge part, no matter whether they
constitute the core or the shell. The highest frequency mode of the Ge-core case
(left panel) shows an increase of frequency for diminishing a in a substantial radius
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Fig. 15.7 Frequencies of the core modes with n = 0 and kz = 0 as a function of the core radius in
a core-shell system grown in the [011] direction. Left panel: Ge-Si NW. Right panel: Si-Ge NW,
for fixed shell thickness b − a = 1 nm (after [90])

range, which indicates the importance of strain for this mode. Equations (15.19) and
(15.74)–(15.78) allow us to conclude that for increasing values of a and fixed shell
thickness, the frequencies tend to the bulk core value, while for γ fixed confinement
effects disappear, leaving the strain as the main contribution. In a nanowire with
fixed core radius, the frequency dependence is due to the strain, which varies with
the shell radius via the ratio γ . As discussed above, the NWs with Ge core will
always show an increasing blueshift of all modes with increasing strain, because of
the smaller Si lattice constant. For the same reason, all modes of strained Si-core
NWs are redshifted.

(ii) Modes with n �= 0 and kz = 0

In the case of modes without axial symmetry, i.e., n �= 0, for kz = 0 the L and T2
modes are coupled, while the T1 one remains uncoupled. The dispersion relation for
the latter is given by

ω2
T1 = ω2

0 − β2
T (μ(m)

n )2

a2
+ Δω2

T1(γ ), (15.20)

where Jn(μ(m)
n ) = 0 with m = 1, 2, . . .. The coupled L − T2 modes are obtained

from (15.91) (see Appendix 2).
Fig. 15.8 is devoted to the core modes with n = 1 and kz = 0 as a function of

the core radius for fixed shell thickness. The uncoupled T1 modes behave as for the
n = 0 case, while the coupled L − T2 modes are closer in frequencies compared to
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Fig. 15.8 The same as Fig. 15.7 for n = 1 (after [90])

the n = 0 case. This behavior holds for varying core radius if the same shell/core
ratio is maintained.

(iii) Modes with n = 0 and kz �= 0

Here it is considered the dependence of the phonon frequencies with the wavevector
kz �= 0. For the quantum number n = 0 the transverse T2 mode is uncoupled while L
and T1modes are coupled. The uncoupled transversemode is given by J1(μ

(m)
1 ) = 0,

which leads to the dispersion relation

ω2
T2 = ω2

0 − β2
T (μ

(m)
1 )2

a2
+ Δω2

T2(γ ) − β2
T k

2
z . (15.21)

Equation (15.21) is just like the bulk dispersion relation, except for the shifts due to
the spatial confinement β2

T (μ
(m)
1 )2/a2 and the strain, Δω2

T2(γ ). The coupled L − T1
modes are obtained from (15.94) in Appendix 2.

15.2.3 Polar Optical Phonons

Polar optical phonons are of great interest for the spectroscopic characterization
of core-shell nanowires of compound semiconductors. Nowadays, several particu-
lar systems have been synthesized employing different pairs of core-shell materi-
als, such as GaAs-GaAsP [5], InAs-GaAs [6], GaN-GaP [7], GaP-GaN [7], GaAs-
GaP [8], AlN-GaN [9], GaAsP-GaP [10], GaAs-AlGaAs [11], and CdSe/CdS [12],
among others. Polar phonon modes have been successfully studied for different
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nanostructures applying a long-wavelength approximation and based on different
continuum approaches; see, for example, [49–51, 91] and references therein. In par-
ticular, oscillations in cylindrical systems have been studied in [52–54], but only for
solid nanowires made of a single material.

In the framework of the phenomenological continuum model [68, 92, 93] the
phonon oscillations are described by the relative displacement vector field u = u+ −
u− of the two ions involved and the electric potential ϕ related with the macroscopic
electric field E = −∇ϕ. The fundamental equations of motion which include the
bulk phonon dispersion are given by [79]

ρm(ω2 − ω2
TO)u = ρmβ2

L∇(∇ · u) − ρmβ2
T∇ × ∇ × u + α∇ϕ, (15.22)

and

∇2ϕ = 4πα

ε∞
∇ · u, (15.23)

with the parameter α defined as

α2 = (ε0 − ε∞)ρmω2
TO

4π
. (15.24)

In these expressions, ωTO is the transversal bulk frequency at Γ point, ρm is the
reduced mass density, βL (βT ) describes the quadratic dispersion of the LO (TO)-
bulk phonon dispersion of the optical modes in the long-wave limit, and ε0 (ε∞)
is the static (high frequency) dielectric constant. This phenomenological continuum
model takes into account the coupled electro-mechanical character of the vibrations,
the longitudinal bulk frequency ωLO is given by the Lyddane-Sachs-Teller relation
ω2
LO = (ε0/ε∞)ω2

TO and all quantities are piecewise-dependent on the coordinates.
The scalar potential is a solution of the Poisson equation (15.23) with a polarization
charge ρP = ∇ � P of the polarization field P = αu + (ε∞ − 1)E/4π .

Equations (15.22) and (15.23) represent a system of four coupled partial dif-
ferential equations which describe the polar optical phonons in each region of the
nanowire embedded in a host characterized by its dielectric constant εD as depicted
in Fig. 15.1.

15.2.3.1 Polar Optical Oscillation Modes in Core-Shell Nanowires

In order to obtain the solution of (15.22) and (15.23), boundary conditions for u
and ϕ at each interface should be applied. The electric potential ϕ and the normal
component of the displacement field D = 4παu − ε∞∇ · ϕ should be continuous at
the interfaces [49]. For the mechanical displacement vector u it is considered that
the oscillations occurring in one of the materials do not penetrate significantly into
the other. This is the case of the GaAs-GaP core-shell nanowire (in fact, a significant
number of pairs of materials of current interest satisfies this requisite) and it can
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be assumed complete mechanical confinement, u|a = u|b = 0. Thus, the matching
boundary conditions are reduced to

u|S = 0,

ϕ−∣∣
S = ϕ+∣∣

S , (15.25)

ε−
∞

∂ϕ−

∂r

∣∣∣∣
S

= ε+
∞

∂ϕ+

∂r

∣∣∣∣
S

.

In (15.25) the symbol −(+) represents that the associated quantity is evaluated at the
inside (outside) of the corresponding interface S, namely, the cylindrical surfaces of
radii a and b.

15.2.3.2 Interface Optical Phonons

The system of (15.22) and (15.23) leads to coupled modes at the interfaces. These
modes shows a predominant electric character and are related to interface phonons
(IP). It is possible to evaluate IP in a simple way employing the dielectric continuum
approach (DCA). Considering that the electric field satisfies the quasi-staticMaxwell
equations, we have

εc(s)(ω)∇2ϕ = 0,

where the frequency-dependent dielectric function εc(s)(ω) for the core (shell) is
given by the standard expression

εc(s)(ω) = εc(s)∞
ω
c(s)2
LO − ω2

ω
c(s)2
TO − ω2

. (15.26)

In the above equation ω
c(s)
LO and ω

c(s)
TO are the bulk longitudinal and transversal polar

optical phonons frequencies at Γ point for the core (shell) semiconductor material.
From (15.99) in Appendix 2 it follows that for each value of the index n there are
three independent IP branches. One is linked to the cylindrical core embedded in
a host material with an effective dielectric constant, and the other two correspond
to the cylindrical shell structure sandwiched between the core and a host dielectric
medium. These interface phonons depend on the geometrical parameter γ .

15.2.3.3 Strain Effects

Employing (15.12) strain effects can be included on the phonon frequencies of NWs,
allowing to study its importance by comparing to the strain-free case. From (15.72)
and (15.73) follow the limits
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Tr(εc)lim γ→1 = 0,

Tr(εs)lim γ→1 = 2εmisfit
1 − 2Pνc

Pνc − 1
,

Tr(εc)lim γ→∞ = εmisfit
(1 − 2Pνc)

(
3 + Pνc

)
1 − 2Pνc + Er

, (15.27)

Tr(εs)lim γ→∞ = 0.

In consequence, the strain field in the nanowire is modeled by replacing in (15.95)
and (15.99) the unstrained bulk frequencies at Γ , ωTO and ωLO, by ωT (γ ), ωL(γ ):

ωT (γ ) = ωTO + ΔωTO(γ ), (15.28)

ωL(γ ) = ωLO + ΔωLO(γ ). (15.29)

15.2.3.4 Confined and Interface Modes in NWs

The method described in the Appendix 2 provides a basis of functions {FM (r, θ, z)}
for the solutions of (15.22) and (15.23). The dispersion relations are then obtained
applying the boundary conditions (15.25) to a general linear combination of the basis
functions (15.97), that can be written as

F =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
M

A(c)
M F(1)

M . r ≤ a
∑
M

A(s)
M F(1)

M + ∑
M

B(s)
M F (2)

M , a ≤ r ≤ b
∑
M

B(D)
M F(2)

M . r ≥ b,

(15.30)

where M = T1,T2,L,H and i = 1, 2 denotes that the corresponding Bessel and
modified Bessel functions fn, gn appear in the basis functions F

(i)
M .

In what follows some analytical and numerical results for core and shell modes,
without and with stress effects, are presented. The parameters chosen for GaAs/GaP
are listed in Table15.3. The uncoupled modes (kz = 0, n = 0) have been analyzed
in [94]. The modes with kz = 0, n > 0 are discussed below; in a similar way it is
possible to study the cases with kz �= 0 and n = 0, 1. In order to avoid a heavy nota-
tion, the indices c, s in the parabolicity parameters and in the bulk frequencies are
dropped when there is no possible ambiguity.

(i) Core Modes

Assuming complete mechanical confinement, core modes are modeled by consid-
ering u ≡ 0 for a < r < b and u �= 0 for r < a. The application of the bound-
ary conditions indicated in (15.25) yields one family of uncoupled T1 modes
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Table 15.3 Bulk parameters for GaAs and GaP in zinc blende phase. Frequency is given in cm−1,
the Young’s modulus E in 1012 dyn/cm2, dispersion parameters β × 10−6 and the lattice constant
a0 in nm

Material ε0 εa∞ ωTO ωLO βT βL γTO γLO E ν a0

GaAs 12.80b 11.26 267b 285b 1.70c 1.76c 1.11d 0.97d 0.853d 0.312d 0.565d

GaP 11.11b 9.15 365.3b 402.5b 0.72e 1.60e 1.09d 0.95d 1.03d 0.306d 0.545d

aUsing the Lyddane-Sachs-Teller relation
bReference [95]
cReference [49]
dReference [75]
eReference [96]

and one of coupled L-T2 modes. The eigenvalue equations for the uncoupled T1
modes are given by Jn(μ(m)

n ) = 0, m = 1, 2, . . . which yield the dispersion relations
ω2 = ω2

TO − (μ(m)
n βT/a)2.

Figure15.9 shows the frequency dependence of the confined modes on the core
radius a for the GaAs-GaP core-shell nanowire. For the strain-free case (Fig. 15.9a),
the mode frequency is independent of the shell radius b. The uncoupled transversal
modes in the nanostructure are not mixed with the electrostatic potential and the
complete confined matching boundary conditions u|r=a = 0 and u|r=b = 0, define
the confined phonon frequencies. Thus, core (shell) frequencies depend solely on
the radius a (b). This behavior changes when the effects of strain are taken into
account, which yields the eigenfrequencies dependent on the shell radius b. There is
an increase on the frequencies of the modes when considering strain effects, clearly
shown in Fig. 15.9b.

The secular equation for the coupled L-T2 core modes is reported in the
Appendix 2. The phonon frequencies for n = 1 as a function of core radius a, given
by (15.101), are presented in Fig. 15.10. The interface (I ) mode manifests in the
abrupt change of slope in the frequencies, where the mixing between longitudinal
and transversal modes occurs. The electrostatic potential of the surface oscillation is
manifested when the interaction of the LO-confined phonon with the surface mode
becomes strong for certain values of the core radius a. In this region the electric
character of the modes is dominant. As a → ∞, the bulk LO and TO phonon dis-
persion relations are recovered. The effect of strain is also an increase of the phonon
frequencies (Fig. 15.10b). As the core radius increases, the parameter γ → 1 and
the phonon frequencies decrease, reaching the bulk limit ωT (L)(γ = 1) = ωTO(LO);
then, the spatial confinement and the influence of the strain on the core are negligible
(see (15.72)).

(ii) Shell Modes

The matching boundary conditions (15.25) lead to one family of uncoupled T1
modes and one of coupled L-T2 modes. The secular equation for the uncoupled T1
shell modes is reported elsewhere [79], in this case the T1 frequency depends on
both core and shell radius. Although the general expressions for L-T2 modes can
be obtained [79], the explicit equations are not given, but the numerical solutions
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strain effects. In the calculation a = 3 nm and εD = 2.56. The bulk LO and TO phonon frequencies
are indicated by red dashed lines. The corresponding I-phonon frequencies, ωI1 and ωI2 obtained
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corresponding to these dispersion relations for n = 1 and kz = 0 as functions of
γ are shown in Fig. 15.11. The two interface shell branches I1 and I2 (shown by
dashed lines) are solutions of (15.100). For frequencies near the interface phonons
ωI1 and ωI2, there is a remarkable mixing between the longitudinal and transversal
modes. This effect is more remarkable for phonon frequencies ω near ωI2, where
the anticrossing between twomodes with different symmetry is stronger if compared
with the upper interface branch I1. Figure15.11 shows that the interface strain pushes
down the phonon shellmodeswith respect to the bulk phonon frequencies. Recall that
in the core the effect is the opposite (see Fig. 15.10). Noting the limit tr(εs) → 0 for
γ � 1, it can be seen from Fig. 15.11 that the confined phonon frequencies approach
the unstrained ωLO(TO) bulk phonon frequencies.

15.3 Electron-Acoustical-Phonon Interaction

The Hamiltonian of the electrons interacting with the acoustic phonons can be
expressed as [81]

He−ph =
∑
α′,α

Mα′,α

[
a†j (kz) + aj(−kz)

]
c†α′cα, (15.31)
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where a†j (fkz) (aj(−kz)) denotes the phonon creation (annihilation) operator in the

j−branch with wavevector kz(−kz) and c†α′ (cα), the corresponding operators for
electrons in the electronic states α′ (α). Here, Mα′,α takes into account the elec-
tronic scattering event between the states α → α′ by the interaction with an acoustic
phonon.

The electron-acoustic-phonon coupling in semiconductors can be determined
using the short range deformation-potential (DP) model [97]. In a first approach,
this interaction is treated in the same way as in the bulk DP approach. Nevertheless,
it has been reported that the DP constants are anisotropic and that depend on the spa-
tial confinement (see [34] and references therein). Furthermore, the DP mechanism
can be treated as a perturbation of the band energies due to the lattice distortion; as
a consequence, the electron-phonon coupling depends on the electronic band struc-
ture [97]. In the case of the Ge-Si and Si-Ge core-shell nanowires grown in the [110]
direction is found a direct band gap atΓ point of the Brillouin zone [98–101]. Hence,
the conduction band minimum shows a Γ1c symmetry, while the maximum valence
band has a Γ15v one, respectively.

Due to translational and cylindrical symmetries, the matrix elementMα′,α can be
cast as follows

Mα′,α = Se−phδm′,m+nδk ′,k+kz , (15.32)

where the angular momentum and momentum conservation are written explicitly.
Se−ph = 〈

m′∣∣He−ph |m〉 is the scattering amplitude due to the electronic transition
between the electron or hole states

∣∣m′〉 → |m〉 assisted by an acoustical phonon
(see Appendix 3). For the phonon eigenvectors {un,kz} it is chosen the normalization
condition

∫
ρ(r)|un,kz (r)|2dV = �

2ωn(kz)
, (15.33)

with ωn(kz) the acoustic-phonon dispersion of the core-shell problem. Below is dis-
cussed a general formulation for the electron-acoustic deformation potential Hamil-
tonian, He−ph and an evaluation of the scattering amplitudes for the electrons and
holes.

15.3.1 Electron-Longitudinal-Acoustical-Phonon
Hamiltonian

The electron-phonon scattering amplitude probability can be cast as

Mα′
e,αe = 〈Ψα′

e
|a(Γ1c)∇ · u|Ψαe〉, (15.34)
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where a(Γ1c) is the volume deformation potential [97], u is the vector phonon ampli-
tude and |Ψαe〉 is the electron wave function for the core-shell NWs. The transverse
or torsional mode does not induce volume change, and only the longitudinal acoustic
motion uL(r) contributes to electron-phonon Hamiltonian HE−DP . By assuming in
(15.5) AL as independent constant follows that

HE−DP = a(Γ1c)∇ · uL = −
√

�ω3
n(kz)

4πa2L0ρcv4
L

a(Γ1c)

Nn,kz

fn(qLr)e
i(nθ+kzz), (15.35)

whereNn,kz =
√∫ γ

0 ρ(z)|un,kz (z)|2zdz/(ρcA2
Lc
) is the normalization constant for the

dimensionless phonon amplitude un,kz (z). Taking into account (15.35), (15.104) and
(15.105), the electron scattering amplitude can be written as

SE−DP = 1

a2
〈
Fm′

e

∣∣HOE
ωn

vLNn,kz

fn
∣∣Fme

〉
, (15.36)

whereHOE = −a(Γ1c)
√

�ωn=0(kz = 0)/4πa2L0ρcv2
L
. From(15.36) it follows imme-

diately that the phononmodes with n = 0 assist the electron intrasubband transitions,
m′

e = me, while for n �= 0 intersubband transitions with m′
e �= me occur. In the case

of an homogeneous wire,
〈
Fm′

e

∣∣ fn
∣∣Fme

〉
/a2 corresponds to the electron form factor

or overlap integral between the normalized radial electronic states and the phonon
function fn of the quantum wire.

For a homogeneous wire and assuming the size-quantum-limit (strong spatial
confinement) where electrons populate the lowest subband (m′

e = me = 0 and n = 0)
and intersubband transitions |p′

e〉 → |pe〉 are discarded, the scattering amplitude,
(15.36), at kz = 0 reduces to

SH
E−DP = HOE

(
a2q2

L

4
δ4 − δ2 + 1

)− 1
2 〈J0(pea)|J0(qLa)|J0(pea)〉

a2J 2
1 (pea)J0(qLa)

, (15.37)

with δ = vL/vT .
Figure15.12 displays the reduced scattering amplitude SE−DP/HOE as a function

of the ratio a/b for both core-shell NWs. In the calculation for the Si-Ge (Ge-Si) NWs
we fixed the value of HOE with the parameters of Si (Ge) semiconductor. For each
structure, in the quantum limit approach the first three Lmodes of the structure with
frequenciesω(j)

L
(j = 1, 2, 3) �= 0 at kz = 0 are considered. In thefigure the form factor

using (15.37) and a = 5 nm is represented by dashed lines. In NWs of Si-Ge and
Ge-Si the electrons are confined in the core and shell, respectively. For the evaluation
of (15.36) the results displayed in Appendix 3 are employed. In the upper panel of
Fig. 15.12 (Si-Ge NWs) the influence of the shell of Ge on the SE−DP is shown. If
a = b a quantum wire of Si is reached with SE−DP/HOE as described by (15.37). If
a/b �= 1 the Si-Ge core-shell NWs show that the amplitude of SE−DP , for the ω(1)

L
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modes, firstly increases, reaching a maximum for γ (1)
max = (a/b)(1)max ≈ 0.4 and for

γ < γ (1)
max the quantity SE−DP/HOE reaches asymptotically the Si homogeneous wire

value. In the case of ω(j)
L

(j = 2, 3), the reduced scattering amplitude grows, reaching
a maximum value near (a/b)(2)max ≈ 0.23. For γ < γ (2)

max, SE−DP/HOE decreases to the
limit value of (15.37). In the lower panel of Fig. 15.12 (Ge-Si NWs) the wire of Ge is
reached at a = b. From the figure it can be observed the strong influence of the shell
on the SH

E−DP for a/b < 0.8 and also the oscillations of SE−DP around the SH
E−DP

values, a fact reflecting the oscillator behavior of the phonon modes with γ (see
Fig. 15.2). A similar result for the electron scattering amplitude has been reported
in [102] for Si nanowires.

15.3.2 Bir-Pikus Hamiltonian in Core-Shell Nanowires

For the scattering amplitude, Mα′
h,αh , of a hole in the valence band interacting with

an acoustic phonon we have

Mα′
h,αh = 〈Ψα′

h
|HBP|Ψαh〉, (15.38)
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where |Ψαh〉 is the holewave function in theNWandHBP is theBir-PikusHamiltonian
for the J = 3/2 valence bands states [48, 97]. Assuming the zinc-blende symmetry,
the HBP Hamiltonian in cylindrical coordinates and in the framework of the axial
approximation, can be written as

HBP =
[
a(Γ15v) − 1

2
b(Γ15v)

(
J 2
z − J 2/3

) ]∇ · u+

b(Γ15v)

[
1

2
J 2
∓X

± + √
2{J∓, Jz}Y ± +3

2
(J 2

z − J 2/3)εzz

]
,

(15.39)

with a(Γ15v) and b(Γ15v) the volume and shear deformation potentials for the highest
energyΓ15v valence band,1 X ± = e±2iθ (εrr − εθθ ± 2iεrθ ),Y ± = e±iθ (εrz ± iεθz),

{J∓, Jz} = 1
2 (J∓Jz + JzJ∓), J± = (Jx ± iJy)/

√
2, being Ji the Cartesian angular-

momentum operators for a particle with spin 3/2 and εij the component of the stress
tensor (see Appendix 1, (15.70)). Employing the solutions for the phonon ampli-
tude (15.5), the matrix representation of the angular momentum J = 3/2 [103, 104]
and the strain relations given in Appendix 1, the hole scattering amplitude for the
Hamiltonian (15.39) can be cast as

SH−BP =
〈
F̂ (i)
m′

h

∣∣∣HBP

∣∣F̂ (i)
mh

〉
, (15.40)

where i = hh+, lh+, lh−, hh−,

SH−BP =
〈 a1iFmh+n

a2iFmh+n+1

a3iFmh+n+2

a4iFmh+n+3

∣∣∣∣∣∣∣∣

⎛
⎜⎜⎝

T+ Y − X − 0
Y + T− 0 X −
X + 0 T− −Y −
0 X + −Y + T+

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣

a1iFmh

a2iFmh+1

a3iFmh+2

a4iFmh+3

〉
, (15.41)

T± = −
[
AL

([
a(Γ15v) ± 1

2
b(Γ15v)

]
ω2

v2
L

∓ 3

2
k2z b(Γ15v)

)
fn(qLr) ± 3

2
AT1b(Γ15v)kzqT fn(qT r)

]
,

Y ± = ∓i
√
3b(Γ15v)

[
ALkzqLfn±1(qLr) ∓ 1

2

[
AT1

(
q2T − k2z

)
+ AT2kzqT

]
fn±1(qT r)

]
,

X ± =
√
3

2
b(Γ15v)

[
ALq

2
Lfn±2(qLr) + (AT1kzqT − AT2q

2
T )fn±2(qT r)

]
. (15.42)

From (15.40), (15.42) and the basis of solutions (15.86), the following conclusions
are derived: (a) For the phonon states with n = 0, kz = 0 the system presents three
independent hole-phonon interaction Hamiltonians, accounting for the three uncou-
pled subspaces, L, T1, T2with eigenfrequenciesωL,ωT1 andωT2, respectively. Eval-

1It is established that the values of deformation potentials are modified by the orientation and the
spatial confinement. In a first approach we are choosing the bulk values from [34].
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uating (15.42) atω = ωL and using the fact thatAL �= 0 andAT1,AT2 = 0, the Hamil-
tonian (15.40) couples the diagonal intraband hole sates |i〉 ⇒ |i〉 and the weak cou-
pling interband between

∣∣v±1/2
〉 ⇔ ∣∣v∓3/2

〉
Bloch states; if is chosen ω = ωT1 where

AL,AT2 = 0 and AT1 �= 0, the interband transitions
∣∣v±1/2

〉 ⇔ ∣∣v±3/2
〉
are turned on;

and for ω = ωT2 with AL,AT1 = 0 and AT2 �= 0, results in the
∣∣v∓1/2

〉 ⇔ ∣∣v±3/2
〉
,

holes scattering. (b) Fixing n = 0, with kz �= 0, it is found two independent sub-
spaces, L − T1 and T2. The first one couples the L and T1 motions, while the
second corresponds to pure T2 transverse phonons. Similar expressions are obtained
for homogeneous wires by choosing properly the function Fmh(r) and fn(r) inside
the cylinder.

In the size-quantum-limit and not too large values of kz, the Luttinger-Kohn (LK)
Hamiltonian splits into two independent 2 × 2 matrices, coupling (

∣∣v3/2
〉
,
∣∣v−1/2

〉
) or

(
∣∣v−3/2

〉
,
∣∣v1/2

〉
) Bloch states (see Appendix 3). For kz = 0 and angular momentum

quantum number n = 0, the scattering amplitude (15.41) splits into two independent
terms, which correspond to the subspaces L and T2 of the hole-phonon interaction
Hamiltonian.

Figure15.13 is devoted to the hole scattering amplitude (15.41) in units of

HOH = −a(Γ15v)
√

�ωn=0(kz = 0)/4πa2L0ρcv2
L
for the first three T2 transverse

modes (upper panel) and three L longitudinal modes (lower panel) of the Ge-Si
structure as functions of the ratio a/b. It is assumed in the calculation that the lower
hole state is completely confined in the core (hard wall potential approximation). As
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in Fig. 15.12, dashed lines represent the form factor for the Ge NW with a radius
of 5 nm. Here, the influence of the shell is solely due to Ge-Si phonon spectrum.
From the figure it is observed that SH−BP for the longitudinal modes are one order of
magnitude larger than the transverse ones, reflecting the coupling between the hole
states. In the case of T2 we have a coupling between hh and lh states, while for the L
we are in the presence of the diagonal components hh → hh and lh → lh. Another
feature is the strong oscillation of the SH−BP for transverse modes with respect to
the L phonons. The T2 vibrations couple the cylindrical function of second order,
while for the L modes, SH−BP is proportional to the Bessel function J0. In addition,
a useful result can be extracted from Fig. 15.13, that is, the minimum value of a/b
where the hole-phonon Hamiltonian for core-shell NWs can be considered as a pure
Ge wire. This result depends on the type of interaction; for L modes, a/b ≥ 0.6 and
for T2 modes a/b ≥ 0.8.

15.4 Electron-Optical-Phonon Interaction

It is well known that in III-V and II-VI semiconductor nanostructures, the Pekar-
Fröhlich long-range electrostatic potential is the most relevant interaction. Nev-
ertheless, the mechanical deformation potential (DP) or short-range interaction is
present. Moreover, in nonpolar materials the electrostatic contribution due to the
anion-cation atomic vibrations is absent and the dominant contribution to the EPH
is the electron-phonon DP interaction.

15.4.1 Short-Range Interaction

In the framework of the Born-Oppenheimer linear approximation, the electron-
phonon deformation potential interaction can be written as [48]

He−ph = u · ∂H

∂u
, (15.43)

where D = ∂H/∂u takes into account the perturbation of the electronic Hamilto-
nian by the optical phonon modes at the center of the Brillouin zone. The electron-
deformation potential Hamiltonian is written as

uêx (r)Dêx (r) + uêy (r)Dêy (r) + uêz (r)Dêz (r), (15.44)

and the matrix elements of (15.44), in terms of the envelope function F(r) and the
Bloch functions U (r), are proportional to 〈U (r)| D(r)|U (r)〉, where it is assumed
a rapid spatial variation of the Bloch functions in the unit cell in comparison with the
envelope functions F(r). Hence, the deformation potentialD(r) can be characterized
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by the matrix element between band-edge wavefunction |U 〉. At the Γ point of the
Brillouin zone, the matrix elements between s-like conduction band states are zero
and, in consequence, there is no deformation potential interaction between electrons
in the conductionband andoptical phonons. For the diamond structure, the degenerate
valence bands presentΓ8 symmetry at theΓ point of theBrillouin zone. The inclusion
of the spin-orbit interaction splits the valence band degeneracy into four-fold J =
3/2, mZ = ±3/2,±1/2 and two-fold J = 1/2, mZ = ±1/2 degenerate states, with
J the total angular momentum and mZ the z-component. The four-fold multiplet
j = 3/2 valence-band edge wavefunctions are given by Kittel [105]

|v− 3
2
〉 = i√

2
|(X − iY )〉| ↓〉,

|v− 1
2
〉 = 1√

6
|(X − iY )〉| ↑〉 +

√
2

3
|Z〉| ↓〉,

|v 1
2
〉 = i√

6
|(X + iY )〉| ↓〉 − i

√
2

3
|Z〉| ↑〉,

|v 3
2
〉 = 1√

2
|(X + iY )〉| ↑〉, (15.45)

where | ↑〉 (| ↓〉) denotes the spin parallel (antiparallel) to the growth direction z
and the function |X 〉, |Y 〉 and |Z〉 transform as atomic p−like functions. Under the
symmetry operations of the representation Γ8, the only non-zero elements of the
deformation potential D are 〈Y |Dx|Z〉, 〈Z|Dy|X 〉, 〈Y |Dz|X 〉 and equivalents [97].
Thus, each component of D in matrix representation can be cast as

Dêx = du0
a0

⎛
⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , (15.46)

Dêy = idu0
a0

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , (15.47)

Dêz = idu0
a0

⎛
⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , (15.48)

with d being the optical deformation potential constant as defined by Bir and
Pikus, [48] u0 = (�Vc/VMω0)

1
2 the unit of phonon displacement, M the atomic

mass, a0 the lattice constant, V the volume of the nanowire and ω0 the optical bulk
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phonon frequency at the Γ point. Under the unitary transformation

T =
⎛
⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞
⎠ , (15.49)

the tensor components D in cylindrical coordinates can be expressed in terms of the
components Di (i = êr, êθ , êz) as:

Dêr = cos θDêx + sin θDêy ,

Dêθ
= − sin θDêx + cos θDêy ,

Dêz = Dêz . (15.50)

Hence, for the p−like valence band, the D = ∂H/∂u components in cylindrical
coordinates can be expressed, in matrix representation, as follows:

Dêr = du0
a0

⎛
⎜⎜⎜⎜⎝

0 −eiθ 0 0
−e−iθ 0 0 0
0 0 0 eiθ

0 0 e−iθ 0

⎞
⎟⎟⎟⎟⎠

, (15.51)

Dêθ
= idu0

a0

⎛
⎜⎜⎜⎜⎝

0 −eiθ 0 0
e−iθ 0 0 0
0 0 0 eiθ

0 0 −e−iθ 0

⎞
⎟⎟⎟⎟⎠

, (15.52)

and

Dêz = idu0
a0

⎛
⎜⎜⎜⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎠

. (15.53)

In (15.31), M (j)
α′
h,αh

represents the amplitude probability of scattering between the

electronic states αh → α′
h due to the interaction with an optical phonon with a vector

displacement u(j). This probability amplitude is reduced to

M (j)
β,α = 1√

Nj
〈β|u(j) · D|α〉, (15.54)
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where Nj = ‖u(j)‖ is a displacement vector normalization constant for the optical
phonon in the branch j. In the framework of the envelope function approximation for
the 4 × 4 Luttinger Hamiltonian [106] in the axial approximation, and taking into
account stress effects [48, 104, 107] due to lattice mismatch, the fourfold wavefunc-
tion of the Γ8 valence band states can be expressed as (see also Appendix 3)

〈r|αh〉 =

⎛
⎜⎜⎜⎝

F (1)
νh

(r)|v 3
2
〉

F (2)
νh+1(r)e

iθ |v 1
2
〉

F (3)
νh+2(r)e

2iθ |v− 1
2
〉

F (4)
νh+3(r)e

3iθ |v− 3
2 〉

⎞
⎟⎟⎟⎠ ei(khz+νhθ). (15.55)

Each component of the spinor (15.55) is characterized by the set of quantum numbers
αh, with νh the z-component of the angular momentum and kh the z-component of
the wavevector. Functions F (i)

νh
(r) =A(i)

νh
Jνh(r) (i = 1, . . . , 4) for r < a and F (i)

νh
(r) =

B(i)
νh
Jνh(r) + C(i)

νh
Nνh(r) for a < r < b, where Jνh(r), Nνh(r) are the Bessel and Neu-

mann functions. The constants A(i)
νh

, B(i)
νh
, C(i)

νh
and energy Eνh,lh(kh) are determined by

the matching boundary conditions at r = a and r = b. In consequence, the scattering
matrix elements (15.34) can be cast as

M (j)
α′
h,αh

= 1√
Nj

〈
⎛
⎜⎜⎜⎜⎝

F (1)
ν ′
h

(r)|v 3
2
〉

F (2)
ν ′
h+1(r)e

iθ |v 1
2
〉

F (3)
ν ′
h+2(r)e

2iθ |v− 1
2
〉

F (4)
ν ′
h+3(r)e

3iθ |v− 3
2
〉

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣
u(j) · D

× ei(νh−ν ′
h)θ

∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎝

F (1)
νh

(r)|v 3
2
〉

F (2)
νh+1(r)e

iθ |v 1
2
〉

F (3)
νh+2(r)e

2iθ |v− 1
2
〉

F (4)
νh+3(r)e

3iθ |v− 3
2
〉

⎞
⎟⎟⎟⎠

〉
δk ′

h,kh±kz , (15.56)

where the momentum conservation along the z-direction is written explicitly. The
influence of the geometric factors, as well as the strain and bulk parameters on the
matrix elements (15.56), are embedded in the phonon dispersion relations and the
corresponding displacement vectors.

In order to derive a comprehensive expression for the electron-phonon DP matrix
elements (15.56), it is required to discuss the phonon dispersion relations as func-
tions of the radii a and b, wavevector kz , and influence of the strain effects across the
core-shell surface, as well as the spatial symmetry properties of the phonon displace-
ment vector. The evaluation of (15.56) implicitly involves the results presented in
Sect. 15.2.2. The symmetry properties, stemming from the peculiarities of the cylin-
drical geometry, have profound consequences on the electron-phonon Hamiltonian.
Thus, for phonon modes with n = 0 and kz = 0 the He−ph is decoupled into three
independent Hamiltonians, HL

e−ph, H
T1
e−ph and HT2

e−ph, which characterize the three
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orthogonal phonon displacements along the radial (êr), axial (êz) and azimuthal (êθ )
directions, respectively (see (15.19)). For the case of phonon states with n �= 0 and
kz = 0 the He−ph is decoupled into two independent blocks. One corresponds to
HT1

e−ph and the other to a mixture of uL and uT2 amplitudes, with phonon polarization

vector on the (êr ,êθ ) plane, which leads to HL−T2
e−ph . If kz �= 0, the axial symmetry is

broken and for n = 0, the amplitudes uL and uT1 are coupled, so we obtain theH
L−T1
e−ph

which describes the electronic interactionwith phonons polarized on the (êr ,êz) plane.
Besides, we have a HT2

e−ph term for the uncoupled T2 optical modes.
To explore the dependence of mode frequencies, phonon amplitudes and the spa-

tial symmetry on the He−ph, it is important to evaluate the electron-deformation
potential scattering rate as a function of the structural parameters of these core-shell
structures. Near the Γ point of the Brillouin zone the conduction band does not play
any role in the electron-optical phonon deformation potential Hamiltonian, and the
hole states are the only contribution to He−ph. On the basis of the calculated fre-
quencies and phonon amplitudes, explicit expressions for the DP matrix elements
(15.34) can be carried forward. From (15.56), it becomes clear that the hole-phonon
scattering rate depends on the phonon polarization. There are three main results for
the hole-phonon scattering: phonon polarization along the (a) axial, (b) radial and
(c) azimuthal directions.

(a) Phonon modes polarized along the growth direction

From the basis vectors shown in (15.86), the z component of the vector amplitude
u(j) is written as

u(êz)
z = Uze

inθ = (Jn(μT1r/a)Jn(μL) −Jn(μLr/a)Jn(μT1)
)
einθ /

√
Nz . (15.57)

Consequently, combining (15.53) and (15.55), the amplitude (15.56) is reduced to

M (êz)
α′
h,αh

= idu0
a0

(
δν ′

h,νh+n+2

[
− 〈F (1)

ν ′
h

|Uz|F (3)
νh+2〉−

〈F (2)
ν ′
h+1|Uz|F (4)

νh+3〉
]

+ δν ′
h,νh+n−2

[
〈F (3)

ν ′
h+2|Uz|F (1)

νh
〉

+〈F (4)
ν ′
h+3|Uz|F (2)

νh+1〉
])

δk ′
h,kh±kz . (15.58)

This scattering rate is ruled by the combination of longitudinal L and transverse T1
amplitudes. In the particular case of kz = 0, as it is required for example in infrared
spectroscopy measurements, the hole transition is assisted by a pure transversal T1
optical phonon.

Figure15.14 shows the contribution of the amplitude uz to the H (êz)
e−ph. The left

panel is devoted to the three first modes (m = 1, 2, 3) with n = 0, 1 and kz = 0. The
right panel presents the elongation for n = 0 and kz �= 0 for Ge-Si and Si-Ge NWs.
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Fig. 15.14 Core phonon amplitude Uz for Ge-Si and Si-Ge core-shell NWs. Left panel: n = 0, 1
and kz = 0; right panel: n = 0 and k̃2z = π/2. In the calculation a = 2 nm and b = 4 nm (after [90])

(b) Polarization along the radial direction

Employing (15.86) the vector component u(êr)
r is a mixture of the tree amplitudes,

uL, uT1 and uT2, thus

u(êr)
r = Ure

inθ = (
AT2J

′
n (μT2r/a) + AT1Jn(μT1r/a) +J ′

n (μLr/a)
)
einθ /

√
Nr ,

(15.59)
where the coefficients for the phonon elongation Ur in (15.59) are given by

AT1 = −
(

k̃2z
μT1μL

Jn(μL)J ′
n (μT2)

J 2
n (μT1)

+ J ′
n (μL)

Jn(μT1)

)
, (15.60)

and

AT2 = k̃2z
μT1μL

Jn(μL)

Jn(μT1)
. (15.61)

This allows us to reduce the matrix elements (15.56) to

M (êr)
β,α =

(
δν ′,ν+n+2

[
− 〈ν ′|Ur|ν + 1〉+

〈ν ′ + 2|Ur|ν + 3〉
]
+δν ′,ν+n−2

[
− 〈ν ′ + 1|Uz|ν〉

+ 〈ν ′ + 3|Ur|ν + 2〉
])

δk ′
e,ke±kz .

(15.62)
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For kz = 0 the EPH H (êr)
e−ph presents a mixture of the L − T2 modes. Only for n = 0

there is a pure longitudinal oscillation along the radial direction.

(c) Polarization along the azimuthal direction

From the basis (15.86) the amplitude u(êθ )
θ is written as

u(êθ )
θ = Uθe

inθ =
(
BT1Jn(μT1r/a) − J ′

n (μT2r/a)

+ BLJn(μLr/a)
)
einθ /

√
Nr,

(15.63)

where the coefficients BT1 and BL are given by

BT1 = k̃2z
k̃2z + μ2

T1

J ′
n (μT2)

Jn(μT1)
, (15.64)

BL = μ2
T1

k̃2z + μ2
T1

J ′
n (μT2)

Jn(μL)
. (15.65)

With the former expression, the scattering matrix element with a deformation
potential D(êθ ) becomes

M (êθ )
β,α =

(
δν ′,ν+n+2

[
− 〈ν ′|Uθ |ν + 1〉 − 〈ν ′ + 2|Uθ |ν + 3〉

]

+ δν ′,ν+n−2

[
〈ν ′ + 1|Uθ |ν〉 + 〈ν ′ + 3|Uθ |ν + 2〉

])
δk ′

e,ke±kz . (15.66)

The dependence on r of the phonon elongations Ur and Uθ which appear in H (êr)
e−ph

and H (êθ )
e−ph are shown in Figs. 15.15 and 15.16 respectively. For both, Si-Ge and Ge-

Si NWs we take n = 0, 1, kza = 0, π/2 and m = 1, 2, 3. The deformation potential
scattering amplitudes (15.56) given by (15.58), (15.62) and (15.66) take into account
the phonon symmetries ofGe-Si and Si-GeNWs and the corresponding strain effects.
All the information of the shell structure is carried out in the phonon symmetry and
frequency calculations ωm,n = ωm,n(a,Δω2

i (γ )).

15.4.2 Pekar-Fröhlich-Type Hamiltonian

One of the crucial results of the Sect. 15.2.3.1 is straightforward implementation of
the Pekar-Fröhlich-like electron-phonon interaction Hamiltonian, HF = eϕ̂, for the
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Fig. 15.16 Core phonon amplitudeUθ for Ge-Si and Si-Ge core-shell NWs and kz = 0. Left panel
n = 0; right panel n = 1. In the calculation a = 2 nm and b = 4 nm (after [90])

core-shell nanowires. Using the general basic expression for the basis vectors (15.97)
and employing (15.30) with the appropriate boundary conditions (15.25), the eigen-
frequencies ωn,m,kz and the eigensolutions Fn,m,kz (r) exp i(nθ + kzz) are obtained,
which fulfill the orthonormalization condition

∫

V

ρM (r)un,m,kz (r)un′,m,kz (r)rdr = δnn′ .
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Thus, we can construct the general solution for the displacement vector u(r, θ, z)
and the electrostatic potential ϕ(r, θ, z) which in second quantization read

û =
∑
n,m,kz

Cn,m,kz

[
un,m,kz (r) exp i(nθ + kzz)̂an,m,kz + H .c.

]

and
ϕ̂ =

∑
n,m,kz

Cn,m,kz

[
ϕn,m,kz (r) exp i(nθ + kzz)̂an,m,kz + H .c.

]
.

where ân,m,kz (̂a
+
n,m,kz

) is the phonon annihilation (creation) operator and the Cn,m,kz
coefficients are determined by the commutation rules

[
u(r),π(r′)

] = i�δ(r − r′).

with π(r) being the momentum conjugate. Thus, it is possible to show that [92]

Cn,m,kz =
√

�

2ωn,m,kz

and the normalized Fröhlich interaction Hamiltonian can be cast as

HF =
∑
n,m,kz

e

√
�

2ωn,m,kz

[
ϕn,m,kz (r) exp i(nθ + kzz)̂an,m,kz + H .c.

]
. (15.67)

The electron-phonon interaction (15.67) takes into account the spatial confinement
effect, the electrostatic influence on the phonon modes due to the interfaces and the
strain effect of the core-shell nanowires. This result is of particular relevance for the
spectroscopic characterization of core-shell nanowires.

15.5 Possible Manifestation of the Electron-Phonon
Interaction Specific for Ring-Like Geometries

The present results are relevant for the spectroscopic characterization of core-shell
nanowires and they can be of interest for the experimental identification of these
nanostructures. The infrared spectroscopy and Raman scattering spectra allow a
determination of shift frequencies ωL(γ ) − ωLO and ωT (γ ) − ωTO with respect to
the ωLO and ωTO bulk phonon frequencies for the core and shell of the quantum
wire. This should provide a precise determination of the geometrical factors and/or
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structural parameters of the stress tensor of the core-shell NWs. For instance, the
Raman spectra at T = 10 K of a GaAs0.68P0.32/GaP NW [108] show the effect of the
core-shell strain, where the LO and TO phonon lines of the GaP-shell are redshifted
with respect to the frequencies of the bulkLO andTO values. The spatial confinement
is negligible (for GaAs0.68P0.32 the core radius a ∼ 5 nm) [94], and the reported shifts
are mainly produced by the stress at the interfaces. According to (15.12) it follows
immediately that

ΔωLO

ΔωTO
= γLO

γTO

ωLO

ωTO
. (15.68)

The above equation is independent of the geometric factor b/a. According to [108]
ΔωLO = 3.8 cm−1 (bulk GaP-LO phonon 404 cm−1) and ΔωTO =3.5 cm−1 (bulk
GaP-TO phonon 365.8 cm−1 from [109]) it follows that the value γLO/γTO = 0.983
at 10 K. Using the same procedure, along with the first-order Raman scattering data
it is possible to determine the dependence of γLO/γTO on the geometry factors and
on the temperature.

An important application of the electron-phonon interaction specific for ring-like
geometries is the Raman selection rules. The first-order phonon resonant Raman
tensor of a core-shell NWs is proportional to the scattering amplitude [97], MFI ,

between the initial (|I〉) and final (|F〉) states as given by

MFI ∼
∑
μ1μ2

〈F | êF .p |μ2〉 〈μ2|He−ph |μ1〉 〈μ1| êI .p |I〉(
�ωs − Eμ2

) (
�ωl − Eμ1

) , (15.69)

where ωl (ωs) is the incident frequency light (Stokes Raman shift) and polarization
êI (êS ), p the single-particle momentum, |μi〉 (i = 1, 2) are the intermediate electron-
hole pair states being a proper combination of the cylindrical real Bessel functions as
r < a or a < r < bwith energy Eμi . By introducing the electron-hole wavefunctions
and electron-phonon interaction given by (15.51)–(15.53) the Raman selection rules
are obtained. In the dipole approximation, where the phonon wavevector kz ≈ 0,
and considering the backscattering configuration from the quantum wire along the
z-growth direction Z(êF , êI )Z ,2 it is chosen the phonon propagating direction to be
z with amplitude U (êz)

z and HT1
e−ph for the pure T1 transversal phonons. In this case,

from (15.69) and taking into account the cylindrical symmetry of the electron-hole
wavefunctions |μi〉, it is possible to show that the DP interaction for the T1 confined
phonon is Raman-forbidden in any parallel êF ||êI or perpendicular êF ⊥ êI configu-
rations. The T1 phonon mode with quantum number n = 1 is infrared-active. Now,
in the scattering configuration X

′
(Y ′,Z)X ′, the phonon is a combination of L and T2

modes polarized along the radial direction and EPH HL−T2
e−ph . In bulk semiconductors

2It is chosen X ,Y ,Z,X ′, and Y ′ the [100], [010], [001], [110], [110] crystallographic directions
with [001] the quantization axis.
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this scattering configuration allows the transversal TO phonon, while in NWs a mix-
ture of modes is obtained as consequence of the reduced symmetry. An important
manifestation of the electron-phonon interaction in NWs is the fact that the magni-
tude of the deformation potential Hamiltonian (15.43) is proportional to 1/

√
a [90].

Hence, the Raman intensity and infrared spectroscopy increase as the core radius
decreases, and in consequence the effects of the mechanical boundary conditions
become important. Similar results have been reported and observed experimentally
in spherical quantum dots [47]. For the case of Si-Ge based NWs, the shell has a
role on the frequency shift of the core optical modes through the strain. The present
formalism allows one to study the influence of the longitudinal and transversal mix-
ture on He−ph as a function of the confinement and wave vector kz. The electron and
hole-acoustical phonon Hamiltonians in core-shell NWs are basic tools for explo-
ration of carrier transport phenomena and Brillouin light scattering. Thus, searching
at different light scattering configurations of the Brillouin processes, it is possible to
study the dependence of the L and T2 phonon modes on the spatial confinement and
the intrinsic stress at the interface.

A potential application and interesting research problem is linked to polaron
effects in core-shell NWs. Typically, such structures are made from ionic semi-
conductors and in consequence the Pekar-Fröhlich Hamiltonian plays an important
role in the determination of the electron dynamics. The electron or hole selfener-
gies, the associated effective masses and the binding energy must be considered
in the NWs, taking into account the electron-phonon interaction, geometric factors
and spatial symmetry providing quantitative estimation of polaronic correction. A
possible study is the manifestation of electron-phonon interaction on the persistent
current (PC) in cylindrical core-shell ring nanowires [110]. This opens an opportu-
nity to look for the effects of the cylindrical geometry and the core shell materials on
the PC in correlated NWs ring threaded by an Aharonov-Bohm flux. As it is stated
in Sects. 15.3 and 15.4, the He−ph can be manipulated as a function of the core-shell
NWs parameters and spatial geometry in order to handle the persistent current.
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CNPq and Spanish MINECO under Grant No. FIS2015-64654-P.

Appendix 1: Stress Tensor in Cylindrical Coordinates

The relation between Cartesian εij = 1
2 (∂ui/∂xj + ∂uj/∂xi) (x1 = x, x2 = y, x3 = z)

and cylindrical strain tensors is given by

εxx = εrrcos
2θ + εθθ sin

2θ − εrθ sin2θ ;
εyy = εrrsin

2θ + εθθcos
2θ + εrθ sin2θ ;

εxy = 1

2
(εrr − εθθ ) sin2θ + 1

2
εrθcos2θ ;
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εyz = 1

2
(εrzsinθ − εθzcosθ) ;

εxz = 1

2
(εrzcosθ − εθzsin2θ) ;

εzz = εzz. (15.70)

Hence, the components of the strain tensor in termsof the vector phonondisplacement
u = (ur, uθ , uz) can be written as

εrr = ∂ur
∂r

; εrθ = 1

2

(
1

r

∂ur
∂θ

+ ∂uθ

∂r
− uθ

r

)
; εθθ = 1

r

(
∂uθ

∂θ
+ ur

)
;

εzz = ∂uz
∂z

; εθz = 1

2

(
∂uθ

∂z
+ 1

r

∂uz
∂θ

)
; εrz = 1

2

(
∂ur
∂z

+ ∂uz
∂r

)
. (15.71)

The trace of the stress tensor Tr(ε), can be evaluated for the core and shell materials
in cylindrical geometry [85], yielding

Tr(εc) = −2εmisfit

(
(1 + Pνc)(1 − Pνc)(γ

2 − 1)

(1 − Er)(1 − 2Pνc) − (1 − 2Pνc + Er)γ 2
+ Pνc(γ

2 − 1)

(γ 2 − 1) + Er

)

+ εmisfit

(
(γ 2 − 1)

(γ 2 − 1) + Er

)
. (15.72)

and

Tr(εs) = 2εmisfit

(
(1 + Pνs)(1 − 2Pνs)Er

(1 − Er)(1 − 2Pνs) − (1 − 2Pνs + Er)γ 2
+ PνsEr

(γ 2 − 1) + Er

)

− εmisfit
Er

(γ 2 − 1) + Er
, (15.73)

where Er = Ec/Es is the ratio between the core and shell Young moduli, Pνc , Pνs are
the Poisson ratios of the core and shell materials respectively, εmisfit = (as − ac)/ac
is the lattice mismatch, and ac (as) the core (shell) lattice constant.

The explicit forms of εrr, εθθ and εzz in cylindrical coordinates for the core are
given by

εcrr = −εmisfit

(
(1 + Pνc)(1 − 2Pνc)

(1 − Er)(1 − 2Pνc) − (1 − 2Pνc + Er)γ 2
+ Pνc

(γ 2 − 1) + Er

)
,

(15.74)

εcθθ = εcrr εczz = εmisfit

(
(γ 2 − 1)

(γ 2 − 1) + Er

)
, (15.75)
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and for the shell

εsrr = εmisfitEr

[
(1 + Pνs)

(1 − Er)(1 − 2Pνs) − (1 − 2Pνs + Er)γ 2
×

(
1 − 2Pνs − b2

r2

)
+ Pνs

(γ 2 − 1) + Er

]
, (15.76)

εsθθ = εmisfitEr

[
(1 + Pνs)

(1 − Er)(1 − 2Pνs) − (1 − 2Pνs + Er)γ 2
×

(
1 − 2Pνs + b2

r2

)
+ Pνs

(γ 2 − 1) + Er

]
, (15.77)

εszz = −εmisfit
(γ 2 − 1)

(γ 2 − 1) + Er
. (15.78)

Appendix 2: Phonon Eigenfrequencies in Core-Shell
Nanowires

Acoustic Phonons

In order to find a basis for the solutions of the equation ofmotion for the displacement
vector u in cylindrical coordinates, it is useful to define the auxiliary potentials Γ

and � (see [49, 80, 111])

Γ = ∇ × u and � = ∇ · u. (15.79)

From (15.4) and (15.79) it follows the equations for the potentials:

∇2Γ + Q2
TΓ = 0, (15.80)

∇2� + Q2
L� = 0, (15.81)

where Q2
T = ω2/v2

T , and Q
2
L = ω2/v2

L. Using (15.4) and the above definitions, it can
be seen that u is given by

u = − 1

Q2
L

∇� + 1

Q2
T

∇ × Γ. (15.82)
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Thus, solving the Helmholtz equations (15.80) and (15.81) for Γ and� it is obtained
the general solution for the relative mechanical displacement u.

The solution for the Helmholtz vectorial equation (15.80) in cylindrical coordi-
nates is reported in [80, 112]. In the case of core-shellNWswith cylindrical symmetry
the displacement vector (15.82) cannot be decoupled into two independent perpen-
dicular directions of motion, pure longitudinal, uL, or transversal motion, uT . By
definition, the auxiliar potential Γ satisfies the equation ∇ · Γ = 0, denoting that
only two components of the vector Γ in the cylindrical bases (er, eθ , ez) are inde-
pendent. These two vector components are the rotational of certain vector field, in
consequence Γ = M + N with

M = ∇ × (v1ez) and N = 1

Q2
T

∇ × ∇ × (v2ez), (15.83)

where vi, (i = 1, 2) are linearly independent solutions of the scalar Helmholtz equa-
tion in cylindrical coordinates. The solution of (15.3) has full axial symmetry; hence,
the displacement vector can be searched as u = (ur, uθ , uz) exp i(nθ + kzz) and the
bounded solution of the scalar Helmholtz equation in cylindrical geometry is

v(r) ∼ fn(qr) exp i(nθ + kzz), (15.84)

where n = 0,±1,±2, . . . labels the azimuthal motion, kz is the z-component of the
phonon wavevector, and q is given by

q2 = ω2

v2
− k2z . (15.85)

In (15.84), fn(qr) is taken as Bessel function Jn if q2 > 0 or Infeld In if q2 < 0 for
0 ≤ r ≤ a and a linear combination of Jn and Neumann Nn, or combination of In(x)
and MacDonald Kn(x) [113] for a ≤ r ≤ b.

For calculatingu it is necessary to obtain the vectorM and∇ × N. In consequence,
and following the method of solution described in [80, 111], one can derive a general
curvilinear coordinate basis to describe the oscillation modes in a cylindrical NWs,
namely,

uT1 =
⎛
⎝

kzaf ′
n (qT r)

i nkzaqT r
fn(qT r)

−iqT afn(qT r)

⎞
⎠ ei(nθ+kzz),

uT2 =
⎛
⎝

na
r fn(qT r)

iqT af ′
n (qT r)
0

⎞
⎠ ei(nθ+kzz),

uL =
⎛
⎝
qLaf ′

n (qLr)
ina
r fn(qLr)

ikzafn(qLr)

⎞
⎠ ei(nθ+kzz), (15.86)
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with the wavenumbers q2L,T = Q2
L,T − k2z . The basis solutions in (15.86) satisfy the

conditions ∇ × uL = 0, ∇ · uL = 0, ∇ · uT1 = ∇ · uT2 = 0, whereas ∇ × uT1 �= 0,
∇ × uT2 �= 0 underlying the transverse and longitudinal character of the vector fields
uT1, uT2 and uL.
(i) Secular equations for n = 0, kz = 0

Following the symmetry properties of the basis function (15.86) and applying the
boundary conditions u|r=a− = u|r=a+ , σ · er|r=a− = σ · er|r=a+ and σ · er|r=b = 0,
the radial breathing modes are obtained by solving the transcendental equation

Fs(γ λLx)[Gs(λLx)J1(x)−ρrFc(x)N1(λLx)]−
Gs(γ λLx)[Fs(λLx)J1(x) − ρrFc(x)J1(λLx)] = 0,

(15.87)

where c (s) labels the core (shell) region, x = ωa/vLc , λL = vLc/vLs , γ = b/a, ρr =
ρs/ρc, Fi(x) = v2

Li
xJ0(x) − 2v2

Ti
J1(x), and Gi(x) = v2

Li
xN0(x) − 2v2

Ti
N1(x) (i = s, c).

The homogeneous NW dispersion relation is recovered for shell (a → 0) or core
(a → b) semiconductors from (15.87) solving the secular equation Fi(zi) = 0 with
zi = ωr0/vLi

(i = s, c) and r0 the radius of the wire.
In the case of confined transversal T2modes the eigenfrequencies can be obtained

from the general expression

xsJ1(xc)P22(xs) + ρr

λ2
T

xcJ2(xc)P12(xs) = 0, (15.88)

with xc[xs] = a
√

(ω/vTc [vTs ])2 − k2z , λT = vTs/vTc and Pn,m(x) = Jn(x)Nm(γ x) −
Jm(γ x)Nn(x) Similar results are achieved for the T1 frequency mode.

Optical Phonons

Equation (15.86) is a general basis of solutions for the (15.11) but with qL,T rewrit-
ten as

q2L,T = ω2
0 − ω2

β2
L,T

− k2z . (15.89)

Similar to the case of acoustic phonons if q2L,T > 0 (q2L,T < 0) and r < a the function
fn = Jn (In) order-n Bessel (modified Bessel) function. For a < r < b, fn = AJn +
BNn (fn = AIn + BKn) is a linear combination of Bessel and Neumann (Infield In
and MacDonald Kn) cylindrical functions. The basis (15.86) with (15.85) continue
to comply with the conditions that the longitudinal solution ∇ × uL = 0, whereas
the transverse solutions satisfy ∇ · uT1 = ∇ · uT2 = 0, as it should be.

Taking a linear combination of the basis functions (15.86) and applying the
boundary condition u|r=a = 0, the general dispersion relations for core phonons
are obtained by solving the transcendental equation
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Jn(μT1)

[
J ′
n (μL)J

′
n (μT2) − n2

μLμT2
Jn(μL)Jn(μT2)

]

= k̃2z
μLμT1

Jn(μL)
[
J ′
n (μT1)J

′
n (μT2)

− n2

μT1μT2
Jn(μT1)Jn(μT2)

]
, (15.90)

where k̃z = kza and μ2
i = q2i a

2 + Δω2
i (γ )a2/β2

i , (i = L,T1,T2).
In the case of n �= 0 and kz = 0 from (15.90), the dispersion relations for the

coupled L − T2 modes fulfill the transcendental equation

J ′
n(μL)J

′
n(μT2) − n2

μLμT2
Jn(μL)Jn(μT2) = 0, (15.91)

with

μ2
L = (ω2

0 + Δω2
L(γ ) − ω2)

(
a

βL

)2

, (15.92)

μ2
T2 = (ω2

0 + Δω2
T2(γ ) − ω2)

(
a

βT

)2

. (15.93)

If it is considered the dependence of the mode frequencies with wave vector kz �= 0
and n = 0, the coupled L − T1 phonons are described by

J ′
0(μL)J0(μT1) − k̃2z

μLμT1
J0(μL)J

′
0(μT1) = 0, (15.94)

withμ2
L = (ω2

0 + Δω2
L(γ ) − ω2) (a/βL)

2 − k2z a
2 andμ2

T1 = (ω2
0 + Δω2

T1(γ ) − ω2)

×(a/βT )2 − k2z a
2.

Polar Optical Phonons

In the present case the equation of motions for polar optical phonons are described
by four coupled partial differential equations, (15.22) and (15.23). As in the acoustic
and non-polar optical phonons, it is defined the auxiliar potential Γ and � as given
by (15.79) with

Q2
T = ω2

TO − ω2

β2
T

, (15.95)

Q2
L = ω2

LO − ω2

β2
L

.
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It can be seen that the solution of (15.23) can be written as

ϕ = ϕH − 4πα

ε∞Q2
L

� ,

where ϕH is the solution of the Laplace equation ∇2ϕH = 0. For the displacement
vector u follows the expression

u = −∇
[

α

ρmβ2
TQ

2
T

ϕH + �

Q2
L

]
+ 1

Q2
T

∇ × Γ. (15.96)

Once the functions �, Γ and ϕH have been obtained, it is easy to prove that the basis
functions for the space of solutions of (15.22) and (15.23) are given by

FT1 =
(

uT1

ϕT1

)
=

⎛
⎜⎜⎝

ikz
qT
f ′
n (qT r)

− nkz
qT

1
qT r

fn(qT r)
fn(qT r)

0

⎞
⎟⎟⎠ ei(nθ+kzz),

FT2 =
(

uT2

ϕT2

)
=

⎛
⎜⎜⎝

in
qT r

fn(qT r)
−f ′

n (qT r)
0
0

⎞
⎟⎟⎠ ei(nθ+kzz),

FL =
(

uL

ϕL

)
=

⎛
⎜⎜⎜⎝

f ′
n (qLr)

in
qLr

fn(qLr)
ikz
qL
fn(qLr)

4πα
ε∞

1
qL
fn(qLr)

⎞
⎟⎟⎟⎠ ei(nθ+kzz), (15.97)

FH =
(

uH

ϕH

)
=

⎛
⎜⎜⎝

g′
n(kzr)

in
kzr

gn(kzr)
gn(kzr)

− ρmβ2
T q

2
T

α
1
kz
gn(kzr)

⎞
⎟⎟⎠ ei(nθ+kzz).

Here, tetra-vector components are understood in the form F = (ur, uθ , uz, ϕ) with
the wavenumbers

q2L,T = Q2
L,T − k2z . (15.98)

If q2L,T > 0 (q2L,T < 0) the function fn is an order-n Bessel (modified Bessel) function
of the first or second kind, i.e., Bessel Jn or Neumann Nn (Infeld In or MacDon-
ald Kn). On the other hand, gn is an order-n modified Bessel function of the first
or second kind, i.e., Infeld In or MacDonald Kn. It is straightforward to check that
∇ × uL = ∇ × uH = 0 and ∇ · uT1 = ∇ · uT2 = ∇ · uH = 0.
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Dielectric continuum approach

The IP satisfy the Laplace equation ∇2ϕ = 0 and εc(s)(ω) �= 0. Employing the stan-
dard electrostatic boundary condition at the interfaces it is obtained the secular
equation

(εc(ω) − εs(ω))(εD − εs(ω))In(kza)I
′
n(kza)Kn(γ kza)K

′
n(γ kza)−

(εc(ω)Kn(kza)I
′
n(kza) − εs(ω)In(kza)K

′
n(kza))×

(εd In(γ kza)K
′
n(γ kza) − εs(ω)Kn(γ kza)I

′
n(γ kza)) = 0 (15.99)

Equation (15.99) gives the dispersion relations of IP as functions of kz and the parame-
ter γ for different values of n = 0, 1, 2, . . .. In the case of kz = 0 (15.99) is reduced to

(εc(ω) − εs(ω))(εD − εs(ω)) − (εc(ω) + εs(ω))(εD + εs(ω))γ 2n = 0. (15.100)

Coupled modes

It is possible to show that the secular equation for core L-T2 modes with n > 0 and
kz = 0 is given by

[
J ′
n(μTc) − n

μTc
Jn(μTc)

] [
J ′
n(μLc) − C1

n

μLc
Jn(μLc)

]
− C2

[
1 − ω2

ω2
TO

]
(15.101)

×
[
J ′
n(μTc)J

′
n(μLc) − n2

μTcμLc
Jn(μTc)Jn(μLc)

]
= 0 , (15.102)

where

C1 = εs∞[(εD − εs∞) + γ 2n(εD + εs∞)]
εc∞[(εD − εs∞) − γ 2n(εD + εs∞)] , (15.103)

C2 = [(εs∞ − εc∞)(εD − εs∞) + γ 2n(εc∞ + εs∞)(εD + εs∞)]
(εc0 − εc∞)[(εD − εs∞) − γ 2n(εD + εs∞)] ,

and μTc = qTa, μLc = qLa.

Appendix 3: Electronic States in Core-Shell Nanowires

Conduction band

In the framework of the Envelope Function Approximation, the electron wave func-
tion |Ψαe〉 in cylindrical symmetry can be written as

〈
r|Ψαe

〉 = 1√
2Vc

Fm(r)ei(meθ+kez), (15.104)
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where Vc = πa2L0 is the core volume, me� (me = 0, 1, 2 . . .) and ke are the z-
component of the angular momentum and electron wave number, respectively, and
Fme(r) the radial wave function. Considering bound states, two cases have to be
considered: [36, 114]
(a) Si-Ge NW, where the states are confined in the core. Hence, it is possible to show
that

Fm(r) =
{

A(1)
m Jm(pcr) ; 0 ≤ r ≤ a

A(2)
m Q−

m,m(|ps| r) ; a ≤ r ≤ b
, (15.105)

with
Q±

m,n(x) = Im(x)Kn(γ x) ± In(γ x)Km(x),

A(1)
m = 1

2

√
Q+

m+1,m(|p̃s|)Q+
m−1,m(|p̃s|)√

Jm+1(p̃c)Jm−1(p̃c)

p̃s
p̃c
Wm(|p̃s|), (15.106)

A(2)
m = 1

2
Wm(|p̃s|), (15.107)

and

Wm(p̃s) =
[
Q−

m+1,m(
∣∣p̃s

∣∣)Q−
m−1,m(

∣∣p̃s
∣∣)−

γ 2Q−
m+1,m(γ

∣∣p̃s
∣∣)Q−

m−1,m(γ
∣∣p̃s

∣∣)+

Q+
m+1,m(

∣∣p̃s
∣∣)Q+

m−1,m(
∣∣p̃s

∣∣)
∣∣p̃s

∣∣2
p̃2c

]− 1
2

. (15.108)

(b) In the case of Ge-Si core/shell, the electronic states are localized in the shell and
the above equations are reduced to

Fm(r) =
{
A(1)
m Im(|pc| r) ; 0 ≤ r ≤ a

A(2)
m Pm,m(psr) ; a ≤ r ≤ b

, (15.109)

where Pm,m is defined in (15.6) and the coefficients A(i)
m (i = 1, 2) are equal to

A(1)
m = 1

2

1√
Im+1(|p̃c|)Im−1(|p̃c|)

Rm(p̃s), (15.110)

A(2)
m = 1

2

1√
Pm+1,m(p̃s)Pm−1,m(p̃s)

|p̃c|
p̃s

Rm(p̃s), (15.111)
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and

Rm(p̃s) =
[
1 − |p̃c|2

p̃2s
×

(
1 − 4

π2p̃2s

1

Pm+1,m(p̃s)Pm−1,m(p̃s)

)]− 1
2

.

As it is stated above c(s) labels the core (shell) semiconductor and pc(ps) is related
to the electron energy by the equation

Ee = ΔE(c,s)
g + �

2p2c,s

2m(c,s)
t

+ �

2k2e
2m(c,s)

l

, (15.112)

with p̃c(p̃s) = pca(psa) andml (mt) the longitudinal (transverse) conduction electron
mass at Γ point of the Brillouin zone. In (15.112) Ee = E(c,s)

g − Estrained takes into
account the gap energy correction due to the intrinsic strain at the interface [115, 116]
and ΔE(c,s)

g is the band offset between the core and shell measured from the bottom
of the band. For NWs grown along the [110] direction, the band gap ΔE(c,s)

g � 300
meV [114]. In the calculations is assumed ΔE(c,s)

g independent of γ .
There is a third option, here not considered, where both, pc and ps are real, and

the radial wave function Fm(r) presents an oscillatory behavior in both the core and
shell part, which correspond to higher excited states of the core/shell NWs.

Valence band

For a description of the hole states in the valence band is considered the LK Hamil-
tonian model neglecting the coupling from the split-off band. This Hamiltonian
provides a good description for heavy-hole and light-hole states and the coupling
between them due to the Γ15v degeneracy of valence bands at Γ point. Along the
[110] direction and assuming the axial approximation, γ2 � γ3, the 4 × 4 Hamilto-
nian can be written as [103, 106, 117]

HLK = �

2

m0

⎛
⎜⎜⎝
Dhh A− B− 0
A∗− Dlh 0 B−
B∗− 0 Dlh A∗+
0 B∗− A+ Dhh

⎞
⎟⎟⎠ , (15.113)

where

Dhh = − (γ1 + γs)

2
{k̂+, k̂−} − (γ1 − 2γs)

2
k̂2h , (15.114)

Dlh = − (γ1 − γs)

2
{k̂+, k̂−} − (γ1 + 2γs)

2
k̂2h ,

A± = ∓√
3γ̂ k̂±k̂h ; B± = −

√
3

2
γt k̂

2
±,

γ̂ = (γ2 + γ3)/2, γs = (γ2 + 3γ3)/4, γt = (3γ2 + 5γ3)/8, γ1, γ2 and γ3 are the
Luttinger parameters. The total Hamiltonian for the valence band can be cast
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as H = HLK + V (r) with V (r) the NWs confinement potential. The wave func-
tion 〈r|Ψα〉, as given by (15.104), represents a basis for the effective 4 × 4 LK-
Hamiltonian. Since the Bloch states,

∣∣v3/2
〉
,
∣∣v1/2

〉
,
∣∣v−1/2

〉
and

∣∣v−3/2
〉
are mixed by

the effects of the cylindrical symmetry and the non-zero matrix elements A± and B±
in (15.114), the general solution of the wave function 〈r|Ψαh〉 can be obtained with
a special sequence of the angular quantum number m for each hole state. Thus, by
exploring the symmetry of the Hamiltonian (15.113), the exact wave function for the
hole state 〈r|Ψαh〉 is

〈r|Ψ (i)
αh

〉 = F̂ (i)
m (r)ei(mθ+khz) =

⎛
⎜⎜⎜⎝

a1iFm(phhr)|v 3
2
〉

a2iFm+1(phlr)eiθ |v 1
2
〉

a3iFm+2(phlr)e2iθ |v− 1
2
〉

a4iFm+3(phhr)e3iθ |v− 3
2
〉

⎞
⎟⎟⎟⎠ ei(mθ+khz), (15.115)

where phh(lh) is related to the heavy (light) hole energy by the expression

Ehh(lh) = −ΔE(c,s)
g − 1

2mhh(lh)
(p2hh(lh) + �

2k2h ), (15.116)

and mhh(lh) = 1/(γ1 − (+)2γs). As in the case of the conduction band in Ehh(lh) we
consider the band gap correction. The vector coefficients ai |i〉 (i = hh+, lh+, lh−,

hh−) in (15.115) are [118]

a†
hh+ = ahh+

(
− 1√

3

(
1 + 4k2h

p2hh

)
,−2kh

phh
, 1, 0

)
,

a†
lh+ = alh+

(
−√

3,−2kh
plh

, 1, 0

)
,

a†
lh− = alh−

(
−2kh

plh
,

1√
3

(
1 + 4k2h

p2lh

)
, 0, 1

)
,

a†
hh− = ahh−

(
−2kh
phh

,−√
3, 0, 1

)
,

where the weight coefficients ahh+ , alh+ , alh− , ahh− give a measure of the mixtures
of Bloch states |i〉 = ∣∣v3/2

〉
,
∣∣v1/2

〉
,
∣∣v−1/2

〉
and

∣∣v−3/2
〉
. Imposing continuity of the

wave function 〈r|Ψ (i)
αh

〉 and its derivative at the core/shell interface r = a and choos-
ing the boundary condition 〈r|Ψ (i)

αh
〉 |r=b= 0, it follows immediately the normalized

eigensolutions and eigenenergies for the hole states.
In the case of Ge-Si core/shell NWs, the hole are mostly confined in the core and

the valence band offset is of the order 0.5 eV [36, 114]. Thus, in the limit of strong
spatial confinement we can assume a hard wall potential and the holes are completely
confined in the core. In the evaluation of the hole energy and wave function are
employed for Si[Ge] the values: γ1 = 4.22[13.4], γ2 = 0.39[4.24], γ3 = 1.44[5.69],
a(Γ15v) = −5.0[−5.2] eV and b(Γ15v) = −2.3[−2.4] eV [75].
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Chapter 16
Differential Geometry Applied to Rings
and Möbius Nanostructures

Benny Lassen, Morten Willatzen and Jens Gravesen

Abstract Nanostructure shape effects have become a topic of increasing interest
due to advancements in fabrication technology. In order to pursue novel physics and
better devices by tailoring the shape and size of nanostructures, effective analytical
and computational tools are indispensable. In this chapter, we present analytical and
computational differential geometry methods to examine particle quantum eigen-
states and eigenenergies in curved and strained nanostructures. Example studies are
carried out for a set of ring structureswith different radii and it is shown that eigenstate
and eigenenergy changes due to curvature are most significant for the groundstate
eventually leading to qualitative and quantitative changes in physical properties.
In particular, the groundstate in-plane symmetry characteristics are broken by cur-
vature effects, however, curvature contributions can be discarded at bending radii
above 50 nm. A more complicated topological structure, the Möbius nanostructure,
is analyzed and geometry effects for eigenstate properties are discussed including
dependencies on the Möbius nanostructure width, length, thickness, and strain. In
the final part of the chapter, we derive the phonon equations-of-motion of thin shells
applied to 2D graphene using a differential geometry formulation.
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16.1 Introduction

With the possibility to shape objects in the nano range using novel fabrication tech-
nologies it becomes increasingly important to assess experimentally and theoretically
the combined influence of shape and size on physical properties of nanostructures.
Experimental studies revealing these geometry properties include electronic, mag-
netic, and optical properties of electrons and holes confined to curved surfaces such
as graphene strips and semiconductor nanorings. An exotic nanostructure which has
been examined experimentally is the Möbius nanostructure produced by spooling
a single crystalline NbSe3 ribbon on a selenium droplet whereby surface tension
leads to a twist in the ribbon [1]. Topological insulators having unusual properties
and potential interesting applications have been studied experimentally [2, 3] and
theoretically for a Möbius graphene strip [4].

Since the firstMöbius nanostructure fabrications, several investigations have been
carried out onMöbius structures both for classical and nanostructure dimensions [4–
13].Gravesen andWillatzen computed electronic eigenstates and the shapeofMöbius
nanostructures using differential geometry arguments taking into account bending
effects [5, 17]. Heijden and Starostin solved a classical problem in geometry by
employing an invariant variational bi-complex formalism to derive the first equilib-
rium equations for a wide developable strip undergoing large deformations [6, 7].
Ballon et al. showed that classicalMöbius ring resonators exhibit fermion-boson rota-
tional symmetry [8]. Yoneya et al. determined theoretically the structure of domain
walls in ferromagnetic states on Möbius strips [9]. Guo studied electronic proper-
ties of a Möbius graphene strip with a zigzag edge [4]. Optical activity for a Möbius
nanostructurewas examined byRockstuhl et al. [10]. Zhao et al. analyzed topological
properties of quantum states for a spinless particle hopping in a Möbius ladder [11].
Li and Ram-Mohan [12] theoretically discussed several quantum-mechanical prop-
erties of Möbius nanostructures including level splittings, symmetry (in particular
the absence of rotational symmetry for eigenstates), the influence of magnetic field
and optical transitions. In a recent study, Fomin et al. examined electron localization
in inhomogeneous Möbius rings [13].

In order to assess and optimize the influence of geometry on physical properties of
nanostructures, it is important to develop effective analytical and computational tech-
niques. This chapter presents analytical techniques to compute quantum-mechanical
particle eigenstates confined to complicated geometries. We start out by deriving the
governing equations of a conduction electron confined to a curved semiconductor
nanoring. It is shown that if the nanoring is characterized by a large aspect ratio,
i.e., nanorings where the length is much larger than the cross-sectional dimensions,
then the three-dimensional Schrödinger equation can be separated in three ordinary
differential equations. Two of these can be solved analytically and lead to sinu-
soidal solutions, while the wave-function part that depends on the last coordinate
parametrizing the length contains curvature contributions. Open and closed nanor-
ing boundary conditions are considered and the influence of boundary conditions
on eigenstate symmetries and energies is discussed. The general effect of a curved



16 Differential Geometry Applied to Rings and Möbius Nanostructures 501

geometry is to decrease electronic energies compared to the corresponding straight
nanowire of the same volume. The discussion is continued to include contributions
from strain through the deformation potential. For typical semiconductors this effect
is huge if strain is present and by far the major effect compared to the direct geom-
etry and curvature influence on the Laplacian. In the second part of the chapter, an
exotic example of a complicated nanostructure geometry is analyzed: the Möbius
structure. By inclusion of the bending energy in determining the shape of a Möbius
nanostructure, the median or centerline parametrization is derived and described in
terms of the generalized coordinate u1 and the width and thickness of the Möbius
nanostructure are parametrized by coordinates u2 and u3. It is shown that for thin
Möbius nanostructures, the electronic eigenstates can be written as a semi-separable
problem. The thickness-coordinate part of the wavefunction separates out while the
median- and width-coordinate parts couple in a non-separable manner. Results are
compared with exact finite element calculations for a general Möbius nanostructure.
It is verified that the differential geometry formulation presented is accurate when-
ever the thickness is much smaller than themedian length and the width in agreement
with the assumptions.

In the Second Edition of the chapter, we added a differential-geometric formula-
tion of dynamic elastic equations to solve the phonon problem of thin shells. This
study is gaining interest due to the plethora of 2D materials and functionalized 2D
structures that can be grown in laboratories today and the richness of newphysics they
display. 2D materials are indeed thin shells as their thicknesses range from one to a
few atomic layers. Graphene [14] is an important example of 2D structures that have
promising application possibilities for mechanics [15] and electronics [16], however,
not much is known about carrier mobilities and the scattering mechanisms that force
a limit to their values. A main reason for our present study of 2D materials is the
possibility to form complex geometrical and topological structures from them and to
examine the physics and applications that emerge from changing the 2D geometry
and topology. A detailed understanding of phonon dynamics is essential to determine
carrier mobilities and scattering mechanisms in 2D materials. As a case study, we
derive the acoustic phonon equations for a thin shell using a differential-geometric
formulation of the elastic energy and compute the phonon dispersion curves for a
cylinder-shaped and flat 2D graphene sheet.

16.1.1 Arc-Length Parametrization

It is convenient for the analysis of complex-shaped nanowires or nanorings to intro-
duce a set of orthogonal vectors where one is the local tangent vector of the nanowire
axis and the twoothers supplement to span the local cross sectionof the nanowire [18].
The nanowire axis r(s) is assumed to be parametrized by arc length s, but this is not
really a restriction since any curve can be parametrized by arc length. The tangent
vector t(s) = r′(s) = dr/ds is a unit vector field along the curve and the two vectors
spanning the local cross section of the nanowire are designated p(s) and q(s) such
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that t(s),p(s),q(s) constitute an orthonormal frame at each point r(s) along the
axis. Differentiation of the identities,

t · t = 1, p · p = 1, q · q = 1 ,

t · p = 0, t · q = 0, p · q = 0 ,
(16.1)

yields

2
dt
ds

· t = 0, 2
dp
ds

· p = 0, 2
dq
ds

· q = 0 ,

dt
ds

· p + t · dp
ds

= 0,
dt
ds

· q + t · dq
ds

= 0,
dp
ds

· q + p · dq
ds

= 0 .

(16.2)

If we now let

a(s) = dt
ds

· p, b(s) = dt
ds

· q, c(s) = dp
ds

· q , (16.3)

then we obtain the following equation

d

ds

⎡
⎣
t
p
q

⎤
⎦ =

⎡
⎣

0 a b
−a 0 c
−b −c 0

⎤
⎦

⎡
⎣
t
p
q

⎤
⎦ . (16.4)

Observe that the curvature κ of the axis is:

κ(s) = ∣∣r′′(s)
∣∣ = ∣∣t′(s)∣∣ =

√
a2 + b2 . (16.5)

The above does not uniquely determine p,q. A typical choice of vector fields p,q
is to let p be the principal normal n = t′/κ and q is the binormal b = t × n. In this
case, (16.4) leads to the Frenet-Serret equations, where a = κ , b = 0, and c = τ is
the torsion of the axis. If further the nanowire axis lies in a plane, the torsion vanishes:
τ = 0. It should be noted that the frame chosen here does not always exist in principle;
this happens if the curvature vanishes locally. The problem can be circumvented by
choosing the minimal rotation frame. In the latter frame c = 0 even if the torsion is
non-zero.

16.1.2 Planar Nanowire Axis Curves

In the following, the analysis is restricted to nanowire structures where the nanowire
axis lies in a plane, and we choose b = 0 and c = 0 which allows for some simpli-
fications in the model setup (Fig. 16.1).
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Fig. 16.1 Schematic picture of a curved nanowire structure (left plot) and a figure showing the
chosen curvilinear coordinates (right plot)

We can now parametrize a curved tube of rectangular cross section, i.e., a tubular
neighbourhood in R

3 of the curve r(s), according to:

x(u1, u2, u3) = r(u1) + u2p(u1) + u3q(u1) , (16.6)

where −ε2 ≤ u2 ≤ ε2 and −ε3 ≤ u3 ≤ ε3 for two constants ε2 and ε3. Albeit the
formulation is for rectangular-shaped nanowire cross sections it is easy, afterwards,
to adjust the theory to curved nanowires with, e.g., a circular cross section.

Using (16.4), simple manipulations give

∂x
∂u1

= (1 − u2a(u1))t(u1) , (16.7)

∂x
∂u2

= p(u1) , (16.8)

∂x
∂u3

= q(u1) . (16.9)

The metric tensor Gi j = ∂xi
∂ui · ∂x j

∂u j of R
3 becomes

[Gi j ] =
⎡
⎣

(1 − u2a(u1))2 0 0
0 1 0
0 0 1

⎤
⎦ . (16.10)

The determinant is
G = (1 − u2a(u1))2 , (16.11)

and the inverse
[
Gi j

]−1 = [
Gi j

]
reads

[Gi j ] =
⎡
⎣

1
(1−u2a(u1))2 0 0

0 1 0
0 0 1

⎤
⎦ . (16.12)



504 B. Lassen et al.

If we expand the determinant and the inverse in u2 and u3 then we obtain to zeroth
order

G ≈ 1 , ∂1G ≈ 0 , (16.13)

∂2G ≈ −2a(u1) , ∂3G ≈ 0 , (16.14)

[Gi j ] ≈
⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ , ∂1[Gi j ] ≈

⎡
⎣
0 0 0
0 0 0
0 0 0

⎤
⎦ , (16.15)

∂2[Gi j ] ≈
⎡
⎣
2a(u1) 0 0

0 0 0
0 0 0

⎤
⎦ , ∂3[Gi j ] ≈

⎡
⎣
0 0 0
0 0 0
0 0 0

⎤
⎦ . (16.16)

The Laplace operator �R3 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 in R
3 is in the curvilinear coordinates

u1, u2, u3 given by [19]

�R3 = Gi j∂i∂ j +
(
Gi j

2

∂ j G

G
+ ∂ j G

i j

)
∂i , (16.17)

where ∂i = ∂
∂ui and reads to zeroth order in u2 and u3:

�R3 = Gi j∂i∂ j +
(
Gi j ∂ j G

2G
+ ∂ j G

i j

)
∂i ≈ ∂2

1 + ∂2
2 + ∂2

3 − a(u1)∂2 . (16.18)

Next, introducing
F = √

G = 1 − u2a(u1) , (16.19)

and letting χ = √
Fψ allow us to write, again to zeroth order in u2 and u3,

�R3ψ = �R3

(
χ√
F

)
≈ ∂2

1χ + ∂2
2χ + ∂2

3χ + κ2

4
χ . (16.20)

Hence, the benefit in recasting theLaplacian operator problem in terms ofχ instead of
ψ is that the right-hand-side of (16.20) is separable in the three coordinates u1, u2, u3

while the right-hand-side of (16.18) is not. When we address the electron one-band
heterostructure problem, separability of the scaled wavefunction χ is maintained and
considerable computational simplicity is gained.
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16.1.3 General Nanowire Axis Parametrization

For most curves, it is difficult to find an explicit arc-length parametrization r(s).
Hence, we need to look for a general parametrization r(t)with t = t (s) and

∣∣r′(t)
∣∣ �=

1 as follows:

d

ds
= dt

ds

d

dt
=

(
ds

dt

)−1 d

dt
, (16.21)

dχ1

ds
=

(
ds

dt

)−1 dχ1

dt
,

d2χ1

ds2
=

(
ds

dt

)−1 d

dt

((
ds

dt

)−1 dχ1

dt

)
(16.22)

=
(
ds

dt

)−2 d2χ1

dt2
−

(
ds

dt

)−3 d2s

dt2
dχ1

dt
. (16.23)

Now

ds

dt
= |r′(t)| = √

r′ · r′ , (16.24)

d2s

dt2
= r′ · r′′

√
r′ · r′ , (16.25)

κ2 = |r′ × r′′|2
|r′|6 = (r′ × r′′) · (r′ × r′′)

(r′ · r′)3
= |r′|2|r′′|2 − (r′ · r′)2

(r′ · r′′)3
. (16.26)

16.2 Application to the Schrödinger Equation

Let s be nanowire axis arc length. With the above expression for the Laplacian, the
Schrödinger equation for an electron with effective mass m and energy E reads in
terms of χ and coordinates ui (applies to zeroth order in s and u2)

−�
2

2m

(
∂2
s χ + ∂2

2χ + ∂2
3χ + κ2

4
χ

)
+ V (u1, u2, u3)χ = Eχ , (16.27)

where ∂s ≡ ∂
∂s , and the potential V satisfies

V (s, u2, u3) = 0 , (16.28)

if (s, u2, u3) is a point within the nanowire structure, i.e., the domain:−ε2 ≤ u2 ≤ ε2
and −ε3 ≤ u3 ≤ ε3. Similarly, the potential V is infinite outside the nanowire struc-
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ture to mimic the infinite-barrier case. It must be emphasized that the infiniteness of
the potential outside the nanowire is crucial for the following simple quasi-analytical
method to work. In the general boundary condition case (including the finite barrier
problem), and as long as eigenfunctions vanish sufficiently fast outside the nanowire
so that singularities in the coordinate transformation do not occur within the domain
of interest, the present coordinate transformation can be used. In this case, however,
solutions must be found numerically in the transformed coordinates but the transfor-
mation is still valuable since the geometry of the problem is a simple geometry in
transformed coordinates and easy to implement numerically.

As the curvature κ is a function of s only it follows that a separable solution
χ = χ1(s)χ2(u2)χ3(u3) can be sought. For a general parametrization t = t (s), using
the expressions in (16.21)–(16.26) allows us to recast (16.27) as three ordinary dif-
ferential equations:

χ ′′
1 − r′ · r′′

r′ · r′ χ
′
1 +

(
(r′ · r′)(r′′ · r′′) − (r′ · r′′)2

4(r′ · r′)2
− (λ + μ)(r′ · r′)

)
χ1 = 0 ,

(16.29)

∂2
2χ2 + ν2χ2 = 0 , (16.30)

∂2
3χ3 + (

μ − ν2
)
χ3 = 0 , (16.31)

with λ = − 2mE
�2 and μ and ν separation constants; and a prime (′) denotes differen-

tiation with respect to t .

16.2.1 Analytical Solution for χ2, χ3

The equations inχ2 andχ3 can be solved analytically. The general solution to (16.30)
in χ2 is

χ2(u
2) = sin

(
νu2 + φ2

)
, (16.32)

where ν and φ2 are constants determined by the hard-wall boundary conditions
imposed, i.e.,

χ2(−ε2) = sin
(−νε2 + φ2

) = 0 ,

χ2(ε
2) = sin

(
νε2 + φ2

) = 0 . (16.33)

Thus:

ν = m ′π
2ε2

, (16.34)
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where m ′ is an integer different from zero. The other constant, the phase φ2, must be
chosen such that

φ2 = −νε2 , (16.35)

and the boundary conditions in (16.33) are fulfilled. Ifm ′ is even (and different from
zero), χ2 becomes

χ2(u
2) = sin

(
m ′π
2ε2

u2
)

, (16.36)

while for m ′ odd:
χ2(u

2) = cos

(
m ′π
2ε2

u2
)

. (16.37)

In exactly the same way, (16.31) allows the separation constant μ to be determined:

μ − ν2 =
(
n′π
2ε3

)2

, (16.38)

where n′ is an integer different from zero. If n′ is even and different from zero, the
eigenfunction χ3 is

χ3(u
3) = sin

(
n′π
2ε3

u3
)

, (16.39)

while for n′ odd:
χ3(u

3) = cos

(
n′π
2ε3

u3
)

. (16.40)

Combining (16.34) and (16.38) yields for μ the result

μ =
(
m ′π
2ε2

)2

+
(
n′π
2ε3

)2

, (16.41)

with m ′ = ±1,±2,±3 and n′ = ±1,±2,±3. The possible values of the particle
energy E are finally found from the χ1 eigenvalue equation (16.29) by imposing
appropriate boundary conditions given the value of μ.

16.2.2 Case Study: Circular Nanoring

The circular nanoring can be treated analytically. An arc-length parametrization of
a circular nanoring is

r(u1) =
(
R cos

(
u1

R

)
, R sin

(
u1

R

)
, 0

)
, (16.42)
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where

|r′(u1)| = 1 , |r′′(u1)| = 1

R2
, (16.43)

and R is the circular ring radius-of-curvature. Since |r′(u1)| = 1, the parametrization
is an arc-length parametrization and (16.29) reads

χ ′′
1 −

(
λ + μ − 1

4R2

)
χ1 = 0 (16.44)

with the general solution

χ1 = sin

(√
−λ − μ + 1

4R2
u1 + φ1

)
, (16.45)

where φ1 is an arbitrary phase. Further, imposing the boundary conditions:

χ1(u
1 = 0) = χ1(u

1 = L) = 0 , (16.46)

corresponding to an open circular-shaped nanowire structure, gives

χ1(u
1) = sin

(
lπ

L
u1

)
, l = ±1,±2,±3, . . . , (16.47)

and the associated energy eigenvalue is

E = −�
2λ

2m
= �

2

2m

[(
lπ

L

)2

+
(
m ′π
2ε2

)2

+
(
n′π
2ε3

)2

− 1

4R2

]
. (16.48)

A closed circular-shaped nanowire structure is subject to less strict boundary
conditions

χ1(u
1) = χ1(u

1 + 2πR) , (16.49)

corresponding to

√
1

4R2
− μ − λ2πR = 2lπ , l = 0,±1,±2,±3, . . . , (16.50)

and the following eigenstate solutions (with L = 2πR):

χ1(u
1) = sin

(
2lπ

L
u1 + φ1

)
, l = 0,±1,±2,±3, . . . . (16.51)



16 Differential Geometry Applied to Rings and Möbius Nanostructures 509

The associated energy spectrum is

E = −�
2λ

2m
= �

2

2m

[(
2lπ

L

)2

+
(
m ′π
2ε2

)2

+
(
n′π
2ε3

)2

− 1

4R2

]
. (16.52)

In particular, note that l = 0 is possible since the phase φ1 is arbitrary for the closed
circular nanowire axis. This result is the same as found in the case of a cylinder
surface of revolution [19] keeping inmind that L in [19] equals the present 2ε2. It was
demonstrated in [19] that the energy expression (16.52) is an excellent approximation
if the cylinder thickness is less than 10% of the radius R.

16.2.3 Case Study: Elliptic Nanoring

Consider an elliptical-shaped nanoring structure with an axis parametrization:

r(u1) =
(
R1 cos

(
2π

u1

L

)
, R2 sin

(
2π

u1

L

)
, 0

)
, (16.53)

where R1 and R2 define the elliptic semi-major and semi-minor axes, and the nanoring
corresponds to the range: 0 ≤ u1 ≤ L .

From (16.53), the following relations are obtained:

r′(u1) =
(

−2π
R1

L
sin

(
2π

u1

L

)
, 2π

R2

L
cos

(
2π

u1

L

)
, 0

)
, (16.54)

r′′(u1) =
(

−(2π)2
R1

L2
cos

(
2π

u1

L

)
,−(2π)2

R2

L2
sin

(
2π

u1

L

)
, 0

)
(16.55)

and

r′ · r′ = (2π)2
R2
1

L2
sin2

(
2π

u1

L

)
+ (2π)2

R2
2

L2
cos2

(
2π

u1

L

)
, (16.56)

r′′ · r′′ = (2π)4
R2
1

L4
cos2

(
2π

u1

L

)
+ (2π)4

R2
2

L4
sin2

(
2π

u1

L

)
, (16.57)

r′ · r′′ = (2π)3
R2
1 − R2

2

L3
sin

(
2π

u1

L

)
cos

(
2π

u1

L

)
. (16.58)

Using the latter expressions in (16.29) and solving for χ1 with appropriate boundary
conditions, we show in Table16.1 the first three eigenvalues (relative to �

2

2mμ) for a
nanowire with R1 = 5 nm, R2 = 8 nm, and L = 2π · 10 nm. In our case, we assumed
the elliptic nanoring to be cut open such that χ1(u1 = L) = χ1(u1 = 0) = 0.

The three associated eigenstates for χ1 can be seen in Fig. 16.2.
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Table 16.1 The first three energy levels for an elliptical nanoring. Here m is the InAs electron
effective mass equal to 0.022m0 [28] where m0 is the free electron mass

energy E(1) − �
2

2m μ (meV) E(2) − �
2

2m μ (meV) E(3) − �
2

2m μ (meV)

−3 23 78

Fig. 16.2 The first three
eigenstates for χ1 for an
elliptical nanoring. The blue,
red, and green curves are the
groundstate, the first-excited
state, and the second-excited
state, respectively
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16.3 Strain in Nanorings

In what follows, we consider large aspect-ratio nanowires, i.e., nanowires where the
cross-sectional dimensions are much smaller than the nanowire length. The nanoring
axis coordinate is u1 and the cross-sectional coordinates are u2 and u3, see Fig. 16.1.

16.3.1 Stress Tensor for a Bent Nanowire

It is assumed that the nanowire is free-standing, i.e., the nanoring structure obeys the
boundary stress relations:

σiknk = 0 , (16.59)

where σik is the stress tensor, nk is the boundary normal vector components, and
summation from 1 to 3 is implied for repeated indices. The indices i and k take on
values 1, 2, 3 corresponding to the u1, u2, u3 coordinate directions, respectively. The
normal vector n always lies in the u2-u3 plane, i.e., n1 = 0. Further, locations exist on
the cross-sectional boundary where n2 = 1 and n3 = 0 such that (16.59) with i = 1
givesσ12 = 0. Similarly, locations exist at the cross-sectional boundarywhere n2 = 0
and n3 = 1 hence with i = 1 we get σ13 = 0. Using similar arguments for i = 2 and
i = 3 we conclude that only σ11 can be nonzero at the cross-sectional boundary.



16 Differential Geometry Applied to Rings and Möbius Nanostructures 511

Since the cross-sectional dimensions are small, it is reasonable to assume that the
stress tensor components are constant over the cross section and we immediately
conclude that σ11 is the only non-zero stress component everywhere in the nanowire.

16.3.2 Strain Tensor Results in the Zincblende Case

Using the stress-strain relations for cubic materials:

σ11 = c11ε11 + c12ε22 + c12ε33 , (16.60)

σ22 = c12ε11 + c11ε22 + c12ε33 = 0 , (16.61)

σ33 = c12ε11 + c12ε22 + c11ε33 = 0 , (16.62)

σ23 = c44ε23 = 0 , (16.63)

σ13 = c44ε13 = 0 , (16.64)

σ12 = c44ε12 = 0 , (16.65)

where εi j is the strain tensor and ci j is the stiffness tensor, it is found that

ε22 = ε33 = − c12
c11 + c12

ε11 , (16.66)

and all other strain components are zero.

16.3.3 Nonlinear Expression for the Strain Component ε11

With the above relations between strain components, it is possible to find all strain
components once we know, say, ε11. The general expression for the strain tensor to
second order is [20]

εik = 1

2

(
∂di
∂xk

+ ∂dk
∂xi

+ ∂dl
∂xi

∂dl
∂xk

)
, (16.67)

where di is the i’th component of the displacement. In the following, we shall restrict
our analysis to nanowires bent uniformly, i.e., nanowires with a constant radius of
curvature: R along the nanowire length. In this case, if the bending is assumed to be
in the u1-u2 plane, then we have:

ε11 = 1

2

(
∂d1
∂u1

+ ∂d1
∂u1

+ ∂d1
∂u1

∂d1
∂u1

)
. (16.68)
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In the presence of bending forces only, a simple geometry analysis to first order in
the deformation d1 shows that:

∂d1
∂u1

= u2

R
(16.69)

and

ε11 = u2

R
+ 1

2

(
u2

R

)2

. (16.70)

Note that all other terms (shear second-order components) vanish due to the stress-
strain relations given by (16.63)–(16.65) and thus do not contribute to (16.67). It
may seem strange to keep the second-order term in the strain expression for ε11
since strain values are typically small, i.e., much less than 1. The reason is that the
first-order strain term ( u

2

R ), being proportional to the coordinate u2, corresponds to

a parity changing operator. Hence, energy contributions to first order in u2

R vanish
in first-order non-degenerate perturbation theory and the most significant non-zero
contribution from strain to electronic eigenstates is of the second order in u2

R . The
origin of the second-order terms stems from either second-order perturbation theory

in the u2

R strain term or first-order perturbation theory in the 1
2

(
u2

R

)2
strain term.

In other words, we must take care in keeping all strain terms to second order when
analyzing influence of strain on electronic eigenstates.

With the determination of ε11, the other non-zero diagonal strain components
follow from (16.66).

16.3.4 The Strain Hamiltonian Contribution for Conduction
Electrons

Having determined the strain tensor, the ingredients needed for the zincblende
conduction-band effective-mass problem are assembled. The one-band heterostruc-
ture effective-mass equation in the presence of strain reads [23]:

− �
2

2
∇ ·

(
1

meff(r)
∇

)
ψ(r) + [VBE (r) + De (ε11 + ε22 + ε33)]ψ(r) = Eψ(r) ,

(16.71)
where �, meff , VBE , De, E , ψ , r are Planck’s constant divided by 2π , the position-
dependent electron effectivemass, the position-dependent heterostructure band-edge
potential for electrons, the electron hydrostatic deformation potential, the electron
energy, electron eigenstate, and position vector, respectively. The above differential
equation in the wavefunction ψ can be formulated as a perturbative problem:
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Hψ = (H0 + H1) ψ = Eψ , (16.72)

H0ψ
0 = E0ψ0 , (16.73)

H0 = −�
2

2
∇ ·

(
1

meff(r)
∇

)
+ VBE (r) , (16.74)

H1 = De (ε11 + ε22 + ε33) , (16.75)

where H0, H1, E0, and ψ0 are the unperturbed Hamiltonian (i.e., in the absence of
strain), the strain perturbation, the unperturbed electron energy, and the unperturbed
electron energy, respectively. The above splitting of the Hamiltonian into an unper-
turbed part and a strain Hamiltonian perturbation is only meaningful if the strain
energy contribution is substantially smaller than energy differences between any two
unperturbed eigenstates. If not so, a Löwdin degenerate perturbation method [22]
should be employed.

Let us next rewrite the strain Hamiltonian as:

H1 = H A
1 + HB

1 , (16.76)

H A
1 = De

(
1 − 2

c12
c11 + c12

)
u2

R
, (16.77)

HB
1 = 1

2
De

(
1 − 2

c12
c11 + c12

)(
u2

R

)2

. (16.78)

Evidently, the Hamiltonian part H A
1 contributes to the second order in the pertur-

bation only while HB
1 contributes to the first order.

16.3.5 Computation of Eigenstates for Circular-Bent
Nanowires Using Differential Geometry

In this section, curvilinear coordinates are used to determine, in a simple way, eigen-
states and eigenvalues in the case of a bent nanowire subject to homogeneous strain.
Since electrons are completely confined to the nanowire structure and the heterostruc-
ture potential is an infinite-barrier potential, the eigenstate problem is a Dirichlet
problem, and the effective-mass equation for a nanoring can be recast in terms of the
transformed wavefunction χ [refer to (16.20)]:

−�
2

2meff

(
∂2
1 + ∂2

2 + ∂2
3 + κ2

4
+ De (ε11 + ε22 + ε33)

)
χ = Eχ . (16.79)

As the curvature κ = 1
R is a constant for homogeneous bending of a nanoring with a

radius of curvature R, it is apparent that a separable solutionχ = χ1(u1)χ2(u2)χ3(u3)
can be sought. This follows by noticing that also the strain perturbation [(16.76)–
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(16.78)] is a functionofu2 solely. In thegeneral case of inhomogeneousdeformations,
the strain perturbationwill, however, dependonu2, u3 and a separable solution cannot
be found.

Thus, for the nanoring problem with homogeneous bending strains, insertion of
χ = χ1(u1)χ2(u2)χ3(u3) into (16.79) gives

∂2
1χ1 +

(
1

4R2
− λ − μ

)
χ1 = 0 , (16.80)

∂2
2χ2 −

[
2meff

�2
De

(
1 − 2

c12
c11 + c12

)(
u2

R
+ 1

2

(
u2

R

)2
)

− c2
]

χ2 = 0 , (16.81)

∂2
3χ3 + (

μ − c2
)
χ3 = 0 , (16.82)

with λ = − 2mE
�2 .

In the next sectionwe describe an approach to find exact quasi-analytical solutions
to this problem. Following that section we will return to the perturbative approach.

16.4 Results and Discussions

As an example, we consider InAs zincblende nanowires with a rectangular cross
section of side lengths: 2ε2 = 2ε3 and assume the nanowire centerline length L
to be much larger than the cross-sectional dimensions. The zincblende InAs stiff-
ness components are (in units of Pa): c11 = 8.33 × 1010, c12 = 4.53 × 1010, c44 =
3.96 × 1010. For InAs [28] the effective mass is mef f = 0.022m0 where m0 is
the free electron mass and the conduction-band hydrostatic deformation potential
De = −5.1 eV.

16.4.1 Eigenstate and Eigenenergy Changes Due to Circular
Bending

In Fig. 16.3, eigenenergy changes due to strain and geometry-bending effects are
plotted for a nanowire with cross-sectional side length ε2 = 2 nm based on (16.80)–
(16.82). The first three eigenenergy changes ΔEβ (β = 1, 2, 3) are shown in the
figure as given by the relation:

ΔEβ = − �
2

2meff

[
1

4R2
+

(
βπ

2ε2

)2

− c2β

]
, (16.83)

where cβ are the corresponding first three eigenvalues c of (16.81). Note that the
first term in the parenthesis of (16.83) is the geometry bending shift present even in
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Fig. 16.3 Eigenenergy changes due to strain and geometry-bending as a function of the bending
radius. The first three eigenenergy shifts are shown for a InAs zincblende nanowire with ε2 = 2 nm
(refer to the text for details and other parameters used in the calculations). The blue, red, and green
curves correspond to the first, second, and third eigenstates, respectively. Both linear and squared
contributions in u2 are included in the strain coefficients

the absence of strain while the difference between the other two terms is the strain
contribution stemming from the nanowire bending.

Evidently, the effect of strain and curvature is rather small for all three states in
the range 5 nm ≤ R ≤ 50 nm. The eigenenergy changes at R = 15 nm are approxi-
mately−7,−9, and−10meV for the first, second, and third eigenstates, respectively.
Clearly, the dependence on the bending radius is becoming increasingly pronounced
as R decreases. This is in qualitative agreement with results obtained using perturba-
tion theory based on the perturbation Hamiltonian H1 in (16.76). The pure geometry
bending effect, i.e., the term − �

2

2mef f

1
4R2 is small only accounting for −2 meV when

R = 15 nm. Evidently, this term leads to significant contributions in case of large
bending only. Quantitative agreement between perturbation theory results and the
more accurate Frobenius method result is also found but we find no reason to show
that here.

Figure16.4 depicts the first three eigenfunctionsχ2 [see (16.81)] in the case where
ε2 = 2 nm.Clearly, the number of nodes along the u2 direction is equal to the solution
numberminus one.As expected, parity is broken due to bending and bending-induced
eigenstate asymmetry is visible as the bending radius is decreased to 5 nm. Note
also that the state asymmetry is due to strain and not the pure geometry-bending
effect since the geometry effect changes the potential by a constant only (− 1

4R2 ).
The computed state changes are likely to affect optoelectronic properties only for
nanorings with a large bending radius, however, at a bending radius above 50 nm, the
asymmetry effect apparently becomes insignificant. A similar calculation for GaAs
nanorings shows that significant asymmetries in eigenstates occur at bending radii
up to 30 nm.
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Fig. 16.4 First three χ2 eigenfunctions as a function of the bending radius for a InAs zincblende
nanowire with ε2 = 2 nm (refer to the text for details and other parameters used in the calculations).
The panels a and b are for a curvature radius equal to 5 and 10 nm, respectively. The blue, red, and
green curves correspond to the first, second, and third eigenstates, respectively. A close inspection
of the figures reveals the effect of the curvature in breaking eigenstate parity. This is most clearly
seen in panel a for the first eigenstate tilted slightly to the right (blue curve)

16.5 How Are the Möbius Strips Constructed?

We consider Möbius strips that are constructed from a planar rectangle by pure
bending. Mathematically such a Möbius strip forms a developable surface. It is in
particular a ruled surface, i.e., it is of the form x(u, v) = r(u) + vv(u) where r is
some curve on the surface crossing all the rulings. If we let r be the image of the line
down the middle of the rectangle, the median curve, then it is a geodesic. Thus the
principal normal n of r is orthogonal to the tangent plane.We have in particular that v
it is orthogonal to n. As the Frenet-Serret frame t,n,b is an orthonormal basis we can
conclude that v = αt + βb. A ruled surface is developable if and only if det(t, v, v̇)
vanishes. As v̇ = α̇v + ακn + β̇v − βτn, where κ and τ is the curvature and torsion
of r respectively, we see that we have a developable surface if and only if ακ = βτ .
That is, we can parametrize the Möbius strip as
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Fig. 16.5 A Möbius strip
with length 200nm and half
width w = 3.333nm,
coloured according to
log(M2). The median curve
and some of the rulings are
shown on both the Möbius
strip and the original planar
rectangle

x(u, v) = r(u) + v

(
b(u) + τ(u)

κ(u)
t(u)

)
, v ∈ [−w,w] , (16.84)

where r is a parametrization of themedian curve andw is half thewidth of theMöbius
strip, see Fig. 16.5 and [5]. Note that the Möbius strip is completely determined by
the median curve r. The shape of the Möbius strip is determined by the bending
energy which in absence of exterior forces has to be minimized. Locally the strip
bends around the rulings and the energy is proportional to the square of the curvature
of a section orthogonal to the ruling. One of the principal curvature is zero, κ1 = 0,
and the corresponding principal direction is in the direction of the rulings. As the
principal directions are orthogonal the other principal curvature, κ2, is exactly the
curvature of a section orthogonal to the rulings. So the energy density is proportional
to κ2

2 = (κ1 + κ2)
2 = 4M2, where M denotes the mean curvature. We conclude that

the energy density is proportional to the square of the mean curvature. To simplify
notation, we let

Ψ = τ

κ
, and ψ = dΨ

ds
, (16.85)

where s denotes arc-length on the median curve. If we assume that the median curve
is parametrized by arc-length, then the first and second fundamental forms of the
Möbius strip are given by

[gi j ] =
[

(1 + vψ)2 Ψ (1 + vψ)

Ψ (1 + vψ) 1 + Ψ 2

]
and [bi j ] =

[−κ(1 + vψ) 0
0 0

]
, (16.86)

respectively. The mean curvature is then

M = κ

2

1 + Ψ 2

1 + vψ
. (16.87)
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So the bending energy is proportional to

E = 1

2

∫
M2 dA = 1

8

∫ L

0

∫ w

−w

κ2(1 + Ψ 2)2

1 + vψ
dv ds

= 1

8

∫ L

0

κ2(1 + Ψ 2)2

ψ
log

(
1 + wψ

1 − wψ

)
ds , (16.88)

where L is the length of median curve and w still is half the width of the Möbius
strip. Finding the exact shape of a Möbius strip is a hard problem with a history
going back to [21] where (16.88) was first written down, see [6, 7] and references
therein. We do not try to minimize the energy in the space of all curves. Instead, we
look at the same three parameter family of curves as in [5]. This family of curves is
part of a six-parameter family of median curves of Möbius strips in [24]. The latter
family was, in turn, an extension of a single Möbius strip in [25]. Some experiments
revealed that the extra three parameters could be set to zero without affecting the
final shape of the Möbius strip much. The family of median curves is given as

r(u1) =
⎡
⎣

c1 sin(u1)
c2

(
sin(u1) − 1

2 sin(2u
1)

)
c3

(
5
3 − 5

2 cos(u
1) + cos(2u1) − 1

6 cos(3u
1)

)

⎤
⎦ . (16.89)

We do not have an arc-length parametrization so we need to change (16.85) to

ψ = dΨ

ds
= dΨ

du

du

ds
= Ψ̇

‖ṙ‖ , (16.90)

where · denotes differentiation with respect to u.Wewant tominimize the energy, but
we alsowant to get a specific length and to obtain aMöbius stripwithout singularities.
We end up with the following constrained optimization problem:

minimize
c1,c2,c3

∫ 2π

0

κ2(1 + Ψ 2)2

ψ
log

(
1 + hψ

1 − hψ

)
‖ṙ‖ du , (16.91a)

such that

∫ 2π

0
‖ṙ‖ du = 200 nm , (16.91b)

hψ(u) < 1 , u ∈ [0, 2π ] , (16.91c)

hψ(u) > −1 , u ∈ [0, 2π ] . (16.91d)

We use the MATLAB function fmincon from the optimization toolbox [26] to solve
this problem. All functions are evaluated in 1000 evenly spaced points and the condi-
tions (16.91c) and (16.91d) are only checked in these points. Similarly, the integrals
are replaced by a finite sum over these 1000 points. The optimization method is gra-
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Fig. 16.6 The coefficients
c1, c2, and c3 as a function of
half width w, with
L = 200 nm

dient driven, so it is necessary to calculate the gradient of both the objective function
(16.91a) and the constraints (16.91b)–(16.91d). This is a lengthy but straightforward
calculation, which we omit here.

As a result we find the coefficients ci shown in Fig. 16.6 for a varying set of w

values. Values for different lengths of the Möbius strip are obtained by the scaling
relations L̃ = K L , c̃i = Kci , and w̃ = Kw, for a given scaling constant K .

16.6 Curvature Induced Potential

Consider next the one-band envelope-function equation for a conduction electron
confined to a semiconductor surface � [27]:

− �
2

2me

(
Δ0 + ∂23

)
χ(u1, u2) +

[
VS(u

1, u2, u3) + V (u1, u2, u3)
]
χ(u1, u2) = Eχ(u1, u2) ,

(16.92)

where me is the effective mass, χ is the envelope eigenfunction, and E its energy.
The surface � is defined as the center surface corresponding to the third coordinate
u3 being zero, VS is the deformation potential term proportional to the sum of the
diagonal strain components in Cartesian coordinates, and the potential barrier term
V due to material inhomogeneity is assumed to be of the infinite-barrier type, i.e.,

V (u1, u2, u3) =
{
0 , if u3 = 0 ,

∞ , else .
(16.93)

The details of the strain potential VS in curvilinear coordinates u1, u3, u3 are given
in Sect. 16.7. The operator Δ0 in (16.92) is [19]:

Δ0 = Δ� + M2 − K , (16.94)

where Δ� is the Laplace-Beltrami operator on �, and M and K are the mean and
Gaussian curvatures, respectively. In our case, M is non-zero but K is zero.

The effect of M2 on energies is to shift eigenenergies downwards. Note that since
M2 is much smaller than Δ�), it follows from first-order perturbation theory that
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(a) (b)

(c)

Fig. 16.7 The panels a, b, and c are the groundstate, the first-excited state, and the third-excited
state, respectively for theMöbius stripwith dimensionsw = 3.333 nm and L = 200 nm. Parameters
used in the calculation are given in the main text. See (16.104) for the definition of ν1 and ν2

Möbius structure eigenstates more or less retain the same symmetries (even or odd
in the u1 and u2 coordinates) as the corresponding eigenstates for the flat cylinder
problem even though M2 is not an even or odd function in u1 and u2. This argument
is only strictly valid if states are non-degenerate in the absence of the bending term,
and if the energy separation between non-degenerate states is larger than the bending
energy contribution.

In Fig. 16.7, we plot the first three eigenstates are found by solving (16.79) in the
absence of strain effects (VS = 0) using the finite-difference method. The structure
considered corresponds to the parameters: L = 200 nm, w = 3.333 nm.

16.7 Möbius Strip of Finite Thickness

Next, we solve for the eigenstates and associated energies of an electron bound to
a Möbius strip of finite thickness. Since it is computationally cumbersome and, for
thin Möbius structure, unnecessarily expensive to solve the one-band problem in
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Cartesian coordinates, it is convenient to formulate the problem in the (u1, u2, u3)
coordinate system, thereby reducing the complexity of the geometry to a simple box
at the price of having to solve a more complicated differential equation. In Cartesian
coordinates the one-band model is given by

− �
2

2meff
Δχ + [VS + V ]χ = Eχ . (16.95)

The parametrization for a Möbius strip with finite thickness is given by

x(u1, u2, u3) = r(u1) + u2
(
b(u1) + τ(u1)

κ(u1)
t(u1)

)
− u3n(u1) , (16.96)

so that

∂x
∂u1

= |r′(u1)| ((1 + u2ψ + u3κ)t − u3τb
)
,

∂x
∂u2

= b + Ψ t,
∂x
∂u3

= −n ,

(16.97)

where Frenet’s relations have been used. The metric tensor is now found to be

G =
⎡
⎣

|r′|2 (
(1 + u2ψ + u3κ)2 + (u3τ)2

) |r′|Ψ (1 + ψ) 0
|r′|Ψ (1 + ψ) 1 + Ψ 2 0

0 0 1

⎤
⎦ . (16.98)

Further on,

G = |r′|2
[(

1 + u2ψ + u3κ
)2 + 2(u3τ)2 + 2u3κΨ 2 (1 + ψ) +

(
u3τ 2

κ

)2
]

,

(16.99)
and

G−1 = 1

G

⎡
⎣

1 + Ψ 2 −|r′|Ψ (1 + ψ) 0
−|r′|Ψ (1 + ψ) |r′|2 (

(1 + u2ψ + u3κ)2 + (u3τ)2
)
0

0 0 G

⎤
⎦ . (16.100)

It is clear from the expression of themetric tensor, that the problem is not separable
in any of the three coordinates u1, u2, u3. However, it is possible, for small thick-
nesses, to carry out a perturbative analysis in terms of the effective-mass equation
that couples the Möbius thickness coordinate u3 to the other two coordinates u1, u2.
Then, the unperturbed three-dimensional problem is separable in one coordinate and
decouples into a two-dimensional problem in u1, u2 and a one-dimensional problem
in u3.
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As the electron is completely confined to the Möbius strip, Dirichlet conditions
χ = 0 are invoked at the boundary:

χ(u1, u2 = ±w, u3) = χ(u1, u2, u3 = ±h) = 0 , (16.101)

and since the Möbius strip is rotated by 180◦ during one revolution along the median
line defined by u2 = u3 = 0, anti-periodic boundary conditions are imposed at the
u1 end surfaces:

χ(u1 = 0, u2, u3) = χ(u1 = 2π,−u2,−u3) . (16.102)

16.7.1 Inclusion of Strain

As before, this effect is included in its simplest form by a hydrostatic deformation
potential of the form [29]

VS = acTr(ε) , (16.103)

where ac is the deformation potential, ε is the strain tensor, and Tr denotes the
trace. Since the (u1, u2, u3) coordinate system has been chosen solely based on the
convenience of the domain, it is less convenient to use the (u1, u2, u3) coordinate
system as a reference configuration in the calculation of the strain. A more useful
coordinate system, (v1, v2, v3), is parametrized as follows:

v1 =
∫ u1

0
|r′(s)|ds + u2Ψ, v2 = u2, and v3 = u3 . (16.104)

In this coordinate system, the Möbius strip is given by the natural domain [0, L] ×
[−w,w] × [−h, h] where L is the length of median curve. This choice of refer-
ence configuration is made since the flat nanostrip is neither stretched nor com-
pressed when deformed into the Möbius strip by the deformation R(v1, v2, v3) =
x(u1(v1, v2), v2, v3). Given the deformation R, the strain tensor becomes

εi j = 1

2

(
δi j − ∂R

∂vi
· ∂R
∂v j

)
= 1

2

(
δi j −

3∑
k,l=1

∂uk
∂vi

∂x
∂uk

· ∂ul
∂v j

∂x
∂ul

)
. (16.105)

16.8 Results

In this section the energies and eigenstates are studied as a function of the width,
thickness, and length of the Möbius strip with emphasis on the effect of inclusion
of strain in the calculations. The Möbius strip considered here is made of InAs, but
similar results would be obtained with other choices of material.
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Fig. 16.8 Panel a shows the energy difference relative to the ground state energy both for the case
including strain (dashed blue lines) and the case disregarding strain (solid black lines). Panel b
shows the difference in energy between a model with strain and a model without strain. In both
panels the length and thickness of the Möbius strip are 200 and 2 nm, respectively

In the inset of Fig. 16.8a the groundstate energy as a function of width is shown
for a 200 nm long and 2 nm thick Möbius strip. As expected, the energies decrease
as the width is increased, due to electron confinement effects.

In Fig. 16.8a the energy differences relative to the groundstate energy are also
shown. The eigenstates are very close in energy. This is due to the relatively large
length of theMöbius strip. This fact ismost readily illustrated by plotting the energies
as a function of length of the Möbius strip, see Fig. 16.9. In this figure it is clearly
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Fig. 16.9 The first 6 eigenenergies for a model with strain (solid lines) and a model without strain
(dashed lines) as a function of the length of the Möbius strip. In the plots the width and thickness
of the Möbius strip are 6 and 2 nm, respectively

seen that the level spacing increases as the length of the Möbious strip is decreased.
In Fig. 16.8b the energy difference is shown between a model with strain relative to
a model without strain. Strain only has a minor influence on the electron energies.
This is in agreement with results from paper [17].

In Fig. 16.8b it is furthermore observed that the first and second excited states
cross at the width of 2 nm. This can also be seen in the symmetries of the wave-
functions shown in Fig. 16.10, where in the left column the first excited state is shown
for different widths and in the right column the second excited state is shown. In all
plots the wave-function are given as a function of v1 and v2 at v3 = 0.

In Fig. 16.11, the influence of the thickness on the electron energies is studied. The
energy decreases as the thickness is increased due to a decrease in the confinement of
the electron.More interestingly, it is seen that the impact of strain on the eigenenergies
increases as the thickness is increased. The reason is that the strain due to bending in
the structure increases nearly linearly as a function of the thickness. This is seen in
Fig. 16.12, where the hydrostatic strain is shown as a function of v1 and v3 at v2 = 0.
This can also been seen from the approximate result based on the Euler beam theory,
where bending strain is given by ku3 to the first order in the curvature [similarly to
(16.70)].
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Fig. 16.10 The left and right column shows the first and second excited state, respectively. The
upper row wave functions have a width of 1.6 nm, the middle row wave functions have a width of
2 nm, and the lower row wave functions have a width of 2.4 nm. In all plots the length and thickness
of the Möbius strip is 200 and 2 nm, respectively, and all plots are given as functions of v1 and v2

with v3 = 0

16.9 Phonon Dynamics in Ring Structures

Weshall next determine the governing equations of the acoustic phononmodes of ring
structures where one dimension, the thickness, is very small. This assumption (shell
problem) is excellently fulfilled for 2D materials such as graphene. In the following,
consider a parametrization (ξ, η) �→ x(ξ, η) of themiddle surface of a shell structure.
If N is the unit normal, then the parametrization by tubular coordinates is

X(ξ, η, ζ ) = x(ξ, η) + ζ N(ξ, η) . (16.106)

For α, β ∈ {1, 2} the metric coefficients are

Gα,β = Xα · Xβ = xα · xβ + ζ(xα · Nβ + Nα · xβ) + ζ 2Nα · Nβ

= gα,β − 2ζ bα,β + ζ 2cα,β = gα,β − 2ζ bα,β + ζ 2(2Hbα,β − Kgα,β) , (16.107)
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Fig. 16.11 Difference in energies between a model with strain and a model without strain as a
function of the thickness of the Möbius strip. The inset shows the groundstate energy as a function
of thickness using a model with strain. In the plots the length and thickness of the Möbius strip are
200 and 2 nm, respectively

Fig. 16.12 The hydrostatic
strain distribution as a
function of v1 and v3 at
v2 = 0 for the Möbius strip
with length of 200 nm, width
of 2 nm, and thickness of
2 nm

where gα,β , bα,β , and cα,β are the components of the first, second, and third funda-
mental form, respectively and H and K are the mean and Gaussian curvature. The
full 3D metric tensor is

G =
⎛
⎝
g11 − 2ζb11 + ζ 2c11 g12 − 2ζb12 + ζ 2c12 0
g21 − 2ζb11 + ζ 2c21 g22 − 2ζb22 + ζ 2c12 0

0 0 1

⎞
⎠

=
(

(1 − ζ 2K )gα β − 2(ζ − ζ 2H 2)bα β 0
0 1

)
. (16.108)
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Using shell theory [30] the three dimensional strain is described by a two dimen-
sional strain tensor Eα,β = 1

2 (g
∗
α β − gα β) and a bending tensor Kα,β = b∗

α β − bα β ,
where * denotes the deformed shell. That is, the 3D strain is given by

(
εi j

) =
(

(1 − ζ 2K )Eα β − (ζ − ζ 2H)Kα β 0
0 0

)
, i, j ∈ {1, 2, 3} . (16.109)

Observe, that it is assumed that there is no strain in the normal direction.
Consider next the application to shells where the Gaussian curvature vanishes.

Important examples include the round cylinder and theMöbius structure. If we ignore
terms of order h/R and h2/L2, where h is the thickness of the shell, R is the minimal
principal curvature, and L is a characteristic wave-length of the deformation pattern,
then we obtain a simple form of the energy for a graphene single-layer sheet of
symmetry D6h ≡ 6/mmm [30, (7.8)]:

W = h

2

(
(c11 − c12)E

β
α E

α
β + c12E

α
α E

β

β

)

+ h3

24

(
(c11 − c12)K

β
α K

α
β + c12K

α
α K

β

β

)
. (16.110)

As we consider deformations of a shell in pure bending, we can introduce the
basis (e1, e2, e3) = (x1, x2,N), where N = x1 × x2. As xα · xβ = δαβ we have

xαβ · xγ = 0 , xαβ = bαβN , Nγ = −b1γ e1 − b2γ e2 . (16.111)

We can write a deformation of the shell as

y = x + uiei = x + ue1 + ve2 + wN , (16.112)

where (u1, u2, u3) = (u, v, w). To first order in ui we have

yα = xα + uγ
αeγ + uγ xαγ + wαN + wNα , (16.113)

g∗
αβ = gαβ + uα

β + uβ
α − 2wbαβ , (16.114)

y1 × y2 = (1 + u1 + v2 − wb11 − wb22)N − (uγ b1γ + w2)e1 − (uγ b2γ + w1)e2 ,

|y1 × y2|−1 = 1 − u1 − v2 + wb11 + wb22 ,

N∗ = N − (uγ b1γ + w2)e1 − (uγ b2γ + w1)e2 ,

yαβ = (bαβ + uγ
αbβγ + uγ

βbαγ + uγ bαβ;γ + wαβ − wb1αb1β − wb2αb2β)N

+ (uαβ − uγ bαβb1γ − wαb1β − wβb1α − w(b1α;β)e1

+ (uαβ − uγ bαβb2γ − wαb2β − wβb2α − w(b2α;β)e2 , (16.115)

b∗
αβ = bαβ + uγ

αbβγ + uγ
βbαγ + uγ bαβ;γ + wαβ − wb1αb1β − wb2αb2β .

(16.116)
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We see that

(Eαβ) =
(

u1
u2+v1

2
u2+v1

2 v2

)
− w

(
b11 b12
b21 b22

)
, (16.117)

Kαβ = uγ
αbβγ + uγ

βbαγ + uγ bαβ;γ + wαβ − wb1αb1β − wb2αb2β . (16.118)

As

K β
α K

α
β = K 2

11 + 2K 2
12 + K 2

22 , K α
α K

β

β = K 2
11 + 2K11K22 + K 2

22 ,

and similar for Eαβ , (16.117) reads

W = h

2

(
c11

(
E2
11 + 2E2

12 + E2
22

) + 2c12
(
E11E22 − E2

12

))

+ h3

24

(
c11

(
K 2

11 + 2K 2
12 + K 2

22

) + 2c12
(
K11K22 − K 2

12

))
. (16.119)

16.10 The Round Cylinder Shell

Consider now a round cylinder with radius R. We then have

x(u, v) =
(
R cos

u

R
, R sin

u

R
, v

)
, N(u, v) =

(
cos

u

R
, sin

u

R
, 0

)
, (16.120)

gαβ =
(
1 0
0 1

)
, bαβ = − 1

R

(
1 0
0 0

)
, (16.121)

Eαβ =
(
u1 + w

R
u2+v1

2
u2+v1

2 v2

)
, Kαβ =

(
2 u1

R + w11 − w
R2

u2
R + w12

u2
R + w12 w22

)
.

(16.122)

So the energy density is

W = h

2

(
c11

((
u1 + w

R

)2 + 2
(u2 + v1)

2

4
+ v2

2

)

+2c12

((
u1 + w

R

)
v2 − (u2 + v1)

2

4

))

+h3

24

(
c11

((
2
u1
R

+ w11 − w

R2

)2 + 2
(u2
R

+ w12

)2 + w2
22

)

+2c12

((
2
u1
R

+ w11 − w

R2

)
w22 −

(u2
R

+ w12

)2
))

. (16.123)
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The total elastic energy is

E =
∫ L

0

∫ d

−d
Wdη dξ . (16.124)

The elastic energy variation is

δE =
∫ L

0

∫ d

−d
h

(
c11

((
u1 + w

R

) (
δu1 + δw

R

)
+ (u2 + v1)(δu2 + δv1)

2
+ v2δv2

)

+ 2c12

(
v2

(
δu1 + δw

R

)
+

(
u1 + w

R

)
δv2 − (u2 + v1)(δu2 + δv1)

4

))

+ h3

12

(
c11

((
2
u1
R

+ w11 − w

R2

) (
2
δu1
R

+ δw11 − δw

R2

)

+ 2
(u2
R

+ w12

) (
δu2
R

+ δw12

)
+ w22δw22

)

+ 2c12

(
w22

(
2
δu1
R

+ δw11 − δw

R2

)
+

(
2
u1
R

+ w11 − w

R2

)
δw22

−
(u2
R

+ w12

)(
δu2
R

+ δw12

)))
dη dξ.

Upon performing partial integrations in η and ξ and collecting terms, we obtain

=
∫ L

0

[
h

(
(c11 − c12)

u2 + v1

2
δu +

(
c11v2 + 2c12

(
u1 + w

R

))
δv

)

+ h3

12

(
2

R
(c11 − c12)

(u2
R

+ w12

)
δu

− 2
(
c11

(u12
R

+ w112 + w222

2

)
+ c12

(u12
R

− w2

R2

))
δw

+
(
c11w22 + 2c12

(
2
u1
R

+ w11 − w

R2

))
δw2

)]d

−d

dξ

+
∫ L

0

∫ d

−d
h

(
c11

(
−

(
2u11 + u22 + v12

2
+ w1

R

)
δu − u12 + v11 + 2v22

2
δv

+
(u1
R

+ w

R2

)
δw

)

+ 2c12

(
u22 − 3v12

4
δu −

(
3u12
4

− v11

4
+ w2

R

)
δv + v2

R
δw

))

+ h3

12

(
c11

(
− 2

R

(
2u11 − u22

R
− w1

R2
+ w111 − w122

)
δu
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+
(
−2

u1
R3

+ 2
u122
R

+ w

R4
− w11

R2
+ 2

u111
R

− w11

R2
+ w1111 + 2w1122 + w2222

)
δw

)

+ 2c12
(
+

(u22
R2

+ 3
w122

R

)
δu − 3

(u122
R

+ w1122

)
δw

))
dη dξ .

We can read off the equations of motions from the domain integral by equating
the coefficients to δu, δv, δw to hρ times the second t-derivative of u, v, and w,
respectively:

ρ
∂2u

∂t2
= c11

(
2u11 + u22 + v12

2
+ w1

R

)
− c12

u22 − 3v12
2

+ h2

6
c11

(
2u11 − u22

R2
− w1

R3
+ w111 − w122

R

)

− h2

6
c12

(u22
R2

+ 3
w122

R

)
, (16.125)

ρ
∂2v

∂t2
= c11

u12 + v11 + 2v22
2

+ c12

(
3u12 − v11

2
+ 2w2

R

)
, (16.126)

ρ
∂2w

∂t2
= −c11

(u1
R

+ w

R2

)
− 2c12

v2

R
− h2

12
c11

(
−2

u1
R3

+ 2
u122
R

+ w

R4
− w11

R2
+ 2

u111
R

− w11

R2
+ w1111 + 2w1122 + w2222

)

+ h2

2
c12

(u122
R

+ w1122

)
, (16.127)

and, similarly, the boundary conditions are obtained from the boundary integral by
setting all coefficients to δu, δv, δw, and δw2 to zero:

(
3 + h2

R2

)
u2 + 3v1 + h2

R
w12 = 0 , (16.128)

2c12u1 + c11v2 + 2c12
R

w = 0 , (16.129)

c11 + c12
R

u12 − c12
R

w2 + c11w112 + c12
2

w222 = 0 , (16.130)

4c12
R

u1 − 2c12
R2

w + 2c12w11 + c11w22 = 0 . (16.131)

16.11 Calculation of Acoustic Phonon Frequencies
for a Cylinder-Shaped Graphene Sheet

Upon assuming general solutions

u = U0 exp (iωt − ikξ) , (16.132)
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v = V0 exp (iωt − ikξ) , (16.133)

w = W0 exp (iωt − ikξ) , (16.134)

insertion into (16.125)–(16.127) leads to a 3 × 3 matrix equation in U0, V0,W0. By
solving the secular equation we find the dispersion curves of the acoustic phonon
modes along the ξ direction. The following physical parameters of single-layer
graphene are used [31]: c11h = 345 Pam, c12h = 73 Pam, h = 3.4 × 10−10 m, and
hρ = 7.61 × 10−7 kg/m2. Three solutions exist for positive eigenfrequencies ω for
each k value. In Fig. 16.13, solid lines are for a cylinder radius-of-curvature equal to
1 m (upper plots) and 1 × 10−6 m (lower plots), respectively. In both plots, we show
for comparison the case of a flat graphene sheet (dashed lines). Evidently, for the
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Fig. 16.13 The three acoustic phonon frequencies f = ω/(2π) as a function of the wavenumber
component k along the cylinder ξ coordinate for a cylinder-shaped graphene sheet. The upper
plots are for a cylinder radius-of-curvature R equal to 1 m while the lower plots correspond to
R = 1 × 10−6 m. The right plots are zoomed in versions of the left plots to show the nonlinear
dependence on k for the lowest mode. We point to that the case R = ∞ is equivalent to the flat
graphene-sheet case. Three eigenfrequencies are found and plotted as solid lines while the dashed
lines are for a flat graphene sheet. Parameters used are c11h = 345 Pam, c12h = 73 Pam, h =
3.4 × 10−10 m, and hρ = 7.61 × 10−7 kg/m2
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upper plot case the radius-of-curvature R is so high compared to the graphene sheet
thickness h that the eigenfrequencies are almost the same as for the flat graphene
sheet case. We also note that, for the flat graphene-sheet case, there is one mode
displaying a parabolic dispersion (E ∝ k2) due to the w1111 term in the equation-of-
motion for w. The other two modes are linear (E ∝ k) if the graphene sheet is flat.
These characteristics are in perfect agreement with experimental and DFT results
for phonon modes of graphene [31]. Finally, we clearly see a mode with a non-
zero phonon frequency at k = 0 when R = 1 × 10−6 m. This mode corresponds to
vibrations along the w direction and it follows directly from (16.127) that the asso-
ciated eigenfrequency is given by

ω(k = 0) =
√
c11
ρ

√
1 + 1

12

h2

R2

1

R
. (16.135)

16.12 Conclusion

Analytical and simple computational differential geometry methods applicable to
curved nanostructures are presented and applied to geometries which cannot be
solved analytically nor computationally effective using standard coordinate systems.
Test cases of experimental interest are computed for electronic eigenstates of cir-
cular and elliptic nanorings as well as Möbius nanostructures, and it is shown that
for bending radii of a few nanometers, significant changes in eigenstate symmetry
properties and eigenenergy values exist due to curvature and strain effects affecting
physical properties. At bending radii above approximately 50 nm, curvature effects
are, however, negligible. A detailed study of a complicated geometry structures,
the Möbius nanostructure, is discussed next. Consequences of curvature, strain, and
Möbius nanostructure length, width, and thickness are assessed for electron eigen-
states. In the Second Edition of the chapter, a derivation of the elastic energy for a thin
shell using a differential-geometric formulation is added and we use it to determine
the dynamic elastic equations for a cylinder-shaped nanostructure shell. We then
compute, for 2D single-layer graphene, phonon dispersion curves and discuss dif-
ferences between the flat- and cylinder-shaped graphene single-atomic layer cases.
The method can be extended to the study of phonon dynamics of a Möbius-shaped
graphene 2D layer following a similar procedure.
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Chapter 17
Band Mixing Effects in InAs/GaAs
Quantum Rings and in MoS2 Quantum
Dots Ring-Like Behaving

Carlos Segarra, Josep Planelles and Juan I. Climente

Abstract The physics of semiconductor quantum rings near the band edge is
often well described considering decoupled bands. There are however instances
where band coupling leads to relevant changes in the electronic structure and derived
properties. In this chapter we analyze two such cases. First, we focus on the heavy
hole-light hole band mixing in self-assembled InAs/GaAs quantum rings, which is
important for current endeavour to develop quantum information science using the
spin of holes. In InAs/GaAs quantum dots, the hole ground state is known to bemain-
ly formed by the heavy hole subband. However, there is a finite spin-orbit coupling
with the light-hole subband which is critical in determining the hole spin properties.
Based on k·p theory, in this chapter we study the influence of hole subband mixing
in quantum rings. It is shown that the inner cavity of the ring enhances the light hole
component of the ground state. As the quasi-1D limit is approached, the light-hole
character becomes comparable to that of the heavy hole. Strain reduces the coupling,
but it is still larger than in quantum dots. Second, we study the electronic structure
of monolayer MoS2 quantum dots subject to a magnetic field. Here, the coupling
between conduction and valence band gives rise to mid-gap topological states which
localize near the dot edge. These edge states are analogous to those of 1D quantum
rings. We show they present a large, Zeeman-like, linear splitting with the magnetic
field, anticross with the delocalized Fock-Darwin-like states of the dot, give rise to
Aharonov-Bohm-like oscillations of the conduction (valence) band low-lying states
in the K (K′) valley, and modify the strong-field Landau levels limit form of the
energy spectrum.
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17.1 Hole Mixing in Quantum Dots

An electron excited across the band gap of a semiconductor leaves behind a hole in
the otherwise full valence states. This hole behaves like a charged particle, similar
to an electron albeit with a few remarkable differences. In zinc-blende semiconduc-
tors, these generally include heavier (and significantly anisotropic) effective masses,
stronger spin-orbit interaction (SOI) and multi-band coupling. The reason is that the
conduction and valence bands (CB and VB) are constructed from different atomic
orbitals. While the CB is mainly formed from the s orbitals of the crystal atoms, the
VB is formed by p orbitals [1]. As a result, the band structure near the the center
of the Brillouin zone looks like Fig. 17.1a. The CB is a single band well isolated
from the VB and higher excited bands. It is doubly degenerate if we consider the
spin degree of freedom. Instead, the VB has a more complex structure. Owing to
the spin-orbit interaction, the total microscopic angular momentum of VB states
is J = 3/2. The symmetry properties at the zone center (momentum k = 0) are
like those of p atomic states. Thus, we have a four fold degenerate state (J = 3/2,
Jz = +3/2, +1/2 − 1/2, −3/2) which is separated by an energy distance Δ, the
spin-orbit splitting, from a two fold degenerate state (J = 1/2, Jz = +1/2,−1/2).
The J = 1/2 state is referred to as the split-off band (SO). The J = 3/2 state splits
in the presence of a force (i.e. k �= 0) into two subbands, one with Jz = ±3/2 and
another with Jz = ±1/2. These are referred to as the heavy hole (HH) and light hole
(LH) subbands [1].

In bulk semiconductors and quantum wells, hole states are severely affected by
the HH-LH mixing, which leads to rather peculiar physics [2, 3]. In quantum dots
(QDs), however, low-energy holes can be often described simply as HHs, with HH-
LH mixing being but a weak perturbation [4]. The reason is that LHs are generally

lighter than HHs (notice in Fig. 17.1a that 1
m∗

HH
=

∣
∣
∣
δ2εHH
δk2

∣
∣
∣ < 1

m∗
LH

=
∣
∣
∣
δ2εLH
δk2

∣
∣
∣). LHs are

then more sensitive to the three-dimensional confinement of QDs and show up at
higher energies.

Jz=   1/2 (SO)

Jz=   3/2 (HH)

Jz=   1/2 (LH)

+−
+−

σ−
σ+

σ+ σ−

+−

(a) (b)
ε

k

Conduction

Δ

gap

Band
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Band

Jz=−3/2 Jz=3/2

Jz=−1/2 Jz=1/2

Fig. 17.1 a Band structure of the zone center in a zinc-blende semiconductor. bOptical transitions
between VB states and CB states. σ± stand for left and right circularly polarized light
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The high purity of the hole ground state in QDs has recently sparked great interest
in using its spin for quantum information and spintronic applications [5–10]. Indeed,
its spin lifetimes are comparable to those of electrons [11] and, owing to the p-like
nature of the Bloch function, they suffer much less decoherence than electrons from
the hyperfine interaction with lattice nuclei [12–16]. Even if weak, HH-LH mixing
in these systems needs to be understood as it sets a limit for the fidelity and execution
time of control operations [17, 18]. It is also important for optical initialization and
read-out relying on optical orientation [2]. The underlying idea of these processes is
summarized in Fig. 17.1b. The absorption/emission of circularly polarized photons
enables selective transitions between HH states (Jz = ±3/2) and electron states with
well-defined spin projection (σz =↑, ↓). Photons with the same polarizations but
higher energies enable transitions between LH states (Jz = ±1/2) and electron states
with opposite spin projections. Thus, if HH and LH states are significantly coupled
the photons give rise to final stateswith both spin projections and are not spin selective
any more. Last, we note that HH-LH mixing is also important to determine other
properties of holes in QDs, including the magnetic field dispersion [19, 20] and the
tunneling rates in coupled quantum dots [21–27].

Semiconductor quantum rings (QRs) have emerged in the last decade as an alter-
native to QDs for optoelectronic devices such as lasers and photovoltaics [28–30].
Much of the basic research on these structures has focused on the magnetic response
ensuing from their doubly-connected topology, which provides a suitable playground
to probe the Aharonov-Bohm effect [31] (see also Chaps. 9, 10 and 12). As a matter
of fact, Aharonov-Bohm oscillations of energy and emission intensity have been
reported in different experiments [32–35]. These results are well understood from
theoretical studies analyzing the influence of the confinement and external fields on
the response of electrons, holes and excitons (see e.g. [36–41]). In principle, one
can also expect QRs to be suited for quantum information systems, with additional
potentialities as compared to QDs owing to the richer magnetic response [42, 43].
Understanding the properties of holes confined in these structures is a necessary step
for further development in this direction. Because the strength of the HH-LHmixing
is strongly dependent on the details of the quantum confinement, [44, 45] the inner
cavity of QRs is expected to influence the hole admixture [46].

In this chapter, we analyze the hole ground state properties in InAs/GaAs QRs.
Based on a 6-band Burt-Foreman k·p Hamiltonian, we study the effect of quantum
confinement on the hole composition. It is shown that the inner cavity of theQRgreat-
ly enhances the HH-LH mixing, leading to much higher LH character than in QDs.
We also explore the individual role of additional factors such as the elastic strain or
ring eccentricity. The accuracy of usual approximations such as position-independent
effectivemasses [47, 48] and the axial approximation of the VBHamiltonian [49] are
assessed. The chapter is organized as follows. In Sect. 17.1.1 we give details about
the theoretical model used to calculate hole states confined in QRs. In Sect. 17.1.2 we
discuss how the different factors influence the HH-LH admixture of the hole. Finally,
in Sect. 17.1.3 we compare the spatial localization of the HH and LH components in
QRs subject to strain or structural deformations.

http://dx.doi.org/10.1007/978-3-319-95159-1_9
http://dx.doi.org/10.1007/978-3-319-95159-1_10
http://dx.doi.org/10.1007/978-3-319-95159-1_12
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17.1.1 Theory

An accurate description of holes in InAs/GaAs QRs can be obtained using 6-band
k·p Hamiltonians including HH, LH and SO subbands. This requires spanning the
Hamiltonian on the basis of periodic Bloch functions |J , Jz〉:

|3
2
,+3

2
〉 = 1√

2
|(X + iY ) ↑〉 = |HH+〉,

|3
2
,+1

2
〉 = 1√

6
|(X + iY ) ↓〉 −

√

2

3
|Z ↑〉 = |LH+〉,

|3
2
,−1

2
〉 = − 1√

6
|(X − iY ) ↑〉 −

√

2

3
|Z ↓〉 = |LH−〉,

|3
2
,−3

2
〉 = 1√

2
|(X − iY ) ↓〉 = |HH−〉,

|1
2
,+1

2
〉 = 1√

3
|(X + iY ) ↓〉 +

√

1

3
|Z ↑〉 = |SO+〉,

|1
2
,−1

2
〉 = − 1√

3
|(X − iY ) ↑〉 +

√

1

3
|Z ↓〉 = |SO−〉.

The |3/2,±3/2〉 components correspond to HH, the |3/2,±1/2〉 to LH and the
|1/2,±1/2〉 to SO. One can see from the explicit |J , Jz〉 functions above that HH
components have pure spin, while LH and SO components contain spin admixture. It
then follows that HH-LH mixing has straightforward implications in the spin purity
of holes.

Since the Luttinger parameters of InAs and GaAs are quite different, it is conve-
nient to employ position-dependent effective mass parameters. Then, instead of the
classical Luttinger Hamiltonian [50] one must use the Burt-Foreman one [47, 48].
The full Hamiltonian reads:

H6 = Hbf + V (x, y, z)I + Hs, (17.1)

where Hbf is the Burt-Foreman Hamiltonian, V (x, y, z) the confining potential, I
the identity matrix and Hs the strain Hamiltonian. A detailed description of Hbf
can be found in [51], where the due expression in cartesian coordinates is given.
Because QRs are approximately circular, it is however convenient to use cylindrical
coordinates instead. The Burt-Foreman Hamiltonian in atomic units and cylindrical
coordinates reads:

Hbf = 1

2
M , (17.2)
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where M is a rank-6 matrix with the following elements:
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Here γi are the position-dependent Luttinger parameters, γ̃ = (γ2 + γ3)/2 (axial
approximation [49]), C1 = 1 + γ1 − 2γ2 − 6γ3 and C2 = 1 + γ1 − 2γ2, Δ(ρ, z) is
the spin-orbit splitting and Fz = m + Jz is the total angular momentum z-projection,
which is the sum of the envelope angular momentum m and the Bloch angular mo-
mentum Jz.

The strain terms are given by:
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. (17.3)
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where

p = a Tr(ε), (17.4)

q = b
(εxx

2
+ εyy

2
− εzz

)

, (17.5)

s = d
(

εxz − i εyz
)

, (17.6)

r = −
√
3

2
b

(

εxx − εyy
) + i d εxy. (17.7)

Here ε is the strain tensor, which is calculated by minimizing the elastic energy, [52]
and a, b d are the VB deformation potentials.

The eigenstates of Hamiltonian (17.1) are six-component spinorial vectors, with
each component composed of an envelope and aBloch part. For the axially symmetric
structures, the spinors can be classified by Fz and the main quantum number k.

|Fz, k〉 =

⎛
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⎜
⎜
⎜
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⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17.8)

where f (i)
m (ρ, z) is the envelope function of the i-th component. In QRs with strong

vertical confinement the ground state is formed by |Fz = +3/2, k = 0〉 or |Fz =
−3/2, k = 0〉. These two states are Kramers-degenerate in the absence of magnetic
fields. For our discussion it is convenient to display one of these states, e.g. |Fz =
+3/2, k〉 (an analogous discussion would follow for |Fz = −3/2, k〉):

|3/2, 0〉 =
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⎜
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⎟
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⎟
⎟
⎟
⎟
⎠

. (17.9)

Owing to the low angular momentum, the HH (f (1)
0 ) component is dominant, as

expected from a single-band approach.
For numerical simulations, we shall consider self-assembled InAs QDs with lens

shape (spherical casket) embedded in a GaAsmatrix. The height at the apex isH = 3
nm and the radius is R = 10 nm. The QR is formed by introducing a repulsive core
in the center with radius Rin (see Fig. 17.2a). This is an idealization of the realistic
volcano shape of InAs/GaAsQRs [53] (see also Chap. 4), which captures the fact that

http://dx.doi.org/10.1007/978-3-319-95159-1_4
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Fig. 17.2 a Schematic representation of the QR cross-section. b Energy levels of a QD (left) and
a QR (right). Note that the ring cavity unstabilizes states with small angular momentum |m|

the potential governing the electron motion in the plane is asymmetric in the radial
direction, with a profound minimum under the ring apex and a smooth (abrupt)
increase on the outer (inner) side, see Fig. 17.1b in [38]. Material parameters of
InAs and GaAs (Luttinger parameters, Δ, lattice constants) are taken from [54]. The
deformation potentials are taken from [55] and the VB offset is set to Vc = 0.265 eV
[56]. Hamiltonian (17.1) is solved numerically using COMSOL Multiphysics.

17.1.2 Hole Mixing

In this section we investigate the composition of the hole ground state as a function of
the QR geometry. The composition is given in terms of the weight of each component
within the spinor (17.8). For example, the weight of the |HH+〉 component is:

cHH+ = 〈f (1)|f (1)〉
∑

i〈f (i)|f (i)〉 . (17.10)

We start by considering the effect of quantum confinement alone. Constant (InAs)
mass parameter is taken and strain effects are disregarded. Figure17.3 shows the
weight of the different spinor components as a function of Rin. Panel (a) shows the
total HH, LH and SO weights, and panel (b) shows the Jz resolved components.
While the SO components remain negligible in all the range under study, one can
see that the LH character of the ground state rapidly increases as we depart from
the QD limit (Rin = 0 nm), mainly due to an increase of the |LH−〉 component. For
Rin = 5 nm, the LH character is as large as ∼20%, over three times larger than in
QDs [46]. The LH character will be even stronger in narrower QRs. The increase
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Fig. 17.3 Composition of the hole ground state in a QR with increasing inner radius Rin. a Com-
parison of HH, LH and SO character. Solid line: cHH+ + cHH− , dashed line: cLH+ + cLH− , dotted
line: cSO+ + cSO− . b Jz resolved components. Strain is disregarded and constant (InAs) effective
mass is used

of the LH character in QRs can be explained from two factors: (i) the distinct QR
energy structure and (ii) the enhanced lateral confinement.

Factor (i) can be understood by comparing the energy level diagrams of lens-
shaped QDs andQRs, which is sketched in Fig. 17.2b – a single-bandmodel has been
used for simplicity–. The ground state of the QD has angular momentumm = 0, and
the excited states follow the energy diagram shown on the figure. The m = 0 state
has maximum charge density in the center of the QD, while states with increasing |m|
are gradually offcentered by centrifugal terms. Switching from a QD to a QR means
including a repulsive core in the center. Because of the charge density distribution,
the effect of the core is stronger on states with small |m|. Thus, in QRs the m = 0
states approach the |m| = 1 and |m| = 2 ones. Since the HH-LH coupling terms
mix states with different angular momenta, it follows that the repulsive core of QRs
favors HH-LH coupling.Mixing of |m| = 0with |m| = 2 ismore important thanwith
|m| = 1 (compare |LH−〉 with |LH+〉 in Fig. 17.3b) because both components have
the same chirality [24, 46]. Factor (ii) is related to the anistropy of hole masses. In
InAs structures grown along the [001] direction, m⊥

LH > m⊥
HH . Thus, with increasing

lateral confinement the kinetic energy of HH approaches that of LH and the HH-LH
mixing becomes stronger. If the formation of QRs does not involve enhanced lateral
confinement (e.g. the material of the cavity is pushed towards the ring edges [57]),
the LH character still increases due to factor (i), but to a lesser extent than shown
here [46].

We next analyze how the previous result is modified by the inclusion of other
factors present in realistic self-assembled QRs. First, we consider the fact that the
effectivemass is different inside and outside the QR. Using the Burt-ForemanHamil-
tonian with position-dependent effective masses, one obtains the ground state LH
character shown in Fig. 17.4 (short-dashed lines). It can be seen that the LH admix-
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ture is essentially the same as that reported above. This is because most of the wave
function is localized inside the InAs ring, with only weak leakage into the GaAs
matrix. Interestingly, the influence of the position-dependent effective mass is weak
even in the case of small Rin, where the hole tunnels across the inner GaAs core (see
Sect. 17.1.3).

Second, we consider the influence of artificially imposing axial symmetry in the
VB Hamiltonian. The 6-band Luttinger Hamiltonian (Burt-Foreman Hamiltonian
with constant mass) in cartesian coordinates reads:
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. (17.11)

where

P = γ1

2
p2, (17.12)

Q = γ2

2
(p2x + p2y − 2 p2z ), (17.13)

S = √
3 γ3 pz p−, (17.14)

R = −
√
3

2
γ2 (p2x − p2y) + i

√
3 γ3 px py, (17.15)

and pj is the j-projection of the momentum and p± = (px ± ipy). As can be seen, in
(17.11) the term R lacks axial symmetry. To simplify the study of axially symmetric
nanostructures, Sercel and Vahala proposed replacing it by: [51]

R = −
√
3

2
γ p2−, (17.16)

where γ = (γ2 + γ3)/2. This is known as the “axial approximation”, for it enables
analytical integration of the angular coordinate. Because self-assembled QDs and
QRs are roughly axially symmetric, this approximation is employed in most multi-
band descriptions of the VB structure (including Hamiltonian Hbf). However, in
the current context where high purity hole states is desirable for applications, it is
worth assessing to which extent the approximation provides accurate estimates of the
hole mixing. The long-dashed line in Fig. 17.4 shows the ground state LH character
without the axial approximation.Theweight of theLHcomponent is found to increase
by 1−2%, although the qualitative trend as a function of inner radii remains the same.
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Fig. 17.4 Weight of the LH components in the hole ground state in a QR with increasing inner
radiusRin. Position-dependent effectivemass is used. Short-dashed lines: unstrained ringswith axial
approximation. Long-dashed lines: unstrained rings without axial approximation. Dashed-dotted
lines: strained rings without axial approximation

Next, we consider the effect of strain forces, which are known to have a deep
impact on the electronic structure of VB holes in InAs/GaAs QDs [55, 58, 59] and
QRs [60] (see also Chap.13). The results, dashed-dotted lines in Fig. 17.4, show a
moderate decrease of the LH character of the QRs as compared to the unstrained
case. Still, the same trend as observed before holds. Namely, the inner cavity of the
ring systematically enhances the LH character.

The fact that strain-free simulations provide a reasonable reference is somewhat
surprising, as biaxial strain is known to split HH and LH states energetically [58,
59]. One may then expect strained QRs to display much smaller LH character [46].
For further insight into this issue, in Fig. 17.5 the role of strain is analyzed in more
detail. The LH character of the ground state is compared for different degrees of
approximation toHs: diagonal strain (dotted lines), biaxial strain [61] (dashed lines)
and full strain (solid lines). One can see that diagonal strain predicts a strong decrease
of the LH character as compared to the unstrained case of Fig. 17.4. This is because
the p + q and p − q terms in (17.3) split HH and LH energetically, thus weakening
the HH-LH mixing. By contrast, the biaxial approximation [(17.3) but setting the
shear terms to zero, d = 0] shows larger LH character, close to the full-strain value.
This indicates that the weakening of the HH-LH mixing due to the diagonal terms
is largely compensated by the strong off-diagonal terms of the Hamiltonian. As a
result, the fully strained systemhas LH component of the same order as the strain-free
system.

Next, we take into account that self-assembled InAs/GaAs QRs often deviate
from the exact circular geometry assumed so far. This is because the anisotropic
redistribution of the QD material during the capping and annealing processes result-
s in elongated ring-shaped islands [53]. These deviations are known to affect the
magnetic response of the QRs [34] and are required for quantitative interpretation
of experimental observations [38, 62]. In Fig. 17.6 we study the hole mixing in QRs
subject to an increasing degree of ellipticity. We start from circular QDs and let
the eccentricity ε increase while keeping the basis area constant. The semi-major
(semi-minor) axis Ra (Rb) of the elliptical QR is then:

http://dx.doi.org/10.1007/978-3-319-95159-1_13
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Fig. 17.5 Weight of the
light hole components in the
hole ground state of a QR
with increasing inner radius
Rin. Three approximations
for strain are compared:
diagonal strain (dotted line),
biaxial strain (dashed line)
and full strain (solid lines)
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Fig. 17.6 Effect of the
eccentricity on the
composition of the hole
ground state (minor
components shown only).
The QR has R = 10 nm.
Light and dark lines
correspond to Rin = 4 nm
and Rin = 5 nm, respectively
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Ra = R/(1 − ε2)1/4, (17.17)

Rb = R2/Ra. (17.18)

The hole states are calculated using the strain-free Hamiltonian in cartesian coordi-
nates for a QR with Rin = 4 nm. The result is shown in Fig. 17.6 (light lines). As
can be seen, the weight of both LH and SO components is barely affected by the
eccentricity. This is inspite of the fact that forRin = 4 nm and ε = 0.8, the ringwidth,
W = R − Rin, changes from 6 nm all over the ring to 8.9 nm and 4 nm along the
major and minor axis, respectively. The same behavior is observed for different inner
radii (see e.g. Rin = 5 nm, dark lines in the figure).

17.1.3 Hole Localization

It has been suggested that strain plays an important role to determine the localization
of electrons and holes in QRs, eventually leading to spatially separated (type-II-like)
carriers [60]. In this section we investigate how strain influences the localization of
the different hole components. In Fig. 17.7 we plot the potential energy originating in
the diagonal strain terms for a QR with a small inner cavity (Rin = 1 nm, left panels)
and a large inner cavity (Rin = 5 nm, right panels). The upper panel corresponds to
HH potential and the lower one to LH potential. Dark (light) colors stand for strain-



17 Band Mixing Effects in InAs/GaAs Quantum Rings . . . 549

induced potential well (barrier). As expected, Fig. 17.7 shows that strain stabilizes
(unstabilizes) the HH (LH). It is worth noting that the small Rin geometry is is
just a small departure from the lens-shaped QD. Yet, the inner cavity brings about
significant differences. For HH, the strain in the cavity yields a potential minimum,
which ismore attractive than the InAs region itself. For LH, it is just the opposite. The
inner cavity is strongly repulsive and strain favors localization around it, including
the GaAs regions above and below the ring [46].

The actual hole localization, considering both strain and confinement potentials,
is illustrated in Fig. 17.8 for the m = 0 (HH) and m = 2 (LH) components of the
ground state. For large inner cavities (Rin = 5 nm, right panels), both HH and LH
share localization inside the QR. By contrast, for small cavities (Rin = 1 nm, left
panels) the HH shows a sizable density inside the cavity, while the LH stays away
from it. Because the LH component has a node, half of it localizes around the core and
the other half on the distant side, with significant leaking above theQR. This behavior
is similar to that of holes in vertically coupled QDs with thin interdot barriers, [55,
63] except that here the localization in the GaAs region takes place for HH instead
of LH. A more dramatic localization of HH in the inner cavity has been predicted by
considering diagonal strain terms only [46]. This indicates that shear strain reduces
this phenomenon through the enhancement of HH-LH coupling.

Fig. 17.7 Potential induced by strain on HH (top panels) and LH (bottom panels) confined in a QR.
Left and right panels are for Rin = 1 nm and Rin = 5 nm, respectively. Note that positive potential
is attractive for holes

Fig. 17.8 Wave function of the HH (top panels) and LH (bottom panels) confined in a strained
QR. Dashed lines show the edges of the QR structure. Left and right panels are for Rin = 1 nm and
Rin = 5 nm, respectively. Dashed lines show the edges of the QR structure
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In typical self-assembled InAs/GaAs QRs Rin � 1 nm [53]. In such a case, the
strain in the core is weaker and cannot compete with the repulsive confinement
potential (i.e., we are in the case illustrated by the right panels in Figs. 17.7 and
17.8). Yet, the results of this section suggest that using strained materials with small
band-offset a spatial decoupling of HH and LH may be engineered.

17.1.4 Conclusions

Motivated by current interest in using confined hole spins for quantum information
and spintronic devices, we have investigated the hole mixing in InAs/GaAs QRs. We
have shown that the hole ground state has a fairly pure HH character in the QD limit,
but it rapidly gains LH character as the inner cavity grows and the quasi-1D (wire-
like) limit is approached. Because LH components have mixed spin projections, this
suggests that narrow QRs are less suited than QDs for applications reyling on hole
spin. On the other hand, the large LH component may be of interest for applications
requiring enhanced tunneling rates [23, 24], enhanced spin-orbit mediated control
[27, 64] and optoelectronic devices emitting z-polarized light [45]. Experiments
probing the polarization of emitted light, like the ones in [65], would confirm the
different strength of LH coupling in QRs and QDs.

Deviations of the QR from perfect axial symmetry due to eccentricity or the
asymmetric nature of the zinc-blende Luttinger-Kohn Hamiltonian (beyond the axial
approximation [49]) have been found to have a minor influence on the HH-LH
admixture. The same holds for position-dependent effective mass. This validates
the use of simplified models for qualitative estimates.

The role of strain has been investigated in detail. As in QDs, it reduces the LH
character of the ground state by introducing a potential which splits HH and LH states
energetically [58, 59]. However, this is partially compensated by the enhancement
of the off-diagonal terms coupling HH and LH through biaxial and shear strain. As
a result, the actual degree of HH-LH mixing is of the same order as that expected
in strain-free systems. Besides, the qualitative trends set by quantum confinement
are not altered. Last, we have also shown that strain can be used to engineer the
wavefunction localization in QRs with narrow inner cavities, where the strong strain
potential may compete against the band-offset potential.

17.2 Magnetic Response of Edge States
in MoS2 Quantum Dots

Two-dimensional transition metal dichalcogenides (TMDs) have arised as an alter-
native to graphene for electronic and opto-electronic applications where a finite gap
is required [66]. Recently, single photon emitter TMDs have been observed, whose
quantum dot like behavior is typically associated with lattice defects [67–73]. TMD
quantum dots with controlled quantum confinement are now being pursued with
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different techniques, including patterning of TMD monolayers [74], chemical syn-
thesis [75, 76] and defect engineering [77, 78]. In this context, theoretical studies
have arised investigating the electronic structure of TMD quantum dots. Particular
interest has been placed in the response to external magnetic fields. Kormanyos and
co-workers have analyzed the CB under perpendicular magnetic fields for hard wal-
l circular MoS2 and WS2 dots [79]. The resulting spectrum is reminiscent of the
Fock-Darwin spectrum in harmonically confined dots, but with sizable out-of-plane
g factors due to spin-orbit interaction. Brooks and Burkard showed that the magnetic
field can be used to force spin degeneracies in spite of the spin-orbit splitting, which
is of interest for development of spin qubits [80]. Dias and co-workers investigated
the energy levels of CB andVB inK andK ′ valleys ofMoS2, as well as the associated
magneto-absorption spectrum [81, 82].

The above studies, however, have not considered the possible presence of edge
states, which show up in the gap of finite MoS2 systems under different conditions
[83–89]. The origin of such states lies in the marginal topological properties of the
single-valley MoS2 Hamiltonian.1 In k ·p formalism [90], these properties manifest
whenone expands theHamiltonian up to secondorder in k and explicitly considers the
CB-VB coupling [89]. In this chapter, we analyze the response ofmid-gapmonolayer
MoS2 quantum dot states to perpendicular magnetic fields. To this end, we use a two-
band k·p Hamiltonian:

H =
(

Ev + α p2 − V (r) τγ p−
τγ p+ Ec + β p2 + V (r)

)

. (17.19)

where p± = px ± iτpy and p = k + A, with k the momentum relative to the K/K ′
points andA = B/2 (−y, x, 0) the vector potential.B is themagnetic field,Ec = Δ/2
and Ev = −Δ/2 the CB and VB edge energies, respectively, Δ is the band gap.
The constants α, β and γ are material parameters, while τ identifies the valley K
(τ = 1) or K ′ (τ = −1). V (r) represents a possibly externally applied potential as
e.g. electrostatic gating. If no external potential is present, then V (r) = 0.We impose
hard-wall potential at the QD border, the associated boundary conditions result in no
intervalley coupling. Notice also that for clarity we ignore spin and spin-orbit terms,
which inMoS2 give rise to small energy splittings of levels at zero and finitemagnetic
fields [81]. We also disregard minor corrections like trigonal warping, [90] or the
role of defects which can be relevant in someMoS2 nanostructures [91]. Hamiltonian
(17.19) is solved numerically.

To illustrate the effect of the magnetic field on the electronic structure, we first
consider the highly symmetric case of circular quantum dots with equivalent masses

1In graphene systems one can associate an index to each of the inequivalent valleys. Then, the Chern
number can be calculated as the sum of these indexes. It is found that while the individual Chern
number per inequivalent valley does not vanish, the sum is zero, so that the system is topologically
trivial. However, the non-vanishing valley index allows the system to sustain edge states. Such
behavior is related to graphene’smarginal topological character. In a similar sense,MoS2 ismarginal
as well. The marginality implies that a small perturbation in the Hamiltonian (e.g. mass term) can
have a big effect on the presence or absence of the gapless modes.
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Fig. 17.9 Energy levels of circular dots as a function of a perpendicular magnetic flux, for α =
−β = 1 eVÅ2. a K valley. b K ′ valley

in CB and VB, α = 1 eVÅ2 and β = −1 eVÅ2, along with other MoS2 parameters
(γ = 3.82 eVÅ,Δ = 1.9 eV) and radius R = 9 nm. Figure17.9a, b show the energy
levels in the K and K ′ valley, respectively, as a function of the magnetic flux Φ =
BS/Φ0, with S the dot surface and Φ0 = 2π the unit quantum flux (in atomic units).
As can be seen, CB (E > 0.95 eV) and VB (E < −0.95 eV) display a Fock-Darwin
like spectra, where spatially confined states converge into Landau levels (LLs) with
increasing flux. Notice the LLs of 2D TMDs include energy-locked levels which are
independent of Φ, as can be seen in the lowest level of the CB of K , in Fig. 17.9a.
Besides, CB of K (K ′) valley and VB of K ′ (K) valley are mirror images. Up to this
point, all features are consistent with the picture described by Dias et al. [81, 82].

However, superimposed to the Fock-Darwin like spectrum, there are a series of
iso-spaced states which show a identical linear dispersion with the field, covering
the entire spectrum: CB, VB and gap region alike. These are the edge states of the
dot, arising from the marginal topological character of Hamiltonian (17.19) [89].

The slope of edge states against Φ is positive for K and negative for K ′ valleys,
evidencing a large Zeeman level splitting. The sign andmagnitude can be understood
by simplifying Hamiltonian (17.19) for a circular structure and fixing the radius to
R, as expected for pure edge states. The resulting Hamiltonian, neglecting magnetic
field for the moment, is:

HR =
(

εv + α
R2 L̂2z −i τγ

R e−iθ L̂z
i τγ

R eiθ L̂z εc + β

R2 L̂2z

)

. (17.20)

with L̂z the azimuthal angularmomentumoperator. The eigenvectors are spinorsΨ =
(

a eiM θ , b ei(M+1)θ
)

, with a2 = |β|
|α|+|β| , b

2 = |α|
|α|+|β| , [89] and M is the L̂z quantum

number. The mean value of the energy, E = 〈Ψ |HR|Ψ 〉, is
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E = (|a|2εv + |b|2εc) + i τγ

R
(M (ab∗ − a∗b) − a∗b) + |a|2α

R2
M 2

+|b|2β
R2

(M + 1)2. (17.21)

Since E must be real, so must be i a∗b and i (ab∗ − a∗b). Therefore, one of the two
complex constants must be a real number and the other one an imaginary number.
Let us assume a is real and b a pure imaginary number. Then:

E = (|a|2εv + |b|2εc) + M 2

R2
(α|a|2 + β|b|2) + (2M + 1)

β|b|2
R2

+τγ

R
(2a|b|M + a|b|) . (17.22)

Furthermore, sinceα > 0,β < 0,a2 = |β|
|α|+|β| andb

2 = |α|
|α|+|β| ,wehave that (α|a|2 +

β|b|2) = 0. Thus,

E = (
|β|

|α| + |β|εv + |α|
|α| + |β|εc) + βα

|α| + |β|
1

R2
+ 2βα

|α| + |β|
M

R2

+ 2τγ
√

α|β|
(|α| + |β|)R M − τγ

√
α|β|

(|α| + |β|)R . (17.23)

The presence of a magnetic flux Φ can be incorporated by the formal replacement
M → M + Φ, so that the flux-dependent energy EΦ results in a linear dependence
on the magnetic flux:

EΦ = E +
(

2βα

|α| + |β|
1

R2
+ 2τγ

√
α|β|

(|α| + |β|)
1

R

)

Φ (17.24)

For the particular case of |α| = |β|, i.e., a2 = b2 = 1/2, the slope of the flux becomes
(

√|β|α
R2 + τγ

R ), which is in quantitative agreement with the slope of the edge states
numerically calculated and shown in Fig. 17.9. We note the second term in the slope,
arising from the off-diagonal band coupling in Hamiltonian (17.19), is the dominant
term, which explains the opposite slope in K (τ = 1) and K ′ (τ = −1) valleys.

Considering the pervasive presence of edge states in the magneto-spectrum of
Fig. 17.9, one suspects they could have important implications for actual magneto-
absorption and spin properties of TMD dots. Since early theoretical studies over-
looked such states, [80–82] next we explore their robutstness when using actual
MoS2 mass parameters, α = 1.72 eVÅ2 and β = −0.13 eVÅ2 [92]. The results are
shown in Fig. 17.10. As can be seen, the spectra are similar to those of Fig. 17.9,
except for the CB of the K point –see top of Fig. 17.10a–, where drastic changes
appear. Here, a gap opens up between the lowest (Φ-independent) LL and higher
states, and Aharonov-Bohm like oscillations take place in the many-fold of states
under each excited LL.
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The interpretation of these effects is as follows. For |α| = |β| the Fermi level was
in the center of the gap,E ≈ 0 (notice the summands in the first parenthesis of (17.23)
cancel out), and so were the edge states with small M angular momentum. Instead,
for |α| � |β|, the Fermi level shifts towards the vicinity of the CB. In the K valley,
where such states have positive slope, this enables anticrossings between edge states
and corresponding CB states with the sameM . No anticrossings are observed in the
K ′ valley because the low-M edge states, being close to the CB at zero field, require
stronger Φ than we show in Fig. 17.10 to reach their VB counterparts.

Similar results are obtained if circular confinement is replaced by other shapes.
Figure17.11a, b show themagneto-spectrumof hexagonal and triangularMoS2 quan-
tum dots, respectively. Edge states again anticross with CB states, opening gaps and
formingAharonov-Bohm like oscillations. Themain difference as compared to circu-
lar dots is that the oscillating many-folds are now formed by sets of six (Fig. 17.11a)
and three (Fig. 17.11b) energy levels. This is due to the reduced symmetryof hexagons
(C6) and triangles (C3) as compared to the circle.
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Fig. 17.10 Energy levels of a MoS2 circular dot as a function of a perpendicular magnetic flux.
α = 1.72 eVÅ2 and β = −0.13 eVÅ2. a K valley. b K ′ valley. The lowest (LL0) and first excited
(LL1) Landau levels of the CB are labeled
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Fig. 17.11 Same as Fig. 17.10a, but for hexagonal (a) and triangular (b) dots
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Fig. 17.12 Same as
Fig. 17.10a, but including a
harmonic confinement
potential,
V (r) = 1/2mj ω

2
j r

2

(j = e, h). me = 1/β,
mh = 1/α, ωe = 30 meV
and ωh = ωe

√
me/mh
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The quantum ring-like behavior of MoS2 quantum dots arising from edge s-
tates can be tailored by means of external fields. As an example, in Fig. 17.12 we
represent the K valley of a circular dot like that in Fig. 17.10a, but adding a har-
monic confinement potential, which could be associated e.g. to electrostatic gating,
V (r) = 1/2 k r2, with k = mj ω

2
j (j = CB,VB for electrons and holes). Edge states

turn out to be robust against such potential, which is quite strong near the boundaries,
see Fig. 17.12, but they are energetically unstabilized. In particular, low M edge s-
tates are blueshifted away from the middle of the gap, towards the proximity of the
CB. This change shifts anticrossings with CB states to weakerΦ values as compared
to the system with V (r) = 0, Fig. 17.10a. Consequently, anticrossings take place in
excited CB states.

In conclusion, edge states in monolayer TMDs quantum dots exhibit a linear,
Zeeman-like, response against perpendicular magnetic fields. When anticrossing
with delocalized states of the dot, they can give rise to Aharonov-Bohm like oscil-
lations. For MoS2 quantum dots, these features are expected to show up in the CB
of the K valley (and, for stronger fields, in the VB of the K ′ valley). The addition of
external potentials, modifying the edge states energy with respect to that of delocal-
ized states, can be used to tune the magnetic fields at which these quantum ring like
features takes place.

Acknowledgements Support from MINECO project CTQ2017-83781-P and UJI project
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Chapter 18
Circular n-p Junctions in Graphene
Nanoribbons

Alina Mreńca-Kolasińska and Bartłomiej Szafran

Abstract A characteristic feature of graphene as the Dirac conductor is that one can
introduce doping by external voltages, so that the n-p junction can be defined and
controlled by gating. The electrostatic n-p junctions in graphene act as waveguides
that confine currents. The fact can be classically understood by the opposite orien-
tation of the Lorentz force at both sides of the n-p junction, so that the carriers in
both the conduction and valence band are shifted towards the junction by the external
magnetic field. We describe our proposal for an Aharonov-Bohm interferometer at
the n-p junction induced by the potential of the tip of an atomic force microscope.
The conductance of the system exhibits Aharonov-Bohm oscillations provided that
the persistent currents localized at the junction are coupled to the quantum Hall edge
currents. The coupling is controlled by the Fermi energy and the tip potential. We
discuss the Lorentz force effects in the system as compared to etched quantum rings
in graphene and III-V semiconductors.

18.1 Introduction

Graphene [1] is an excellent material for studies of coherent electron transport with
the mean free path [2, 3] of the order of severalµm. The absence of the energy gap at
theDirac points of the dispersion relation allows for doping thematerial with external
potentials [1]. The gating of the structure induces n- and p-type conductivity areas
with potentials of the electrodes, which excludes the need for chemical doping [1].
For that reason an electrostatic control of the position of the chemical potential with
respect to the Dirac point allows for a precise definition of n-p junctions within the
sample. The bipolar graphene n-p junctions have been the focus of investigation
early upon fabrication of the monolayer material with the Klein tunneling [4] as the
most prominent example. Moreover, the n-p-n junctions were used for formation of
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the Fabry-Pérot interferometers [5–7]. The n-p junctions [8–10] are considered for
studies of solid-state electron optics [11–16].

In the quantum Hall conditions [9, 17–19] the n-p junctions form waveguides
[20] that confine electrical currents. Both the quantum Hall current transport near
the edges of the sample and the current confinement along the n-p junction can be
understood as due to the classical Lorentz force acting on the moving carrier in the
external magnetic field. The classical counterpart of the current confinement at the
n-p junction are the snake orbits [14, 21–33] along the junction which appear due
to inversion [34] of the Lorentz force orientation with the carriers passing across the
junction from the conductance to the valence band.

Mesoscopic n-p junctions in the quantum Hall conditions exhibit fractional quan-
tization of the Hall conductance [9, 17, 19] which is explained by a non-coherent
equilibration of the current flow along all the accessible edge and junction currents
[9, 17, 19]. In this chapter we describe a proposal [35, 36] to induce a small nanosize
circular n-p junction (see Fig. 18.1) of circumference much shorter than the coher-
ence length within a narrow graphene strip (graphene nanoribbon [37]). The junction
is formed by external electrostatic potential of a scanning probe (Fig. 18.2b) that is
repulsive for electrons when the rest of the nanoribbon corresponds to the n-type con-
ductivity region. Far from the junction the Fermi energy is set within the conduction
band and the probe potential raises locally the Dirac point above the Fermi energy
forming a circular region of p-type conductivity. The circular n-p junction in the
quantum Hall conditions traps a persistent current and the coupling of the junction
current to the edges of the ribbon [35, 36] produces an Aharonov-Bohm interfer-
ometer (see Fig. 18.2). We discuss the transport properties of the induced quantum
ring (Fig. 18.2b) with respect to the etched graphene quantum rings (Fig. 18.2a) that
were extensively studied by both experiment [38–43] and theory [44–54]. We pay a
particular attention to the effects of the magnetic deflection. All the results to be dis-
cussed below are obtained for the out-of-plane orientation of the external magnetic
field perpendicular to the plane of confinement (see Fig. 18.3). In classical terms the
electrons of the conduction band are shifted to the left of the velocity vector. For the
valence band the deflection has an opposite direction.

(a) (b)

Fig. 18.1 Schematic drawing of the currents in the system in the quantum Hall regime for a
circular p-type region induced by an external electrostatic potential within the n-type conductivity
nanoribbon. The junction is marked with the dashed line. a Low EF and edge current coupled to
the n-p junction. b For high EF the radius of the n-p junction decreases, and the junction is too far
from the edge for the edge current to couple to the n-p junction. Reproduced from [35]
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(b)(a)

Fig. 18.2 AB interferometers: a ring etched out of graphene (a) and a circular n-p junction induced
within a graphene nanoribbon (b). The potential in (b) is due to a charged tip of an atomic force
microscope and the arrows indicate the orientation of the currents within the bipolar conductivity
regions. Reproduced from [36]

Fig. 18.3 Schematics of the
electron flow at the maxima
(a) and minima (b) of G in
Fig. 18.12 and (c) the
orientation of the Lorentz
force for the electron moving
right in the out-of-plane
magnetic field. After [36]

(a)

(b)

(c)

A charged tip of the atomic force microscope (Fig. 18.2b) that is employed for
formation of the circular n-p junction is used in the scanning probe microscopy
(SGM) technique [55–61]. The SGM exploits a local modification of the potential
landscape to study the reaction of the electric properties of the sample to the charged
probe with a spatial resolution. The SGM technique was used for observation of the
magnetic deflection effects for the electron trajectories in graphene, i.e. the cyclotron
and skipping orbits [60, 61] as well as the magnetic focusing [16, 28, 62–65]. The
effects of the magnetic deflection of the trajectories for induced and etched quantum
rings are discussed below.
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18.2 Modeling the Electron Transport in Nanoribbons
with External Probe Potential

For description of the coherent single-electron transport in graphene we use an atom-
istic tight binding approach with the pz orbitals forming the π bonding between the
carbon atoms. The Hamiltonian that is used can be put in form

H =
∑

〈i,j〉

(
tijc

†
i cj + h.c.

)
+

∑

i

V (ri)c
†
i ci, (18.1)

where 〈i, j〉 stands for a pair of nearest neighbors carbon atoms, and V (ri) for the tip
potential at the i-th ion. We consider a two-terminal transport (see Fig. 18.2) devices
in which the current is fed and extracted by nanoribbons.

The original potential of the charged graphene probe is of the Coulomb form.
The electron gas is deformed in response to the potential and the deformation results
in screening of the long range part of the tip potential. The effective potential as
determined by the Schrödinger-Poisson modeling [66, 67] is close to a Lorentzian
form

V (r) = Vt

1 + (|r − rt|/d)2
, (18.2)

where rt = (xt, yt, 0) is the projection of tip position on the plane of the electron gas,
d stands for the width of the effective tip potential, and Vt is the maximal value of
the tip potential. The width of the tip potential d turns out [66] of the order of the
distance between the tip and the electron gas and only weakly depends on the Fermi
energy or electron density and the charged accumulated at the tip [66], which only
influence the height of the potential Vt .

The hopping elements in the Hamiltonian (18.1) include the Peierl’s phase, tij =
t exp( 2π i

φ0

∫ rj
ri

A · dl), where t is the hopping parameter. In the studieswe are interested
in the externalmagnetic field that is applied perpendicular to the plane of confinement
B = (0, 0,B0), and we describe it using the Landau gauge, A = (−yB0, 0, 0).

The atomistic Hamiltonian that we use here produces large algebraic problems of
the order of the number of atoms present within the computational box. In the low-
energy transport conditions that we are interested in the size and the numerical cost
of the problem can be reduced by the scaling trick introduced by [68]. The ribbons
that wemodel below are scaled upwith the condition for the lattice constant a = a0sf
and t = t0/sf , where t0 = −2.7 eV is the unscaled hopping parameter, a0 = 2.46 Å
is the graphene lattice constant. We apply a scaling factor up to sf = 4.

We follow the Landauer approach and evaluate the conductance from solution
of the scattering problem. We first determine the eigenstates of the input and output
leads (graphene nanoribbons). We look for the electron eigenstates in the nanoribbon
in the Bloch form,

ψkm
u,v = χ km

v eikmuΔx, (18.3)
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Fig. 18.4 Schematic drawing of a nanoribbon that is used as the input and output channel. An
armchair ribbon is selected for presentation. In the Bloch waves (18.3) that serve as the eigenstates
of the channels u numbers the elementary cells, v the ions within the cell, aCC = 0.142 nm is
the nearest neighbor distance, a = 0.246 nm is the lattice constant, and Δx is the period of the
considered nanoribbon. After [69]

where km is the wave vector for them-th subband, χ km
u,v is a periodic function with the

periodicity of the crystal structure of the ribbon at the vth site in the uth elementary
cell within the ribbon which has the length of Δx (see Fig. 18.4). In presence of the
scatterer within the computational box the resulting wave functions in the input lead

are superpositions of the incident wave function ψ
k+
in

in , and the backscattered ones,

Ψ
u,v
in =

∑

l

clinψ
k+
in

u,v +
∑

l

d l
inψ

k−
l

u,v, (18.4)

where the summation runs over the subbands l that are responsible for the backscat-
tered current with the current flux oriented from the scatterer back to the input lead.
In order to evaluate the scattering for the incoming mode with wave vector k+

in we
set clin = δl,in. At the output lead a general transferred wave function has the form

Ψ
u,v
out =

∑

l

cloutψ
k+
l

u,v, (18.5)

where, this time, the summation runs only over the subbands carrying the current to
the right. The backscattered din and transferred amplitudes cout are determined with
the wave function matching method (WFM) [70, 71] which glues the wave function
in the scattering region with the asymptotic Hamiltonian eigenstates. For evaluation
of conductance within the Landauer approach we consider each mode of the input
lead as the source of the electron current. After solution of the quantum scattering
problem we obtain the transfer probability from the mode n input lead to modes m
in the output lead tmn. The total transmission probability is obtained by a summation
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Tm =
∑

n

|tmn|2. (18.6)

The linear conductance [72] at the Fermi level for 0K is evaluated as G = G0Ttot ,
with Ttot = ∑

m Tm and G0 = 2e2/h. Note, that we neglect the spin Zeeman effect
in the Hamiltonian.

For evaluation of the transfer probability [72] and for the purpose of the discussion
of the electron motion within the rings we evaluate the the current that flows along
the π bonds between the atoms m and n [73]

Jmn = i

�

[
tmnΨ

∗
mΨn − tnmΨ ∗

n Ψm
]
, (18.7)

where Ψn is the wave function at the nth atom.

18.3 Control of the Aharonov-Bohm Oscillations

A clear signal of the AB oscillations induced by the tip potential in the nanoribbon
was found in the single-subband limit of a lowFermi energy. In Figs. 18.5 and 18.6we
consider the system defined within an armchair graphene nanoribbon. At B = 0 the
armchair nanoribbon [37, 74] can be either metallic or semiconducting depending on
its width. In the quantum Hall regime the currents flow near the edges of the sample
and the Fermi level eigenstates are localized at a single edge of the ribbon. However,
the conductance still depends on the width of the nanoribbons. The dependence
can be expressed by the angle between the valley isospins of both edges [10]. For
ribbons with N atoms across, the conductance tends to 2G0 (transparent junction)
when N + 1 is a multiple of 3, and to G0

2 for other N [10]. At B = 0 these ribbons
happen to be metallic and semiconducting, respectively [74].

Conductance as a function of the externalmagnetic field is displayed in Figs. 18.5a
and 18.6a for the tip above the center of the ribbon at EF = 30 meV (Fig. 18.5a) and
EF = 60 meV (Fig. 18.6a). For low magnetic field the metallic ribbons (blue lines
in Figs. 18.5a and 18.6a) are transparent for the electron flow. The Aharonov-Bohm
oscillations appear earlier for the semiconducting ribbons (orange lines in Figs. 18.5a
and 18.6a). However, conductance oscillation becomes periodic only above 10 T.
Formation of a periodic oscillation pattern that is observed in Figs. 18.5a and 18.6a
at higher B results from the current confinement at the n-p junction that only appears
in the quantum Hall regime.

The n-p junction currents in the quantumHall regime are stabilized by the Lorentz
force,which alsohas consequences on thedetails of theABoscillations. Figures18.6c
and 18.5c, e indicate that for increasing Fermi energy, the radius of the junction is
reduced (see also Fig. 18.1) and the coupling of the edge current to the junction is
weakened. Similar is the effect of the increased magnetic field, which reduces the
penetration of the edge currents to the interior of the ribbon. The states localized at
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(a)
(b) (d)

(e)(c)

Fig. 18.5 a Summed electron transfer probability for armchair nanoribbons in the lowest subband
transport conditions for EF = 30 meV. Armchair nanoribbons are metallic when the number N of
atoms across the ribbon satisfies the condition that N + 1 is a multiple of 3, and semiconducting for
other N. We consider semiconducting nanoribbon with 292 atoms across the channel (35.79nm) –
orange lines, and metallic one with 293 atoms across the channel (35.92nm) – blue lines. The tip is
located above the axis of the channel. The applied tip potential is Vt = 400 meV, and d = 4.92 nm.
In b–e maps of the square root of the current amplitude [current amplitude calculated using (18.7)]
are plotted with orientation of the vector current distribution. The electron of the conduction band
is incident from the left, and the Lorentz force acts to the left (right) of the carrier momentum for
the conduction (valence) band. Plots b, d were calculated for the semiconducting, and (c, e) for
the metallic ribbon. The external magnetic field is 7T in b, c for B below formation of a periodic
AB oscillation. Plot d was made for the semiconducting ribbon – see the orange dot in (a). Plot e
corresponds to the metallic ribbon and was taken for the magnetic field marked by the blue dot in
(a). After [35]

(a) (b)

(c)

Fig. 18.6 a Same as Fig. 18.5a for EF = 60 meV. b, c square root of the current amplitude [current
amplitude calculated using (18.7)] plotted with orientation of the vector current distribution. The
current plot b was made for the semiconducting ribbon – see the orange dot in (a). The plot c
corresponds to the metallic ribbon and was taken for the magnetic field marked by the blue dot in
(a). After [35]

the n-p junction, when separated from the edge, form long living resonances, which
is at the origin of the abrupt form of the conductance oscillations at high Bmagnetic
field. Outside these resonances (cf. the dips at Fig. 18.6a), the tip has no impact on
the electron transfer probability (Fig. 18.6a).

The results for conductance oscillations are summarized for both the semicon-
ducting and metallic ribbons by Fig. 18.7 which shows the conductance as a function
of the Fermi energy and magnetic field (Fig. 18.7a, b), the Fourier transform of con-
ductance (Fig. 18.7c, d). The conductance oscillation is present only for ν = 2. The
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(a) (b)

(c) (d)

(e) (f)

Fig. 18.7 Summed transfer probability for semiconducting (a) and metallic armchair ribbons (b)
for parameters as in Fig. 18.5. Dashed black lines in (a) and (b) indicate transport threshold for
subsequent subbands of the lateral quantization.The insets show the transfer probability formagnetic
field below 25 T. The arrows in (a) and (b) indicate a feature due to a resonant state localized beneath
the tip – entirelywithin the p-conductivity region. The power spectra (Fourier transform) of the T (B)

dependence are displayed in (c) and (d). Dashed black line in (c) and (d) indicate the Aharonov-
Bohm period as calculated analytically from the radius of the n-p junction given by the condition
EF = V (x, y). The numbers in (a, b) denote the Landau level filling factor ν. In (e, f) the AB period
and its 1/2, 1/3, . . . fractions calculated for the condition EF = V (x, y) are shown. The points
represent values calculated from several values of the frequencies, at which peaks occur, extracted
from the Fig. (c, d). After [35]

oscillation period distinctly depends on the Fermi energy (cf. Fig. 18.7a, b). The
Fourier transform of conductance in Fig. 18.7c, d can be used for readout of the AB
oscillation period. The period is determined by the radius of the n-p junction induced
by the tip that corresponds to EF = V (x, y) line. The condition determines the radius
of the circular junction R = d

√
Vt/EF − 1, or R = 17.3 nm for EF = 30 meV and

R = 11.7 nm for EF = 60 meV. The AB oscillation period for a ring of radius R
can be estimated by ΔB = h

eA , where A is the area encircled by the n-p junction
current A = πR2. One obtains ΔB = 4.4 T for EF = 30 meV and ΔB = 9.6 T for
EF = 60 meV. These estimates are in a good agreement with the periods obtained by
the Landauer calculations. The dashed lines in Fig. 18.7c, d indicate the period corre-
sponding to the flux quantum. The Fourier spectrum contains also higher harmonics.
The quantitative comparison of the fundamental period and higher harmonics is given
in Fig. 18.7e, f.

Figure18.7c, d shows that for the metallic ribbon (Fig. 18.7d) at low Fermi energy
only the fundamental AB period can be observed, and the higher harmonics are much
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better resolved for the semiconducting ribbon (Fig. 18.7c). Explanation of the effect
can be found by analysis of the current circulation. In Figs. 18.5 and 18.6 one can
notice that the edge current in the metallic ribbon passes smoothly to the circular n-p
junction (Figs. 18.5c, e) and follows the junction to the other edge of the ribbon, with
only a weak backscattered current at the upper edge of the ribbon. On the other hand
in the semiconducting ribbons (Fig. 18.5b, d) the contact of the n-p junction and the
edge of the ribbon splits the current influx and sends only a part of the current along
the n-p junction. In that sense the edge-junction contact in semiconducting ribbon
acts as a beam splitter [75]. Similarly, the junction-edge contact near the lower edge
of the ribbon sends a part of the current back to the input lead. Finally, the upper
contact to the right of the tip ejects a part of the current to the output lead, and
keeps another part circulating around the junction. Due to the splitting of the current
at the edge-junction contacts one observes a distinct current loop going all around
the ring-like junction (the upper edge-junction contact in Figs. 18.5d and 18.6b).
The visibility of the conductance oscillations for the semiconducting ribbon is much
higher than those for the metallic ribbon (Figs. 18.5a and 18.6a).

The higher harmonics in the conductance dependence on the magnetic field are
related to formation of resonances with multiple loops around the n-p junction per-
formed by the electron [76, 77]. At lower Fermi energy, when the junction-edge
coupling is strong the transfer probability is determined by the interference between
the current that circulates around the junction and the residual onewhich goes straight
at the upper edge (Fig. 18.5e). This interference corresponds to the one-pass electron
passage as discussed in the original paper of Aharonov and Bohm [78]. For higher
EF , with reduced n-p junction radii and weaker coupling to the edge the current cir-
culates around the n-p junction (Fig. 18.6c). The phase accumulated by the electron
from the vector potential is proportional to the number of turns, and higher harmonics
appear in the power spectrum (Fig. 18.7d). For the semiconducting ribbon, the higher
harmonics are present also at low energy (Fig. 18.7b) due to the beam-splitting role
of the junction/edge contacts (Fig. 18.5d).

In experiment one can manipulate the Fermi energy (by a back gate voltage [79])
or the potential applied to the tip. Thus, both the oscillation period and the coupling
of the junction currents to the edge that determines the visibility of the oscillations
should be subject to an intentional control.

18.4 Relation to Singly Connected Quantum Rings in III-V
Semiconductors

The current distribution presented in Figs. 18.5b–e and 18.6b–c with the edge current
coupled to the loop formed at the n-p junction is similar to the III-V semiconductor
system of a channel with side attached singly-connected quantum ring – see Fig. 18.8.
Quantum rings singly-connected to a conducting channel modify its coherent trans-
port properties although they lie outside the classical current path [80], which is
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Fig. 18.8 Schematic plot of
the 64nm wide GaAs
channel singly connected to
a ring with inner and outer
radii of 60 and 124nm,
respectively. The contours
show the charge density for
two peaks of backscattering
probability of Fig. 18.10
obtained for E = 2.65 meV
at B = 0.5 T (a) and at
B = 0.751 T (b). The arrows
show the probability current
distribution. After [97]

a signature of the quantum interference effects for conductance. The side-attached
structures usually support localized states in the energy continuum thatmay enter into
a Fano [81] interference with the current-carrying delocalized states of the channel.
The Fano resonances for III-V quantum dots and rings connected to a semiconduct-
ing channel by one or two contacts have been extensively discussed in the context of
phase coherence probes [82], fabrication of spin valves [83, 84], Aharonov-Bohm
interferometers [85], Kondo effect [86–89] or single-electron transistors [90].

Energy position of the localized states in the ring of Fig. 18.8 can be determined
by the stabilization method [91]. For the purpose of the method one replaces an
infinite channel by its segment of a finite length. Then one solves the Hamiltonian
eigenequation with Dirichlet boundary conditions with wave functions vanishing at
the edges of the system. The energy spectrum is calculated as a function of the length
of the segment of the channel L. Next, the spectral positions of the ring-localized
states are determined by counting the states of the energy close to E,

N (E) =
∫

dL
∑

l

δ(|E − El(E)|; dE), (18.8)



18 Circular n-p Junctions in Graphene Nanoribbons 569

where l runs over the Hamiltonian eigenvalues for the finite system, and δ(|E −
El(L)|; dE) is equal to 1 for |E − El(L)| < dE and 0 otherwise. The idea behind this
method is that the states localized at the scattering center (here – the side-attached
ring) onlyweakly dependon the length of thefinite chanel segment. Theydo enter into
avoided crossings with the channel eigenstates. The summation in (18.8) is supposed
to extract the precise position of the resonance on the energy scale. The width of the
avoided crossings then – that is determined by the coupling of the localized state to
the channel – is translated in to the width of the peak corresponding to a specific
resonance, that in turn can be associated with the lifetime of the localized resonance
[91]. In Fig. 18.9b we plotted N (E) calculated for the side-attached ring with the
energy window dE = 5µeV.

Figure18.9 shows the resonance counter N (E) as a function of B (Fig. 18.9a)
compared to the energy spectrum of a closed [92, 93] quantum ring (Fig. 18.9b) with
the contact to the channel removed. In Fig. 18.9a two lowest-energy lines correspond
to states bound at theT junctions of the bar linking the channel to the ring. The dashed
green line shows the channel continuity threshold. Above the threshold we observe
quasi localized levels corresponding to states localized in the ring. The positions of
resonances oscillate with the magnetic field with a period of 0.165T that corresponds
to theAharonov-Bohmeffect for a ringof an effective radius of 92nm.The resonances
enter into avoided crossings that result from angular momentum mixing of closed-

Fig. 18.9 a Positions of localized states in the energy continuum as calculated by formula (18.8)
for the GaAs ring of Fig. 18.8. The darker the shade of red the larger value of N (E). The thin
vertical lines indicate energies of 2.4, 2.65 and 3.4 meV that are considered in detail below. The
green dashed line indicates the continuum threshold (ground-state energy of the electron within the
channel for k = 0). b Energy spectrum of the closed circular quantum ring that is not connected to
the channel. After [97]
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Fig. 18.10 a Black line shows the electron backscattering probability for energy E = 2.65 meV
and the red one – the value of the resonance detection counter N (E) (18.8). The inset shows a zoom
of high B part of the figure. b The value of χ plotted in green indicates the direction of the current
circulation inside the ring: χ = 1(−1) corresponds to counterclockwise (clockwise) direction. The
blue line shows the fraction of the probability density r that is contained within the ring of the
computational box of Fig. 18.8. After [97]

ring states by the attachment of the bar that breaks the rotational symmetry. Levels
repulsion generated by the symmetry breaking was reported also in [94, 95]. Above
4.6 meV the states of the second channel subband appear in Fig. 18.9a. The wave
functions of the second subband change sign across the channel.

The red lines in Fig. 18.10a show the resonance counter N (E) of 18.8 for EF =
2.65 meV. The backscattering probability R plotted with the black line in Fig. 18.10a
exhibits peaks that perfectly coincide on the magnetic field scale with the energy
positions of the ring-localized states. Thus, we can see that backscattering occurs
as a result of an interference of the channel mode with a localized state within
the ring. Outside the degeneracy of the two levels the side-attached structure is
transparent for the current flow. The asymmetry of R is a characteristic signature of
the Fano resonances [81]. Additionally, in Fig. 18.10b we plotted the fraction r of the
probability density stored by the computational box of Fig. 18.8 contained within the
ring. The electron wave function penetrates the ring for magnetic fields for which a
localized state is present at a given energy. Although R is an even function of B, r is
not [r(B) �= r(−B)]. For B > 0 the Lorentz force deflects the electron trajectories to
the left of its momentum vector, hence the penetration of thewave function to the ring
is hampered for positive and enhanced for negative magnetic field. The maxima of
the backscattering probability R get reduced for high B. The Lorentz force for B > 0
pushes the electron to the left edge of the vertical channel and weakens the coupling
to the ring. At high B the presence of the ring still produces the Fano peaks but on
a tiny scale (see the inset to Fig. 18.10a). In this sense the Lorentz force for B > 0
assists in the electron transport across the contact. Note, that due to the Onsager
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microreversibility relation [96] one finds R(B) = R(−B) although for negative B the
electron penetration to the ring is enhanced.

N (E) plot in Fig. 18.10a that is a cross section of Fig. 18.9a taken along the con-
stant energy line EF = 2.65 meV crosses the resonances of Fig. 18.9a that grow or
decrease in energy as the magnetic field grows. The energy variation of the resonance
is related to the orientation of the magnetic dipole moment generated by currents
μ = − dE

dB . For a closed 1D quantum ring one hasμ = − 1
2er × j, where j is the prob-

ability density current. The resonances that grow (decrease) in the energy correspond
to states with current circulation counterclockwise (clockwise) around the ring that
produces μ that is antiparallel (parallel) to the B vector. The orientation of the cur-
rent is denoted by χ = ±1 (green line in Fig. 18.10b), where the plus sign stands for
the counterclockwise circulation. For B > 0 the resonances that increase (decrease)
in width correspond to clockwise (counterclockwise) current circulation. At high
B > 0 the current circulation in the scattering eigenstates is counterclockwise with
the exception of the magnetic fields near the sharp Fano resonances (Fig. 18.10).

The plots selected for Fig. 18.8 display the current distribution and the scattering
density for two T peaks of Fig. 18.10a, a wide one (Fig. 18.8a) and a narrow one
(Fig. 18.8b). The charge density is pushed to the left with respect to the electron
momentum – to the external edge of the ring for the wide peak (Fig. 18.8a) and to the
internal one for the narrow peak (Fig. 18.8b), in consistence with the orientation of
the current circulationwithin the ring. The electron of the ring-localized state is either
ejected into the horizontal bar to the channel or kept within the ring by the Lorentz
force. Thus the magnetic deflection effects for μ < 0 (μ > 0) increase (decrease)
both the localized state lifetime and the energy of the resonance. The lifetime on its
turn is translated to the width of the resonance in the transfer probability.

Although the GaAs etched ring (Fig. 18.8) supports the resonances with both
orientations of the persistent current, the results that we presented in the precedent
section (Figs. 18.5b, e, 18.6b, c and 18.7a, b) for the quantum ring induced by the
n-p junction in the graphene ribbon indicated the presence of AB periodic series of
resonances that grow in the energy as the magnetic field is increased, i.e. the ones
with μ < 0 and counterclockwise current circulation. The other orientation of the
current is simply not supported by the n-p junction and is missing in the conductance
spectra of the system.

In Fig. 18.7a, b there is a single line that falls with B that is marked by an arrow
in Figs. 18.7a, b. The resonance behind this line is localized beneath the tip, entirely
in the p-conductivity region. The resonance that circulates clockwise is separated by
the Lorentz force from the junction as the magnetic field grows.

18.5 The Lorentz Force Effects for Two-Terminal
Graphene Rings

The series of the resonances including both the states with clockwise and counter-
clockwise current circulation, similar to the ones discussed in the precedent section



572 A. Mreńca-Kolasińska and B. Szafran

for GaAs structure, are present for quantum rings that are etched in graphene [38–54]
(see Fig. 18.2a).

A narrow etched ring (the internal radius R1 = 41.05 nm, and the external one
R2 = 48.95 nm – see the inset to Fig. 18.11a) presents a simple periodic behavior
in the external magnetic field. The leads applied here are semiconducting armchair
nanoribbons of width W = 17.23 nm. Both the linear conductance (Fig. 18.11a) as
well as the resonance counter (Fig. 18.11b) contain a number of lines that change only
weakly in the energy with B. These lines correspond to states that are localized near
the edges of the ring whenever short zigzag segments appear. The weak dependence
on B results from strong localization of these states. For larger magnetic field the
resonance state diagram (Fig. 18.11b) contains a series of lines in the energy as B
is increased. These lines are also visible – although weaker in the conductance plot
(Fig. 18.11a).

In order to study the current circulation at the resonances a cross section of
Fig. 18.11a for conductance was plotted in blue in Fig. 18.12 for E = 0.0586 eV

Fig. 18.11 a Conductance
of a narrow quantum ring
(R1 = 41.05 nm, R2 = 48.95
nm) connected to a
semiconducting armchair
ribbon of width W = 17.23
nm. b Counter of the
localized states as
determined by the
stabilization method. Dashed
lines separate the regions of
varied filling factor ν in the
ribbon. The solid vertical
lines indicate the Fermi
energies studied in detail.
After [36]

Fig. 18.12 Conductance
(blue line) – cross section
of Fig. 18.11a for
E = 0.0586 eV, the current
flux through the upper and
lower arms of the ring (see
Fig. 18.3) and the sign of the
flux (upper panel). After [36]
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(the horizontal black line in Fig. 18.11a, b). In Fig. 18.12 we also plotted the current
fluxes that pass through the upper and lower arms of the ring, for the current injected
to the ring from the left (Fig. 18.3a). We can see that the conductance oscillations
of Fig. 18.12 are strictly correlated with the oscillations of the current fluxes with
B. At the conductance maxima the current flows to the right at both the upper and
lower arms of the ring (Fig. 18.3a). On the other hand for the dips of conductance
a reversal of the current in the upper arm is found. Therefore, for the conductance
dips the current forms then a counterclockwise loop around the ring (Fig. 18.3b).
As we know from the precedent section this current circulation generates magnetic
dipole μ < 0 which is antiparallel to the external magnetic field [97] which leads
to the growth of the resonance energy with B. The growth can indeed be spotted
in Fig. 18.11a. In Fig. 18.13a the transfer probability – still for E = 0.0586 eV is
confronted with the localized resonances counter that was denoted in the original
paper [36] by F , but is identical with N (E) given by (18.8). We can see that the
peaks of the counter coincide with the dips of conductance. Hence, the backscatter-
ing of the incident current occurs at the Fermi energy that allows for an interference
of the incoming electron with the ring localized quasi-bound states to appear. For
the anticlockwise current circulation the Lorentz force keeps the current confined
within the ring (Fig. 18.3c) hence the sharp resonances in the stabilization diagram
(Fig. 18.11b). On the other hand, the localized states that correspond to the positive
magnetic moment μ > 0 are destabilized by the Lorentz force, so they leave weaker
signal on the stability diagram of Fig. 18.11b – visible at the high energy part of the
figure in the upper right corner of the plot. The reason why a high Fermi energy
is needed to spot these lines is that in graphene the cyclotron radius for the Fermi
energy EF [61] is Rc = EF

VFeB
, where the Fermi velocity VF is the graphene material

constant. For higher Fermi energy Rc exceeds the size of the ring-ribbon junction.
In these conditions the effects of the magnetic deflection of the electron trajectories
that tends to eject the resonance states out of the ring is weaker, the resonance has
longer lifetime and appears in Fig. 18.11b.

Fig. 18.13 a Conductance
(line of varied colors) – same
as in Fig. 18.12, and the
resonance counter for
E = 0.0586 eV. b Fourier
transform calculated for
intervals of the magnetic
field which are marked in the
corresponding colors. Each
plot in (b) is normalized so
that the first peak has the
same amplitude as in the
blue curve. After [36]

(a)

(b)
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The Fourier transforms of conductance of the quantum rings are of an elementary
interest for the electron transfer dynamics across the system. The presence of the
high harmonics is considered [41, 98] a signature of phase coherence length being
much larger than the circumference of the ring. The electrons paths encircling the
ring n times [99, 100] produce a component of the conductance oscillation of the
period of φ0/n. Moreover, for strongly disordered conductors the Al’tshuler-Aronov-
Spivak [76] periodicity of φ0/2 dominates over the Aharonov-Bohm φ0 period. High
harmonics of conductance for graphene quantum rings at high magnetic fields were
observed in [41] and attributed to reduction of scattering involving electron spin flips
at high B. The spin-flip induce decoherence and limits number of the electron turns
around the ring before it dephases. In [36] we demonstrated that enhancement of the
high harmonics at a stronger magnetic field can also be obtained in the absence of
any dephasing effects, due to the magnetic forces.

The Fourier transform of G(B) calculated in finite ranges of B are given in
Fig. 18.13b with different colors as marked in Fig. 18.13a. The Fourier transforms
are normalized to produce the first peak of the same amplitude. In Fig. 18.13b we
find that: (i) the oscillation period increases with B and (ii) the higher harmonics
are enhanced at high B. These features can be explained as due to the Lorentz force.
Feature (i) results from a reduced effective radius of the ring that is due to the Lorentz
force that pushes the scattering density to the internal core of the ring (cf. Fig. 18.3b).
Reduction of the area A encircled by electrons reduces the AB period according to
formula ΔB = h

eA = 2�

eR2 . The other feature (ii) is a result of the stabilization of the
anticlockwise loop of the current within the ring by the Lorentz force (see Fig. 18.3b)
and the discussion in the precedent section) that increases the number of turns of the
electron circulation around the ring.

Figures18.11, 18.12 and 18.13 were obtained for the lowest subband transport
ν = 2. For higher ν the AB oscillations become pronounced for B > 10 T
(Fig. 18.11a), only when the corresponding resonant lines can be resolved in
Fig. 18.11b in this energy range. Fig. 18.14 shows the Fourier transform of the signal
for the range of (0, 10)T (Fig. 18.14a) and (10, 30)T (Fig. 18.14b). We conclude that
the magnetic field enhances the higher harmonics also for larger filling factors.

The magnetic deflection in order to be effective requires that the cyclotron radius
is comparable or smaller to the channels and the junctions. Thus the effects of the
Lorentz force get stronger for increased channel widths: In Fig. 18.15 the results for
the ring radii to R1 = 23.4 nm and R2 = 48.95 nm are shown for conductance and
the resonance counter. For B ∈ (0, 10)T one observes both the lines which grow and
decrease in the energy with B – due to the resonant states of both current orientations
as discussed above for the side attached GaAs ring (Figs. 18.8, 18.9 and 18.10). How-
ever, above 10T the conductance plot (Fig. 18.15a) resolves only the states which go
down in the energy (clockwise currents, magnetic moment antiparallel to the external
field) with an increase of B. In contrast – the stability diagram (Fig. 18.15b) obtained
for the resonance counter in the stabilization method retains only the states that in-
crease in the energy with growing B. This apparent contradiction can be explained by
analysis of the results in a closer resolution. Figure18.17 shows the cross section of
Fig. 18.15.We can see that the double peak structure which is present at lowmagnetic
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Fig. 18.14 Fourier
transform of Fig. 18.11a for
B ∈ (0, 10T) (a), and for
B ∈ (10T, 30T) (b). After
[36]

Fig. 18.15 Same as
Fig. 18.11 only for a wider
ring to R1 = 23.4 nm and
R2 = 48.95 nm. After [36]

field starts to evolve at higher B with one of the peaks of the series getting wider and
the other narrower. We find that the peaks that get wider correspond to the magnetic
dipole moment generated by the clockwise current circulation (Fig. 18.16a) parallel
to the external magnetic field, while the narrow dips appear with an anticlockwise
current (Fig. 18.16b) and antiparallel magnetic moment orientation. The shifts of the
peaks (Fig. 18.15a) and dips (Fig. 18.15b) in energy are consistent with the interac-
tion of the magnetic moment with the external field given by the projection of the
moment on the external field vector ΔE = −→μ · −→

B . At high external field the dips of
conductance become too thin to be resolved on the 2D conductance plot (Fig. 18.17)
and the peaks of T = 1 for μ > 0 extend to cover most of the B scale at high field.
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(a) (b)

Fig. 18.16 The current distribution for the results of Fig. 18.17 for a B = 6.2 T (a peak of conduc-
tance) and b for B = 5.78 T (a dip of conductance). After [36]

Fig. 18.17 Same as
Fig. 18.12 only for a wider
ring to R1 = 23.4 nm and
R2 = 48.95 nm. The
conductance plotted in blue
is a cross section of
Fig. 18.15 for
E = 0.0542 eV. After [36]

The resonance/antiresonance width is related to the lifetime of the quasibound
states that participate in the Fano interference. The lifetime of the antiresonances
with μ < 0 (with circulation as in Fig. 18.16b) becomes very large. The quasibound
state rotateswithin the inner core of the ring and becomes decoupled from the incident
current – and disappears from the conductance plot of Fig. 18.15a. The lifetime of the
states with the opposite current circulation (Fig. 18.16a), on the other hand, becomes
very small since their coupling to the lead currents is increased which removes their
presence from the stability plot of Fig. 18.15b.

The change of the clockwise and anticlockwise current paths within the ring has
also consequences on the Aharonov-Bohm periodicity since the flux of the external
magnetic field threading the current loop becomes unequal for the two current ori-
entations. In Fig. 18.15a, b one notices that below 10T both the lines that grow and
decrease with B appear at the same energy with the same period in B. However, at
higher magnetic field the resonances that decrease with B (Fig. 18.15a) appear with a
distinctly shorter period than the ones that grow in the energy (Fig. 18.15b). Similarly,
opposite shifts for the two current circulations can be resolved in Fig. 18.16.

Figure18.17 shows that the ring becomes transparent to electrons at highmagnetic
field. The absence of backscattering is a well known feature of the quantum Hall
regime. In our case the current takes a single arm of the ring which attenuates the
Aharonov-Bohm oscillations. The effect of the Lorentz force in the attenuation of the
Aharonov-Bohm oscillation was predicted in [101]. For the three-terminal device the
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effect was theoretically shown to be accompanied by an imbalance of the electron
transfer to the two output leads [102]. An experimental verification of this finding
was given in [103], with the elastic scattering phenomena described in [104].

18.6 Summary and Conclusions

We have discussed a proposal for formation of an Aharonov-Bohm interferometer
by an electrostatic induction of a circular closed n-p junction within the graphene
nanoribbon in the quantum Hall conditions. The proposal employs a floating gate
of e.g. the tip of an atomic force microscope, that can give rise to a point like
perturbation to the potential landscape seen by the carriers, the susceptibility of
graphene to electrostatic doping, and the confinement of the currents at the n-p
junction in graphene. The states with persistent current around the junction enter
into Fano resonance with the edge currents that determine the conductance in the
quantum Hall effect regime. The Fano interference has Aharonov-Bohm periodicity
and the width of the resonances is determined by the lifetime of the quasibound
states, which can be controlled by both the external magnetic field and the gate
voltage. The gate voltage also determines the radius of the junction and hence the
Aharonov-Bohm period on the magnetic field scale.

We have discussed the magnetic deflection effects which stabilize the junction
currents in the context of the quantum rings etched in III-V semiconductor and in
graphene. The most striking difference is that the Aharonov-Bohm interferometer
formed by the n-p junction supports the quasibound resonances that produce only the
magnetic dipole moment that is antiparallel to the external magnetic field, while for
the etched rings both series of resonances are present. We indicated that the magnetic
forces contribute to stabilization of the resonances with the magnetic dipole moment
antiparallel to the external magnetic field which is responsible for appearance of
the high Fourier harmonics in the quantum Hall regime. On the other hand, the
resonances with the magnetic dipole moment antiparallel to the external magnetic
field tend to lift the Aharonov-Bohm effect by injection of the current into a single
arm of the etched quantum ring.
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